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Abstract

We introduce a new local sine transform that can completely localize image information
both in the space domain and in the spatial frequency domain. This transform, which we
shall call the polyharmonic local sine transform (PHLST), first segments an image into
local pieces using the characteristic functions, then decomposes each piece into two com-
ponents: the polyharmonic component and the residual. The polyharmonic component is
obtained by solving the elliptic boundary value problem associated with the so-called poly-
harmonic equation (e.g., Laplace’s equation, biharmonic equation, etc.) given the boundary
values (the pixel values along the boundary created by the characteristic function). Sub-
sequently this component is subtracted from the original local piece to obtain the resid-
ual. Since the boundary values of the residual vanish, its Fourier sine series expansion has
quickly decaying coefficients. Consequently, PHLST can distinguish intrinsic singularities
in the data from the artificial discontinuities created by the local windowing. Combining
this ability with the quickly decaying coefficients of the residuals, PHLST is also effective
for image approximation, which we demonstrate using both synthetic and real images. In
addition, we introduce the polyharmonic local Fourier transform (PHLFT) by replacing the
Fourier sine series above by the complex Fourier series. With a slight sacrifice of the decay
rate of the expansion coefficients, PHLFT allows one to compute local Fourier magnitudes
and phases without revealing the edge effect (or Gibbs phenomenon), yet is invertible and
useful for various filtering, analysis, and approximation purposes.
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1 Introduction

For smooth periodic signals and images, the conventional Fourier series expansion
can give us almost everything we need. Simply manipulating the Fourier coeffi-
cients, we can shift them, differentiate/integrate them, and filter/attenuate them at
our disposal. We can also measure the smoothness class (the Lipschitz/Hölder ex-
ponents) of a signal by checking the rate of the decay of its Fourier coefficients,
which is related to sparsity since the faster decay of the expansion coefficients
leads to a sparser representation. See the standard references on Fourier series[1–
3] for the details. It is very important to realize that we lose everything once we
have to deal with non-periodic signals. The mismatch caused by the brute-force
periodization (i.e., the head and the tail of an input signal do not match) kills every
nice property we would have in the case of the smooth periodic signals. For ex-
ample, the Fourier series expansion coefficients of non-periodic data decay slowly,
i.e., O(‖k‖−1) where k is the frequency index vector, and reveal the Gibbs phe-
nomenon. Dealing with non-periodic signals in a proper manner is of paramount
importance in many applications that require analysis of local signal features such
as data compression and discrimination. First of all, real signals are often non-
periodic. Second, even if the original signal is perfectly periodic, its locally seg-
mented pieces (for local analysis of such pieces) are almost always not periodic.
Thus, what we must do is not to create artificial discontinuities due to the local
windowing or the brute-force periodization so that we can focus on the analysis of
intrinsic discontinuities and singularities in the signal if any. Our goal is to develop
a transform that can eliminate the interference of the boundary of a local window
imposed by a user with the Fourier analysis of the information inside of such a
window as much as possible.

We note that the wavelets/wavelet packets do not really solve this problem be-
cause in order to use wavelets or wavelet packets one needs to follow one of the
following recipes: 1) periodize a signal and apply the standard wavelets/wavelet
packets; or 2) design special wavelets near the boundaries (called “wavelets on
the interval”) as Cohen, Daubechies, and Vial proposed in [4]; or 3) use the so-
called “multiwavelets” developed by Alpert [5], which essentially use segmented
orthogonal polynomials. Unfortunately, none of them is really satisfactory for the
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applications we are interested in. The brute-force periodization (1) again creates the
mismatch/discontinuity at the end points, and this generates large wavelet/wavelet
packet coefficients. The wavelets on the interval (2) are rather complicated to im-
plement in practice, particularly if one wants to use these in the wavelet packet
mode or for images. Finally, the multiwavelets (3) are unfortunately not efficient
for oscillatory signals such as textured images.

