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Abstract. We propose an efficient nonlinear approximation scheme using the

Polyharmonic Local Sine Transform (PHLST) of Saito and Remy combined
with an algorithm to tile a given image automatically and adaptively according
to its local smoothness and singularities. To measure such local smoothness,
we introduce the so-called local Besov indices of an image, which is based on
the pointwise modulus of smoothness of the image. Such an adaptive tiling of
an image is important for image approximation using PHLST because PHLST
stores the corner and boundary information of each tile and consequently it is

wasteful to divide a smooth region of a given image into a set of smaller tiles.
We demonstrate the superiority of the proposed algorithm using Antarctic
remote sensing images over the PHLST using the uniform tiling. Analysis of
such images including their efficient approximation and compression has gained

its importance due to the global climate change.

1. Introduction. In 2006, Saito and Remy [11] introduced a new tool for im-
age analysis and synthesis, which is named Polyharmonic Local Sine Transform

(PHLST). The PHLST resolves several problems occurring in the Local Trigono-
metric Transforms (LTTs) of Coifman and Meyer [5] and Malvar [9, 8], such as the
overlapping windows and the slopes of the bell functions. PHLST first segments (or
more precisely “tiles”) an image into local pieces (i.e., blocks) using the character-
istic functions, then decomposes each piece into two components: the polyharmonic

component and the residual. The polyharmonic component is obtained by solv-
ing the elliptic boundary value problem associated with the so-called polyharmonic
equation (e.g., Laplace’s equation, biharmonic equation, etc.) given the boundary
values (the pixel values along the boundary created by the characteristic function).
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Subsequently this component is subtracted from the original local piece to obtain
the residual. Since the boundary values of the residual vanish, its Fourier sine series
expansion has quickly decaying coefficients. Consequently, PHLST can distinguish
intrinsic singularities in the data from the artificial discontinuities created by the
local windowing. Combining this ability with the quickly decaying coefficients of
the residuals, PHLST is also effective for image approximation, which was demon-
strated using both synthetic and real images in [11]. Of critical importance in
PHLST is how to tile an input image. As discussed in [11], there is no need to
divide a smooth region of a given image into a set of smaller blocks, and in fact,
that is wasteful due to the storage of the corner and boundary information in each
block. In [11], however, Saito and Remy did not propose any automatic tiling al-
gorithm for PHLST. In this paper, we will propose the PHLST equipped with an
adaptive tiling algorithm for efficiently approximating given input images. We will
demonstrate the effectiveness of the PHLST with the adaptive tiling algorithm for
approximating Antarctic remote sensing images. Since such remote sensing images
often consists of a large smooth part and smaller singular regions represented by
snow ripples, fractured ice, and coastlines, our proposed PHLST algorithm is more
effective to approximate such images then the PHLST with the uniform tiling as
was done in [11].

We also would like to mention the importance of efficiently approximating and
compressing such Antarctic remote sensing images. The current world is facing
a series of unprecedented major global environmental problems caused by global
warming. In the 2007 Fourth Assessment Report (AR4) by the Intergovernmental
Panel on Climate Change (IPCC) of the United Nations, it is indicated that most
of the observed warming over the last 50 years is likely to have been due to the
increasing concentrations of greenhouse gases produced by human activities such
as deforestation and burning fossil fuel. In polar regions, warming will be expected
to be strongest and cause the retreat of glaciers and sea ices, even the melting of
ice sheets. Partial deglaciation of the West Antarctic ice sheet could contribute 4-6
meters or more to sea level rise. This will be a big disaster for human being. A
good approach to observe and analyze the change of ice structures is to compare
remote sensing images of Antarctica taken at difference times. Such an endeavor
forces one to store a huge amount of remote sensing data. In order to save storage
space, one needs to develop a new image compression algorithm that can efficiently
preserve intrinsic features (or singularities) of Antarctic remote sensing images with
small storage costs.