Coifman and Meyer [6] and Malvar [7,8] independently developed the so-called
lapped orthogonal transform (LOT) (also known as local trigonometric transform
(LTT) or Malvar wavelets) in an attempt to solve the above problems. However, it
turned out that they were not completely satisfactory either, particularly for local
signal analysis. The primary reason is the lack of the true localization capability
of LTT: it cannot split an input signal into a set of non-overlapping (disjoint) re-
gions without the influence of their adjacent regions due to its use of the folding
operations. (We shall call this a “crosstalk” problem.) In this respect, the block
discrete cosine transform (DCT) used in the JPEG Baseline standard is better be-
cause it chops a signal with the characteristic functions, i.e., no influence from the
adjacent regions. Chopping the signal with the characteristic functions, however,
makes the representation of the signal segment less sparse due to the sharp cutoff at
the boundaries of the segment. If the signal segment does not contain any intrinsic
discontinuity, the Fourier cosine coefficients decay with the rate O(‖k‖−2), which
may not be fast enough, although this is better than the complex Fourier series ex-
pansion or Fourier sine series expansion, which provide only O(‖k‖−1) decay. In
the case of LTT, we can tune the width of the overlap in the folding operations to
get a faster decay rate, but there is another dilemma. The wider the overlap, the
better in terms of sparsity, but the worse in terms of crosstalks (i.e., more statisti-
cally dependent). Fang and Séré developed the so-called “multiple folding” local
trigonometric transforms (MLTT) [9] to overcome one of the problems. In terms of
sparsity, MLTT provides a better representation than the conventional LTT. How-
ever, in terms of crosstalk problems, MLTT is definitely worse than LTT because
MLTT has wider overlaps, especially in the early stage of the hierarchical split, and
that creates more and more crosstalks down in the hierarchy. Villemoes proposed
a further improvement in [10], which provides us a set of local cosines satisfying
the uniform bounds on their time-frequency concentrations, which was not possi-
ble by LTT and MLTT. However, this method constrains the arrangement of the
dyadic blocks: it only allows each block to have adjacent blocks of either the same
size or the twice as large or small in each dimension. In other words, around each
block, we cannot place its adjacent blocks whose sizes are very different from it.
Thus, this method generates a set of blocks similar to the Whitney decomposition
[11]. However, this constraint may reduce the efficiency in approximation and com-
pression. In principle, there should not be such a constraint; we should be able to
arrange the blocks with different sizes freely. This constraint is due to the specific
requirement of the action regions and bell functions which are the essence of the
LTT construction.
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All these problems essentially boil down to how to treat the boundaries that define
those subintervals and regions. To attack this fundamental problem, we developed
a new version of the local Fourier transform called “continuous boundary local
Fourier transform” (CBLFT) a few years ago [12,13]. CBLFT does not create any
crosstalks among the subintervals and any discontinuities in the signal values at the
boundaries of those subintervals. For simplicity, let us describe the one-dimensional
version of CBLFT here. It first chops a signal into segments with the characteristic
functions. Let I = [0, 1] be one of such segments. Then, let us periodize the seg-
mented signal on I , say, f(x) with period 1. Let us assume that f is continuous on
I . At this point, the head and tail of f on I does not match, so the periodized signal
has two discontinuities at x = 0 and x = 1. Consider now this periodized function
on the extended interval [−1, 2]. We add the constant f(0)−f(1) to this periodized
signal only over [−1, 0), and similarly f(1)−f(0) only over (1, 2]. This makes this
extended signal continuous over [−1, 2] although this is not periodic with period
1 anymore. CBLFT then applies the folding operations at x = 0 and x = 1 and
follows the usual LFT recipe of Wickerhauser [14], [15, Chap. 4]. This procedure
guarantees the decay rate of O(|k|−2), generates no crosstalk since it only uses the
signal information over I , and moreover, allows us to use the complex exponentials
instead of real-valued cosine functions, which may be advantageous for certain ap-
plications such as computing locally analytic signals. However, CBLFT is not yet
satisfactory: it does not deal with discontinuities in the derivatives at x = 0 and
1 so that the speed of the decay of the expansion coefficients is not fast enough.
Moreover, due to its use of the folding operators, CBLFT is not too effective for
analyzing very short segments of a signal.

We shall propose the Polyharmonic Local Sine Transform (PHLST) in the next
section, which is a fundamentally better transform in the sense that it does not suffer
from any of these problems compared to the other methods mentioned above. It
can also be generalized easily and hierarchically to higher dimensions. In essence,
PHLST first segments an image into local pieces using the characteristic functions,
then decomposes each piece into two components: the polyharmonic component
and the residual. The polyharmonic component is obtained by solving the elliptic
boundary value problem associated with the so-called polyharmonic equation (e.g.,
Laplace’s equation, biharmonic equation, etc.) given the boundary values (the pixel
values along the boundary created by the characteristic function) possibly with the
estimates of normal derivatives at the boundary. Subsequently, this component is
subtracted from the original local piece to obtain the residual. Because the boundary
values of the residual (possibly with their normal derivatives) vanish, its Fourier
sine series expansion has quickly decaying coefficients i.e., O(‖k‖−3) or faster
Using this transform, we can distinguish intrinsic singularities in the data from
the artificial discontinuities created by the local windowing using the characteristic
functions.

The organization of this paper is as follows. We shall describe the basic idea of
PHLST in the next section. Section 3 describes important practical information, in
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particular, implementation issues. Section 4 reports the results of our simple image
approximation experiments using DCT, local cosine transform (LCT; one version of
LTT), discrete wavelet transform (DWT), and PHLST. In Section 5, we introduce
the polyharmonic local Fourier transform (PHLFT) by replacing the Fourier sine
series expansion of v components by the ordinary Fourier series expansion using
the complex exponentials. With a slight sacrifice in the decay rate of the expansion
coefficients, we gain many nice properties of the complex Fourier series such as
the ability to represent local image patches by its Fourier magnitudes and phases
without suffering from the Gibbs phenomenon. Finally, we conclude this paper in
Section 6 where we shall discuss the open issues and our future plans, as well as
the relation of PHLST to the previous works done by other scientists.

2 Our Proposed Method: Polyharmonic Local Sine Transform

Instead of constructing an orthonormal basis, we first segment a signal f(x), x ∈
R

d into local pieces using the characteristic functions, then split each piece into
two components: the polyharmonic component and the residual. Let Ω ∈ R

d be the
overall domain where the signal is supported, and let Ω = ∪J

j=1Ωj be a decomposi-
tion of the domain Ω into a set of disjoint subdomains {Ωj}. Note that Ωj’s are open
and disjoint whereas Ωj’s are closed and may share the boundaries. Let fj be the
restriction of f to Ωj , i.e., fj = χΩj

f . Let us now consider the local decomposition
fj = uj + vj on Ωj . We shall call uj the polyharmonic component of fj and vj the
residual. Let ∆ be the Laplace operator in R

d. Then the polyharmonic component
is obtained by solving the following polyharmonic equation:

∆muj = 0 in Ωj, m = 1, 2, . . . (1)

with given boundary values and normal derivatives

∂q`uj

∂ νq`
=

∂q`f

∂ νq`
on ∂Ωj , ` = 0, . . . , m − 1, (2)

where q` is the order of the normal derivatives yet to be specified. The parameter q0

is normally set to 0, which means that uj = f on the boundary ∂Ωj . These bound-
ary conditions enforce the function values and the normal derivatives of orders
q1, . . . , qm−1 of the solution uj along the boundary ∂Ωj to match those of the orig-
inal signal f over there. If the Ωj’s are all rectangles (of possibly different sizes),
then we take q` = 2`, i.e., the even order normal derivatives. It is not necessary to
match the odd order normal derivatives for the rectangular domain case because the
Fourier sine series of vj is equivalent to the Fourier series expansion of the exten-
sion of vj by odd reflection with respect to the boundary ∂Ωj and the continuity of
the odd order normal derivatives (up to order 2m−1) is automatically guaranteed.
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For m = 1, Equation (1) becomes the following familiar form:




∆uj = 0 in Ωj,

uj = f on ∂Ωj ,
(3)

which is the Laplace equation with the Dirichlet boundary condition. For m = 2,
we have the following biharmonic equation with the mixed boundary condition:





∆2uj = 0 in Ωj,

uj = f,
∂`uj

∂ ν`
=

∂`f

∂ ν`
on ∂Ωj ,

(4)

where ` = 1 or 2 depending on the shape of Ωj . For the rectangular-shaped Ωj , we
take ` = 2 as explained above. Note that in 1D (d = 1), the solution of (3) is simply
a straight line connecting two boundary points of an interval Ωj whereas that of
(4) is a cubic polynomial. However, in higher dimensions (d ≥ 2), the solutions
of (3), (4), and more generally (1) with (2) are not a tensor product of algebraic
polynomials in general.