This paper is organized as follows. In Section 2, we recall the concept of PHLST.
In Section 3, in order to measure the local smoothness of an image, we introduce
the concept of local Besov indices and discuss the relation between local Besov
indices and global Besov indices. Based on these indices, in Section 4, we derive a
fundamental principle of adaptive tiling. In Section 5, we obtain a precise estimate
of the nonlinear approximation error of the target function using PHLST with
adaptive tiling. It is clear that the obtained nonlinear approximation order using
PHLST with adaptive tiling is much better than that using PHLST with uniform
tiling. In Section 6, we apply our research on nonlinear approximation using PHLST
with adaptive tiling to Antarctic remote sensing image approximation.
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2. Polyharmonic local sine transform. A function f supported on a cube Ω is
divided into a set of functions on subcubes using the characteristic functions

Ω =

J⋃

j=1

Ωj and fj = fχΩj
,

and then split each piece fj in two components: the polyharmonic component uj

and the residual vj , i.e., fj = uj + vj . Let ∆ be the Laplace operator in R
d, i.e.,

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+
∂2

∂x2
d

.

Then the polyharmonic component uj is the solution of the following polyharmonic
equation, i.e.,

∆muj = 0 in Ωj for some m ∈ N (1)

with boundary conditions

∂2luj

∂ν2l
=

∂2lfj
∂ν2l

on ∂Ωj (l = 0, ...,m− 1), (2)

where ∂2l

∂ν2l is the normal derivative at the boundary. Subtracting uj from fj , we
get the residual vj . We do odd extension of vj followed by its periodic extension to
extend vj from Ωj to R

d. Denote the obtained function by v∗j . We expand v∗j into
the Fourier sine series. The Fourier sine expansion coefficients of v∗j decay rapidly if
there is no intrinsic singularity in fj . This process is called the Polyharmonic Local

Sine Transform (PHLST) [11].
In image compression and approximation, as long as the boundary data are

stored and the normal derivatives at the boundary are available, the polyharmonic
components can be computed quickly by utilizing the FFT-based Laplace solver
developed by Averbuch, Braverman, Israeli, and Vozovoi [1, 2], which we shall call
the ABIV method. Moreover, the FFT-based Discrete Sine Transform is used to
generate the Fourier sine coefficients of the residuals. Hence the PHLST is a fast
algorithm with its computational cost O(n log n) where n is a number of pixels in
an image.

When m = 1, (1) and (2) are reduced to

∆uj = 0 in Ωj and vj = 0 on ∂Ωj ,

the corresponding algorithm is called the Laplace Local Sine Transform (LLST).
In particular, for d = 2, m = 1, f is a bivariate function and each Ωj is a square

and ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
. For d = 1, m ∈ N, f is a univariate function, ∆m = ∂2m

∂x2m
1

,

each Ωj is a closed interval [aj , bj ], and ∂Ωj are the endpoints aj and bj . Hence uj

becomes a polynomial of degree 2m− 1.

3. Besov space and Local Besov indices. We use the Besov space as the mea-
sure of the smoothness of a target function. To reflect the smoothness at each point,
we introduce the concept of local Besov indices and explain the relation between
the local Besov index at each point and the global Besov index. Based on these
indices, in Section 4, we derive a fundamental principle of adaptive tiling.

The definition of the Besov space is based on the notion of moduli of smoothness.
Let Ω be a domain in R

d and a target function f ∈ Lp(Ω) (1 ≤ p < ∞). Denote the
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rth difference with step h by ∆r
h(f ;x):

∆r
h(f ;x) :=

r∑

ν=0

(−1)r−ν Cν
r f(x+ νh)

(
Cν

r =
r!

(r − ν)!ν!

)
.

The modulus of smoothness of f in Lp(Ω) (1 ≤ p < ∞) is defined as

ωr(f, t)p := sup
|h|<t

‖∆r
h(f ;x)‖Lp(Ω).