Subtracting such uj from fj gives us the residual vj = fj − uj satisfying:

∂q`vj

∂ νq`
= 0 on ∂Ωj , ` = 0, . . . , m − 1. (5)

Since the values and the normal derivatives of vj on ∂Ωj vanish, its Fourier sine ex-
pansion coefficients decay rapidly, i.e., O(‖k‖−2m−1), if there is no other intrinsic
singularity in Ωj . In fact, we have the following theorem.

Theorem 1 Let Ωj be a bounded rectangular domain in R
d, and let fj ∈ C2m(Ωj),

but non-periodic. Assume further that (∂/∂xi)
2m+1f , i = 1, . . . , d, exist and are of

bounded variation. Furthermore, let fj = uj + vj be the PHLST representation,
i.e., the polyharmonic component uj is the solution of the polyharmonic equation
(1) of order m with the boundary condition (2) with q` = 2`, ` = 0, 1, . . . , m − 1,
and vj = fj − uj is the residual component. Then, the Fourier sine coefficient bk

of the residual vj is of O (‖k‖−2m−1) for all k 6= 0, where k = (k1, . . . , kd) ∈ Z
d
+,

and ‖k‖ is the usual Euclidean (i.e., `2) norm of k.

The proof of this theorem is in Appendix A. Note that if we employ the straightfor-
ward Fourier series expansion of non-periodic fj by brute-force periodization, the
decay rate becomes only O (‖k‖−1) even if fj ∈ C2m(Ωj). If we use the Fourier
cosine series expansion of fj, we can get O (‖k‖−2).

We call this new way of decomposing a function f into a set of functions {fj =
uj+vj}J

j=1 the Polyharmonic Local Sine Transform (PHLST) with polyharmonicity
m. For m = 1 and 2, we use the special abbreviations, LLST (Laplace LST) and
BLST (Biharmonic LST).

6



Remark 2 The polyharmonic component uj is smooth particularly in the middle
of the region Ωj and as x approaches the boundary ∂Ωj , uj(x) approaches f(x).
In fact, uj is also the minimizer of the following optimization problem (see e.g.,
[16]):

min
u∈Hm(Ωj)

∑

|α|=m

(
m

α

)∫

Ωj

|Dαu|2 dx subject to the boundary condition (2), (6)

where Hm(Ωj) is an L2-Sobolev space of order m over Ωj , α = (α1, · · · , αd)
is a multi-index of a d-dimensional variable with the following definitions: |α| =

α1 + · · · + αd,
(

m
α

)
= m!/(α1! · · ·αd!), and Dα = ∂α1

1 · · ·∂αd

d , where ∂i = ∂/∂xi.
This means that the polyharmonic component minimizes the roughness measured
by the objective function in (6) while satisfying the boundary condition (2). The
larger the polyharmonicity m is, the smoother the solution uj gets.

Remark 3 Because the uj component becomes very smooth away from the bound-
ary and only carries the low frequency information in the middle of the region as
discussed in Remark 2, the frequency content of the vj component is close to that of
fj , particularly, around the mid to higher frequency band, where textures are well
represented. Therefore, the vj component retains the original texture information
almost intact and is more suitable for texture analysis than the original image patch
fj .

Remark 4 Our PHLST belongs to a larger class of models, to which Yves Meyer
refers as the u+v models [17]. In a u+v model, the original data f is assumed to be
a sum of the two components u and v. The first component u is aimed at modeling
the objects present in the data (often they are assumed to be in some specific func-
tion spaces such as the Besov spaces or the functions of bounded variation BV )
whereas the v term is responsible for texture and noise in the data. In our PHLST
model, one can also interpret u as “trend” and v as “fluctuation” of the original
data f , which are commonly-used terms in the wavelet literature [18]. Yet another
interpretation of this decomposition is the following: the polyharmonic component
u represents the part of f that is predictable from the boundary data only, whereas
the residual v represents the unpredictable part of f .