For α > 0, Besov spaces are defined as

Bα(Lp(Ω)) := { f ∈ Lp(Ω), ωr(f ; t)p = O(tα) } ,

where r is the smallest integer larger than α.
Let Ω be a bounded domain of Rd and f ∈ Lp(Ω) (1 ≤ p ≤ ∞). Now we define

the global Besov index on the domain Ω.

Definition 3.1. We define the global Besov index of f on the domain Ω as follows:

αf (Ω) := sup{α > 0 | f ∈ Bα(Lp(Ω))}.

We define local Besov indices as follows.

Definition 3.2. Let f ∈ Lp(Ω) (1 ≤ p ≤ ∞) and x ∈ Ω. Denote the ball with the
center x and radius δ by Bδ(x) and Dδ(x) := Bδ(x) ∩ Ω. Define

αf (x) = sup
δ>0

{αf (Dδ(x))}

and call αf (x) the local Besov index of f at the point x.

The following theorem explains the relations between global and local Besov
indices.

Theorem 3.3. Let Ω be a domain of Rd and f ∈ Lp(Ω). Then we have

αf (Ω) = inf
x∈Ω

αf (x), (3)

where αf (Ω) and αf (x) are the global Besov index and the local Besov index of f
at the point x, respectively.

Proof. Let α = inf
x∈Ω

αf (x). Clearly, we have αf (x) ≥ α. By Definition 3.2, for x ∈ Ω

and λ > 0, there exists a δ(x) > 0 such that

αf (Dδ(x)(x)) > αf (x)− λ ≥ α− λ (x ∈ Ω).

By Definition 3.1, we have

fχDδ(x)(x) ∈ Bα−λ(Lp(Dδ(x)(x))), (4)

where χE is the characteristic function of the set E. Since the system of open balls
{Dδ(x)(x)}x∈Ω covers the bounded closed domain Ω, by the theorem of finite cover-

ing, we know that there exists a system of finitely many open balls {Dδ(xl)(xl)}
L
l=1

which covers the closed domain Ω.
Let f∗

l = fχDδ(xl)
(xl). By (4), we have

f∗
l ∈ Bα−λ(Lp(Dδ(xl)(xl))) (l = 1, ..., L). (5)

Let Ω1, Ω2 and Ω1 ∪Ω2 be both domains. By the definition of the Besov space,
we know that the following claim:

“If f ∈ Bs(Lp(Ω1)) and f ∈ Bs(Lp(Ω2)), then f ∈ Bs(Lp(Ω1 ∪ Ω2)).”
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holds.

Since
L⋃

l=1

Bδ(xl)(xl) ⊃ Ω and
L⋃

l=1

Bδ(xl)(xl) is a domain, using the above claim

together with (5), we have f ∈ Bα−λ(Lp(Ω)). Since λ is arbitrarily small, by
Definition 3.1, it follows that

αf (Ω) ≥ α. (6)

On the other hand, by Definitions 3.1 and 3.2, we easily see that αf (x) ≥ αf (Ω)
for any x ∈ Ω. So we have α = inf

x∈Ω
αf (x) ≥ αf (Ω). From this and (6), we get

(3).

4. Adaptive tiling. In this section, using local Besov indices, we will derive a
fundamental principle of adaptive tiling.

Let Ω be a domain in R
2 and the target function f ∈ Lp(Ω) (2 ≤ p < ∞). Using

the local Besov index of f at every point in Ω, we may adaptively segment the
domain Ω and the function f .

Let ε be a given approximation error. Since f ∈ Lp(Ω), by the absolute continuity
of integral, for the given ε > 0, there exists a η > 0 such that for any set F ⊂ Ω
whose measure |F | ≤ η, we have

‖fχF ‖Lp(Ω) =




∫

F

|f |p dx




1
p

≤
ε

2
. (7)

From this, we see that deleting a non-smooth part with small measure does not
affect image approximation too much. More precisely, for the above η > 0, we can
choose a set E and an index α0 > 0 such that

|E| < η, sup
x∈E

αf (x) < α0, αf (x) ≥ α0 (x ∈ Ω \ E).

Below we give an adaptive tiling of the domain Ω based on the above set E
We choose two sets of squares A and B step by step, where A is a set of ‘good’

squares and B is a set of ‘bad’ squares as follows.
Step 1. We divide the domain Ω into four squares {Ωj}

4
1:

Ω =
4⋃

j=1

Ωj ,

where Ωj are pairwise disjoint except their boundaries. Initially, we set the “good
set” A as an empty set and the “ bad set ” B as a set of all four squares, i.e.,

A = ∅ and B = {Ωj}
4
1.

Step 2. Let Ωj be a square in the bad set B. If Ωj does not intersect with E,
i.e., Ωj ∩E = ∅, then we call this square Ωj a “good square”. We remove this good
square from the bad set B and add it to the good set A. Denote

A := {Ω∗
k}.

If Ωj intersects with E, i.e., Ωj ∩ E 6= ∅, then we call Ωj is a “bad square”. We
retain the “bad square” in the bad set B. Denote

B := {Ω∗∗
k }.

Step 3. If the sum of the measures of squares in B is larger than η:
∑

|Ω∗∗
k | > η,
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where η is stated as above, then we return Steps 1 and 2. We divide Ω∗∗
k into four

squares {Ω∗∗
k,l}

4
l=1.

For each square Ω∗∗
k,l,

(i) if Ω∗∗
k,l ∩ E = ∅, then we call Ω∗∗

k,l is a “ good square ”. We remove this “
good square ” from B and add it to A;

(ii) if Ω∗∗
k,l ∩ E 6= ∅, then we call Ω∗∗

k,l is a “ bad square ”. We retain this “ bad
square ” in B.

Since, in each step, B ⊃ E and |E| < η, we may continue this procedure until
the sum of measures of squares in B is less than η. We denote the final set of good

squares by A := {Qk}
M
1 . Denoting Q :=

M⋃
k=1

Qk, we have |Ω\Q| = |B| < η. By (7),

we get

‖fχΩ\Q‖Lp(Ω) =




∫

Ω\Q

|f |p dx dy




1
p

≤
ε

2
. (8)

Since we consider the Lp−approximation of bounded functions and the values of
the integrals of bounded functions on sets with small measure are small, we may
delete the set Ω \Q with measure ≤ η and the approximation error makes a slight
change as in (8). Therefore,

Ω ≃
M⋃

k=1

Qk.

is a desired tiling of Ω.

5. Lp approximation order. In this section, based on the above adaptive tiling,
we derive the Lp approximation orders of target functions on the domains by a
combination of polyharmonic functions and sine polynomials.

Let a bivariate function f ∈ Lp(Ω) (2 ≤ p < ∞) and Ω be a bounded domain in

R
2. Using the adaptive tiling in Section 4, we obtain Q =

M⋃
k=1

Qk and |Ω \Q| ≤ η.

Here {Qk}
M
1 are disjoint squares. From (8), we know that

‖fχΩ\Q‖Lp(Ω) ≤
ε

2
.

The approximation of the non-smooth function f on the domain Ω is reduced to
the approximation of the smooth functions f on Q.

Denote the global Besov index of f on Qk by αk = αf (Qk) (k = 1, 2, ...,M) and

αk0
:= min{α1, ..., αM}. (9)

We will show that the approximation order of f is determined by the minimal index
αk0

.
For each Qk, using PHLST, we decompose the bivariate function f as follows

fχQk
= uk + vk

where uk is the polyharmonic component satisfying ∆mkuk = 0 on Qk with bound-
ary conditions

∂2luk

∂ν2l
=

∂2lf χQk

∂ν2l
on ∂Qk (l = 0, ...,mk − 1).
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Here we choose mk as large as possible, i.e., mk is a maximal integer satisfying
2m− 1 ≤ αk, and vk is the residual. Let

U(x) =
M∑

k=1

uk(x)χQk
(x), V (x) =

M∑

k=1

vk(x)χQk
(x) (10)

Then we have

f(x)χQ(x) = U(x) + V (x) (x ∈ Q), where Q =

M⋃

k=1

Qk.