3 Practical Aspects of PHLST

If Ω and Ωj’s are rectangular regions in R
d and the functions defined over there are

sampled on a regular lattice (which is the most efficient case in terms of numeri-
cal implementation), we can employ the Discrete Sine Transform (DST) based on
the FFT algorithm to rapidly compute both the polyharmonic components and the
Fourier sine series expansion of the residual components. In particular, we use the
algorithm proposed by Averbuch, Braverman, Israeli, and Vozovoi [19,20], which

7



seems to us the most natural and practical Laplace/Poisson equation solver on rect-
angles. This ABIV method gives us more accurate solutions (in fact an arbitrary
order of accuracy in principle) than those based on the finite difference (FD) ap-
proximation of the Laplace operator followed by FFT, which only gives us the so-
lutions with accuracy O(h2) or O(h4), depending on the 5-point FD scheme or the
modified 9-point FD scheme is used [21, Sec. 7.1], [22, Chap. 12] (h is, of course,
the grid spacing here). Yet, the computational cost of the ABIV algorithm is still
O(Nd log N) where N is the number of grid points in each direction of a rectangu-
lar domain. We also note that we use the (d− 1)-dimensional version of PHLST to
represent the boundary function f(x) for x ∈ ∂Ωj , which can be recursively com-
puted starting from the 1D version. To describe the ABIV method more simply and
precisely, let us now consider the LLST decomposition f(x, y) = u(x, y)+ v(x, y)
on the unit square Ω = [0, 1]2 ⊂ R

2. There are several options in the ABIV method,
but the simplest and most practical version to compute the solution to (3) that does
not require any derivative estimate can be written as follows.

u(x, y) = p(x, y)+
∑

k≥1

{
b
(1)
k hk(x, 1 − y) + b

(2)
k hk(y, 1− x) + b

(3)
k hk(x, y) + b

(4)
k hk(y, x)

}
,

(7)
where p(x, y) is a harmonic polynomial that agrees with f(x, y) at the four corner
points of the domain, and its simplest form is:

p(x, y) = a3xy + a2x + a1y + a0, (8)

where the parameters aj’s can be easily and uniquely determined using the function
values at the four corners. The function hk(x, y) is defined as:

hk(x, y)
∆
= sin(πkx)

sinh(πky)

sinh(πk)
, (9)

and b
(j)
k , j = 1, 2, 3, 4, are the kth 1D Fourier sine coefficients of the boundary

functions f(x, 0)−p(x, 0), f(0, y)−p(0, y), f(x, 1)−p(x, 1), and f(1, y)−p(1, y),
respectively, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. One can easily verify that each
sum involving hk functions in (7) is a solution of the Laplace equation with the
nonzero boundary values on only one side of the square. For example, u(1)(x, y) =
∑

k≥1 b
(1)
k hk(x, 1 − y) satisfies the boundary condition:

u(1)(x, 0) = f(x, 0)− p(x, 0), u(1)(x, 1) = 0, u(1)(0, y) = 0, u(1)(1, y) = 0.

One the other hand, the v component can be written as

v(x, y) =
∑

m≥1

∑

n≥1

βmn sin(mπx) sin(nπy) (10)

where βmn is the 2D Fourier sine coefficients of v(x, y) = f(x, y)−u(x, y). We also
note that we use the gridpoint formulation rather than the midpoint formulation for
our discretization. Therefore, we use DST-I rather than the DST-II/III combination
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(c) v component

(d) Original (e) u component (f) v component

Fig. 1. The global version of LLST applied to the face part (129×129 pixels) of the Barbara
image. Note that the display dynamic range of (a) and (b) are set to [0, 255] whereas that
of (c) is set to [−127, 127]. Figures (d)–(f) are the 3D perspective plots of the top row. It is
easier to see in (f) that the overall shading of the face is removed in the v component.

in this paper. See e.g., [15, Chap. 4], [23] for the details of gridpoint vs midpoint
formulations.

Let us show a simple example of the effect of removing the polyharmonic com-
ponent. Figure 1 demonstrates this. We first use the global version of LLST, i.e.,
no further split of the image. One may wonder what is the difference between the
original and the residual v component in this case because they look very similar.
We would like to point out that the v component is displayed in a shifted dynamic
range (i.e., [−127, 127] instead of [0, 255]) to see the details. Moreover, if we ex-
amine them carefully, we can observe that the overall shading is gone in the v
component. The bottom row of Figure 1 clarifies this by displaying them as 3D
perspective plots.