Below we discuss approximations of V (x) and U(x), respectively.

5.1. Approximation of V (x). From αf (Qk) = αk, it follows that αvk
(Qk) = αk.

Therefore, for an arbitrary small positive number s,

vk ∈ Bαk−s(Qk) (s > 0)

and
∂2lvk
∂ν2l

= 0 on ∂Qk (l = 0, ...,mk − 1).

Let v∗k be the periodic odd extension of vk. This implies that v∗k ∈ Bαk−s
∗ , where

Bαk−s
∗ is periodic Besov space.
Suppose that the center of the square Qk is θk = (θk1 , θ

k
2 ) and the length of its

side is lk. Let the space
∑

τ consist of all sine polynomials tτ which can be expressed
as

tτ (x) =
∑

ν∈Λ

βν sin
πν1(x1 − θk1 )

lk
sin

πν2(x2 − θk2 )

lk
(x = (x1, x2)),

where each βν is a constant and Λ ⊂ N
2 is a set of the cardinality ≤ τ .

Let στ (v
∗
k; x) be the best approximation sine polynomial of v∗k in the space

∑
τ .

We construct piecewise sine polynomials

Vn(x) =

M∑

k=1

σnk
(v∗k;x)χQk

(x), (11)

where n =
M∑
k=1

nk. We will choose n1, ..., nM such that ‖V − Vn‖Lp(Q) ≤ ε
4 and

n = n1 + · · ·+ nM is small as possible. For this purpose, we choose nk such that

‖σnk
(v∗k)− v∗k‖Lp(Qk) ≤

ε

4M
. (12)

By a known formula [4] of trigonometric approximation, we have

‖σnk
(v∗k)− v∗k‖Lp(Qk) ≤ Ckn

−
αk
2 +s′+ 1

p
− 1

2

k (s′ > 0).

where Ck is a constant. From this, we know that (12) holds if

Ckn
−

αk
2 +s′+ 1

p
− 1

2

k ≤
ε

4M

i.e., we should choose that

nk ≈

(
4CkM

ε

)(αk
2 −s′− 1

p
+ 1

2 )
−1

. (13)

From this, we have
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Proposition 1. For ε > 0, take n =
M∑
k=1

nk, where nk is stated in (13). Let V (x)

and Vn(x) be stated in (10) and (11), respectively. Then

‖V − Vn‖Lp(Q) ≤
ε

4
.

From the construction of Vn, we know that Vn(x) is a piecewise sine polynomial
which is determined by n coefficients. From (13), we get the approximation order
of V (x) by piecewise sine polynomials Vn(x).

Proposition 2. Let V (x) and Vn(x) be stated in (10) and (11). Then the following

estimate holds:

‖V − Vn‖Lp(Q) = O
(
n−

αk0
2 +s′+ 1

p
− 1

2

)
(2 ≤ p < ∞),

where αk0
is stated in (9) and s′ > 0 is an arbitrarily small number.

Proof. By (13), we get

n ≤
M∑

k=1

(
4CkM

ε

)(αk
2 −s′− 1

p
+ 1

2 )
−1

.

By (9): αk0
= min{α1, ..., αM}, we have

n ≤

(
4

ε

)(
αk0
2 −s′− 1

p
+ 1

2 )
−1 M∑

k=1

(
(CkM)(

αk
2 −s′− 1

p
+ 1

2 )
−1

Jk(ε)
)
, (14)

where Jk(ε) =
(
4
ε

)(αk
2 −s′− 1

p
+ 1

2 )
−1

−
(αk0

2 −s′− 1
p
+ 1

2

)

−1

. By p > 2 and 0 < αk0
≤ αk,

we have (
αk

2
− s′ −

1

p
+

1

2

)−1

−

(
αk0

2
− s′ −

1

p
+

1

2

)−1

≤ 0.

So Jk(ε) ≤ 1. From this, we get

M∑

k=1

(CkM)(
αk
2 −s′− 1

p
+ 1

2 )
−1

Jk(ε) ≤
M∑

k=1

(CkM)(
αk
2 −s′− 1

p
+ 1

2 )
−1

= O(1),

where the constant in the term “O” is independent of ε. Again, by (14),

n = O




(
4

ε

)( αk0
2 −s′− 1

p
+ 1

2

)

−1 
 .

This implies that
ε

4
= O

(
n−

αk0
2 +s′+ 1

p
− 1

2

)
. (15)

By (10), (11), and (12), we get

‖V − Vn‖Lp(Q) ≤
M∑

k=1

‖v∗k − σnk
(v∗k)‖Lp(Qk) ≤

ε

4
.

From this and (15), we have

‖V − Vn‖Lp(Q) = O
(
n−

αk0
2 +s′+ 1

p
− 1

2

)
(s′ > 0).

Proposition 2 is proved.
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5.2. Approximation of U(x). By (10), we see that the approximation of U(x) is
reduced to that of each uk on the square Qk. Each uk satisfies that

∆mkuk = 0 and uk = f on ∂Qk,

where mk is the maximal value of m ∈ N satisfying 2(m− 1) ≤ αk.

Let the four sides of the square Qk are τ
(k)
1 , τ

(k)
2 , τ

(k)
3 , and τ

(k)
4 . We first consider

the approximation of uk on each side τ
(k)
i by a combination of a polynomial of degree

2mk − 1 and a sine polynomial. From αf (Qk) = αk, it follows that αf

(
τ
(k)
i

)
≥ αk.

Since f = uk on τ
(k)
i , we have

αuk

(
τ
(k)
i

)
≥ αk. (16)

Denote the endpoints of the side τ
(k)
i are a

(k)
i and b

(k)
i . For the restriction of uk on

τ
(k)
i , we do one-dimensional PHLST decomposition

uk = g
(k)
i + h

(k)
i on τ

(k)
i , (17)

where g
(k)
i is a polynomial of degree 2mk − 1 and h

(k)
i vanishes on endpoints of the

side τ
(k)
i :

d2l

dx2l
h
(k)
i (x) = 0 at x = a

(k)
i , b

(k)
i for l = 0, 1, ...,mk − 1.

By (16) and (17),

α
h
(k)
i

(
τ
(k)
i

)
≥ αk.

When we do odd extension of h
(k)
i followed by its periodic extension, the obtained

function belongs to the periodic Besov space Bαk−s
∗ (s > 0). Denote the trigono-

metric approximation of h
(k)
i by σn′

k

(
h
(k)
i , x

)
. By a known result [4], we have

∥∥∥σn′

k

(
h
(k)
i ;x

)
− h

(k)
i (x)

∥∥∥
C
(

τ
(k)
i

) ≤ C ′
k(n

′
k)

−αk+s− 1
2 , s > 0. (18)

We choose n′
k such that

∥∥∥σn′

k

(
h
(k)
i , x

)
− h

(k)
i (x)

∥∥∥
C
(

τ
(k)
i

) ≤
ε

4M
.

Let ũn′

k
satisfy that

∆mk ũn′

k
= 0 in Qk and ũn′

k
= g

(k)
i +σn′

k

(
h
(k)
i

)
on τ

(k)
i (i = 1, 2, 3, 4).

(19)
Here the polyharmonic function ũn′

k
is determined by 8mk coefficients of polynomi-

als and 4n′
k coefficients of sine polynomials.