Figure 2 shows the results of LLST decomposition by splitting the original into a
set of homogeneous square regions each of which has 17 × 17 pixels.
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(c) ∪jvj

Fig. 2. The hierarchical LLST decomposition of the Barbara face image: (a) Original image;
(b) the union of the uj components ∪juj where each Ωj is a square of 17 × 17 pixels; (c)
the union of the vj components ∪jvj .

4 Image Approximation using PHLST

Since PHLST can represent smooth regions of an image very efficiently (i.e., faster
decay of the DST coefficients of the residual components), image approximation
and compression are immediate and important applications of PHLST. In the field
of image approximation, a great theoretical progress and understanding has been
made. Nonlinear approximation of functions belonging to various function spaces,
in particular, using the orthonormal wavelet bases or splines are now well under-
stood [24]. However, as we shall discuss in Section 6.1.3, obtaining precise non-
linear approximation results for PHLST remains elusive. Therefore, in this paper,
we shall report the results of our numerical experiments using PHLST and demon-
strate its superiority over the other representative transforms such as DCT, LCT,
and wavelets, which will hopefully illuminate our theoretical investigation.

In the rest of the paper, the dimension is set to d = 2, and the domain Ω and
its subdomains Ωj are all rectangles. We shall also limit our investigation to the
specific version of PHLST with m = 1, i.e., LLST, rather than the PHLST with
higher polyharmonicities. We shall report the other settings (e.g., on more general
domains, PHLST with m > 1, and investigation on PHLST-based image compres-
sion with quantization) at a later date. In our experiments, we shall examine how
the intrinsic discontinuities and the smoothness and oscillation of the data away
from the discontinuities affect the approximation performance.

Let us first describe the details of the LLST representation of a given image for a
given split of the domain Ω = ∪jΩj . In each subdomain Ωj , we have an image patch
fj , which is decomposed into uj and vj components. Recall that each harmonic
component uj can be completely represented by the boundary values fj|∂Ωj

that in
turn can be represented by 1D version of LLST. As (7) shows, the uj can be further
decomposed into the harmonic polynomial pj (8) and the rest using the hk functions
(9). The pj component can be completely represented by (or recovered from) the
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four corner values of Ωj . The rest of the uj component is completely determined by
1D DST coefficients of the four boundary functions. Therefore, we represent the uj

component as the four corner values and the four sets of the 1D DST coefficients of
the boundary values. We note that these four corner points and four sets of the 1D
DST coefficients are shared by the adjacent blocks, so we should not duplicate them
for storage efficiency. For example, if we split an image of size (2M +1)×(2N +1)
pixels into a set of homogeneous blocks of size (2m +1)× (2n +1) pixels, then the
total number of the corner points without duplication is (2M−m + 1)× (2N−n + 1).
Another thing to note here is about the values of these corner points. The range
of the corner pixel values are between 0 and 255 for a typical 8 bit gray scale
image, which is quite different from that of the DST coefficients. This difference
should be taken into account when the image compression including quantization
is considered. Once the uj component is taken care of, the vj component is simply
obtained by 2D DST (more precisely, 2D DST-I) in a straightforward manner.

As for the performance comparison, we compare LLST with: 1) the block DCT-
II (abbreviated as “BDCT” below), which is used in the JPEG Baseline standard
[23]; 2) LCT, which uses DCT-IV after the folding operations [15, Chap. 4];and
3) C6 discrete wavelet transform (C6DWT), which is based on the ‘Coiflet’ 6-tap
conjugate quadrature filter [25], [26, Chap. 8]. Note that the C6 wavelet functions
has two vanishing moments, which means that any locally linear part of an input
image generates negligible coefficients. Thus, we believe that it is a fair comparison
with LLST since the uj components of LLST also take care of locally linear parts.

Note also that if the size of an original image is (2M + 1) × (2N + 1), which is
suitable for LLST, then we remove its last column and row to make it suitable
for BDCT, LCT, and C6DWT. On the other hand, if an original image is of size
2M × 2N pixels, then we duplicate the last column and row to make it suitable for
LLST. Note also that the block size (2m + 1) × (2n + 1) pixels used for LLST
correspond to 2m × 2n pixels for BDCT and LCT.

Now let us describe our approximation strategy. We first retain all the corner pixel
values for LLST, all the “DC” components for BDCT and LCT, and all the coeffi-
cients of the coarsest scaling function (i.e., the lowest frequency band) for C6DWT.
Starting from those number of retained coefficients, we do the “nonlinear approx-
imation,” i.e., we select the coefficient with the largest energy among all the co-
efficients not yet used, add it to the retained set of coefficients, reconstruct an ap-
proximation from this set, and evaluate its quality of approximation. We repeat this
process until we use up all the coefficients. The quality of approximation in this
paper is measured by PSNR (or peak signal-to-noise ratio), which is normally con-
sidered as a better metric for evaluating image quality than SNR (signal-to-noise
ratio) and defined as

20 log10

(
max
x∈Ω

|f(x)|/RMSE
)
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where RMSE (the root mean square error) is the absolute `2 error between the
original and the approximation divided by the square root of the number of pix-
els. The unit of PSNR is decibel (dB). Thus, PSNR = 0 dB corresponds to
RMSE = max |f(x)|, and PSNR = 350 dB corresponds to RMSE ≈ 10−17.5×
max |f(x)|, which is essentially the machine precision, i.e., no error in practice. In
our experiments, PSNR is computed as a function of the ratio R of the number of
the retained coefficients to the total number of pixels of the input image.

4.1 Approximation of Synthetic Smooth Images with and without Discontinuity

In order to demonstrate the power of LLST, we shall conduct simple approxima-
tion experiments using synthetic data. We shall first examine the effect of intrinsic
discontinuity in otherwise smooth data to the transforms under consideration.

4.1.1 A case without discontinuity

We first synthesize the 2D Gaussian function exp(−(x + 1/3)2 − (y + 1/3)2) over
the region Ω = [−1, 1] × [−1, 1], which does not have any intrinsic discontinuity.
We sample this function with rate ∆x = ∆y = 1/128, yielding discrete data of
257 × 257 pixels. If Ω = R

2, then this Gaussian function is in C∞(Ω). However,
once we restrict this on a finite rectangle such as [−1, 1] × [−1, 1], its periodic
extension is not in C∞(R2) anymore, in fact, not even in C(R2)! This is due to
the domain boundary we discussed in Introduction and by all means we need to
remove this boundary effect in order to efficiently represent and characterize this
dataset. On the other hand, we really do not need to split Ω into a set of smaller
segments in this case since there is no intrinsic discontinuities in the data and it is
homogeneous and isotropic. In order to confirm this, we also segment Ω into a set
of homogeneous blocks of 2j×2j pixels for BDCT and LCT and (2j +1)×(2j +1)
pixels for LLST where j = 7, 6, 5, and check their approximation performance. We
can view them as the quadtree-structured splits with the original image as the root
node and those homogeneous blocks as the leaf nodes. Then, the maximum depth
(or level) J of the quadtree is J = 1, 2, 3, respectively. Note that J = 0 implies
no split of the domain Ω. For C6DWT, to match the number of the coefficients
in the lowest frequency band with that of the DC components in the BDCT/LCT
representations, the maximum depth of decomposition needs to be J = 7, 6, 5,
respectively. In general, for an image of 2N × 2N pixels, the maximum depth J in
the BDCT/LCT tree corresponds to the maximum depth N − J in the wavelet tree.

Figure 3 shows these approximation results. As we have expected, LLST with no
segmentation (J = 0) outperforms all the other transforms with various depths
of decomposition except that it is defeated by C6DWT if the ratio of the retained
coefficients R is higher than about 72%. However, such a high ratio range is of no
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Fig. 3. Quality of approximation of the 2D Gaussian data measured by PSNR values. The
index J represents the depth of the quadtree decomposition. Note that J = 0 means no
splitting (i.e., the original domain is used).

interest for the purpose of efficient approximation. We also observe that the more
we subdivide the original domain, the more the performance of LLST and that
of BDCT degrade. This superior performance of LLST with J = 0 over BDCT
with J = 0 demonstrates the importance of having the coefficients decaying with
O(‖k‖−3) rather than O(‖k‖−2).