Now we estimate the difference between two mk−fold polyharmonic functions uk

and ũnk

||uk − ũn′

k
||Lp(Qk) =




∫

Qk

|uk − ũn′

k
|p dx1 dx2




1
p

≤ A
1
p

k ‖uk − ũn′

k
‖C(Qk),
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where Ak is the area of Qk. From this and (17)-(19), by the maximum modulus
principle, we get

‖uk − ũnk
‖C(Qk) = max

1≤i≤4
‖h

(k)
i − σnk

(
h
(k)
i

)
‖
C
(

τ
(k)
i

) ≤ C ′
kn

−αk+s− 1
2

k . (20)

From this, we have the following proposition.

Proposition 3. Let

n′
k ≈

(
4C ′

kM

ε

)(αk−s+ 1
2 )

−1

and n′ =

M∑

k=1

n′
k.

Denote

Un′(x) =

M∑

k=1

ũn′

k
(x)χQk

(x).

Then ‖U − Un′‖Lp(Q) ≤
ε
4 .

Again, by (20),

‖uk − ũn′

k
‖Lp(Qk) = O

(
(n′

k)
−αk+s− 1

2

)
(k = 1, ...,M).

This implies the following proposition.

Proposition 4.

‖U − Un′‖Lp(Q) = O
(
(n′)−αk0

+s− 1
2

)
(s > 0).

By Propositions 1 and 3, we obtain

Theorem 5.1. Suppose that f ∈ Lp(Ω) (2 ≤ p < ∞) and Ω be a bounded domain

in R
2. For ε > 0, Q =

M⋃
k=1

Qk is an adaptive tiling of Ω described in Section 4

which satisfies

‖f χΩ\Q‖Lp(Ω) <
ε

2
.

Denote the global Besov index of f on Qk by αk. Let

f(x) = uk(x) + vk(x) on Qk

be the mk−fold PHLST decomposition where mk is the maximal integer satisfying

2m− 1 ≤ αk and denote

U(x) =
M∑

k=1

uk(x)χQk
(x), V (x) =

M∑

k=1

vk(x)χQk
(x).

Set

nk =

(
4CkM

ε

)(αk
2 −s′− 1

p
+ 1

2 )
−1

, n =

M∑

k=1

nk

n′
k =

(
4C ′

kM

ε

)(αk−s+ 1
2 )

−1

, n′ =

M∑

k=1

n′
k,

where the constants Ck and C ′
k are stated in (13) and (18). Denote

Un′(x) =

M∑

k=1

un′

k
(x)χQk

(x), Vn(x) =

M∑

k=1

vnk
(x)χQk

(x).
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Then f(x) = U(x) + V (x) (x ∈ Q) and

‖U − Un′‖Lp(Q) ≤
ε

4
and ‖V − Vn‖Lp(Q) ≤

ε

4
.

From this theorem, we see that Un′(x) is a combination of a piecewise polyhar-
monic function and a piecewise sine polynomial which is determined by 4n′ coeffi-

cients of sine polynomials and 8m coefficients of polynomials where m =
n∑

k=1

mk,

and V (x) is a piecewise sine polynomial which is determined by n coefficients of
sine polynomials.

By Propositions 2 and 4, we get the estimates of approximation errors.

Theorem 5.2. Under the assumption of Theorem 5.1, we have

‖U − Un‖Lp(Q) = O
(
n−αk0

+s− 1
2

)
,

‖V − Vn‖Lp(Q) = O
(
n−

αk0
2 +s+ 1

p
− 1

2

)
,

where Q =
M⋃
k=1

Qk, αk0
= min{α1, ..., αM}, and s > 0.

6. Numerical experiments. In this section, we will compare the approximation
quality of our proposed PHLST with adaptive tiling and that with the uniform
tiling using three representative Antarctic remote sensing images. To approximate
an image, PHLST first tiles an image into local blocks using the characteristic
functions. The minimal size of each block of the PHLST algorithm is set to either
9 × 9 or 17 × 17 [11]. The quality of image approximation is measured by PSNR
(peak signal-to-noise ratio) [6, 10]

PSNR := 20× log10

(
max
x∈Ω

|f(x)|/RMSE

)
,

where RMSE is the absolute ℓ2 error between the original and the approximation
divided by the square root of the total number of pixels in the original image. The
unit of PSNR is decibel (dB).

The Erebus Ice Tongue (Figure 1, left) is a mountain outlet glacier that projects
11-12 km into McMurdo Sound from the Ross Island coastline near Cape Evans,
Antarctica. It is about 10 meters high and is centered upon 77.6 degrees south
latitude, 166.75 degrees east longitude. For the adaptive tiling, we first detect the
points where the local Besov index attains the local minimum in Erebus Ice Tongue
image. Here we do not need to compute exactly the value of local Besov index at
each point. What we need is to find the location of points whose local Besov indices
attain the local minima. From classic approximation theory [13, 7, 14], we know
that the small local Besov indices correspond to the large pixel-value differences.
Hence we use the popular Canny edge detector [3] to obtain these points by the
output of the Canny edge detector (Figure 1,right). Using this information, we
apply our adaptive tiling algorithm in Section 4 to the Erebus Ice Tongue image
(Figure 2). Finally, we approximate this image by PHLST with uniform tiling and
adaptive tiling. In Figure 3, we show the quality of approximation of Erebus Ice
Tongue image when we retain 0.5%-5% of the original coefficients, measured by
PSNR values. It is clear that we can better approximate images by PHLST with
adaptive tiling than with uniform tiling. Finally, we show the reconstructed images
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Figure 1. (Left) Erebus Ice Tongue image. (Right) The points
where the local Besov indices attain the local minimal value in
Erebus Ice Tongue image

Figure 2. Uniform tiling and adaptive tiling of Erebus Ice Tongue image

because the PSNR plot does not tell the whole story. Figure 4 shows reconstructed
images using the top 0.5 % of the coefficients by uniform tiling and adaptive tiling.

The next image we want to examine is that of Antarctica’s McMurdo Sound
(Figure 5), which is located bout 1,300 km from the South Pole. It was discovered
by Captain James Clark Ross and named after Lt. Archibald McMurdo. The ice-
clogged waters of Antarctica’s McMurdo Sound extend about 55 km long and wide.
The sound opens into the Ross Sea to the north. Figure 6 shows uniform tiling and
adaptive tiling of the McMurdo Sound remote sensing image. Figure 7 shows the
quality of approximation when we retain 0.5%-5% of the original coefficients.

The last image we want to examine is that of the Antarctic peninsula, which is
experiencing extraordinary warming. Ice mass loss on the peninsula occurred at a
rate of 60 billion tonnes in 2006. Several ice shelves along the Antarctic Peninsula
have retreated or disintegrated in the last two decades. Figure 8 is a satellite image
of a part of the Antarctic peninsula. Using uniform tiling and adaptive tiling in
Figure 9, the quality of approximation is shown in Figure 10.
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Figure 3. Quality of approximation of Erebus Ice Tongue image

(a) Original Image (b) Uniform Tiling (c) Adaptive Tiling

Figure 4. The reconstructed Erebus Ice Tongue images by using
top 0.5% coefficients

7. Conclusion. In this paper, we proposed an efficient nonlinear image approxi-
mation scheme using PHLST combined with the automatic and adaptive tiling al-
gorithm based on the local Besov indices of an input image. We demonstrated the
importance of tiling an input image adaptively according to its regional smoothness
and singularities for PHLST-based image approximation by comparing its perfor-
mance with that of the uniform tiling using Antarctic remote sensing images, which
often consists of a large smooth part and smaller singular regions representated by
snow ripples, fractured ice, and coastlines.

Finally, we would like to mention that it is important to develop an efficient
compression algorithm for a practical use of our approximation algorithm in such
Antarctic remote sensing image analysis, which will involve efficient quantization
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Figure 5. McMurdo Sound image

Figure 6. Uniform tiling and adaptive tiling of McMurdo Sound image

and entropy coding. We will pursue this direction and hope to report our results at
a later date.
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