The behavior of LCT is markedly different from that of LLST and BDCT. This is
due to the folding operations and the use of DCT-IV as the underlying base trans-
form in LCT [15, Chap. 4]. In essence, the folding operations split the data on the
original domain into blocks smoothly using the appropriate bell function so that
the data on each block become suitable for DCT-IV. In fact, the folding operations
make the data locally even at the upper and left boundary and locally odd at the
lower and right boundary of each block since each DCT-IV basis function behaves
like cosines at the upper and left boundary and like sines at the lower and right
boundary. These folding operations, however, need the data outside of the blocks.
This means that we have a trouble at the blocks that share the boundary of the
original domain because we do not know the data outside of the original domain.
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In particular, we cannot apply the folding operation with J = 0, unless we can
estimate a smooth extension of the data from the original domain. Note also that
extending the input data by the brute-force periodization and then performing the
folding do not solve the problem at all: such an operation does not match the polar-
ity of the data at the domain boundary to what DCT-IV prefers. For simplicity, we
use the so-called “free” boundary condition in our experiments. We do not assume
any data outside of the domain, and do not perform any folding at the boundaries
of the original domain. Therefore, LCT with J = 0 is equivalent to applying DCT-
IV to the original image. Consequently, it senses the discontinuity at the lower and
right boundaries unlike the simple DCT-II that views the data outside as the even-
reflected version of the data inside. Thus, the LCT coefficients for J = 0 only
decay as O(‖k‖−1), and that is the reason why LCT with J = 0 performs poorly.
This is clearly worse than simply using DCT-II, and that is the main reason why
DCT-IV is not used in the JPEG Baseline standard. On the other hand, if we use
the smaller blocks such as the J = 3 case, then the influence of the boundary effect
of the original domain is localized to the out-most blocks sharing the boundary of
the original domain. However, the width of the bell function gets too short and the
decay rate of the LCT coefficients becomes slow. That is the reason why LCT with
J = 2 performs better than that with J = 3. See also [12,13] for the details of the
boundary effects due to the folding operations.

As for the performance of C6DWT, we only plot J = 8 case in Figure 3 (d) because
the PSNR curves for the other values J = 7, 6, 5 are almost identical to that for J =
8 with very small differences in the low ratio region. This is due to the fact that the
higher frequency finer scale coefficients are identical for these values of J . C6DWT
performs reasonable for this dataset, but it is beaten by LLST and BDCT except at
the very high ratios such as the region of R ≥ 72% as mentioned above. Note also
that this implementation of C6DWT assumes the periodic boundary condition at
the domain boundary. Therefore, it too views the domain boundary as discontinuity
in general.

Remark 5 The above observations on LCT and C6DWT suggest that removing the
u component for J = 0 from the original data would help these transforms. In fact,
if we remove the boundary by subtracting the u component, the performance of both
LCT and C6DWT improves. In particular, for wavelets, this can be an alternative to
“wavelets on the intervals” [4] provided that the pixels along the domain boundary
(or their transformed version) are retained.

4.1.2 A case with discontinuity

Let us now introduce simple discontinuity in this dataset, and examine how the
approximation performance changes by that. We multiply a scalar factor 2 to the
circular region satisfying {(x, y) | (x + 1/3)2 + (y + 1/3)2 < 0.2} ⊂ Ω.

14



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

P
S

N
R

 (
dB

)

Ratio of retained coefficients (%)

LLST: J=0

LLST: J=1

LLST: J=2

LLST: J=3

LLST: adap

(a) LLST

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

P
S

N
R

 (
dB

)

Ratio of retained coefficients (%)

BDCT: J=0

BDCT: J=1

BDCT: J=2

BDCT: J=3

BDCT: adap

(b) BDCT

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

P
S

N
R

 (
dB

)

Ratio of retained coefficients (%)

LCT: J=0

LCT: J=1

LCT: J=2

LCT: J=3

LCT: adap

(c) LCT

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

P
S

N
R

 (
dB

)

Ratio of retained coefficients (%)

LLST: adap

BDCT: adap

LCT: adap

Coif6: adap

(d) Adaptive

Fig. 4. Quality of approximation of the Gaussian data with circular discontinuity measured
by PSNR values.

Figure 4 shows these approximation results. Due to the discontinuity, the global
methods (J = 0) are now inferior to the segmented cases for LLST, BDCT, and
LCT. In fact, from Figure 4 (a) and (b), we can see that the performance steadily
improves as J increases. This is obvious since the discontinuity affects all the co-
efficients for J = 0 and makes their decay as O(‖k‖−1). On the other hand, for
J = 3, the effect of the discontinuity is localized to the blocks where the discon-
tinuity passes through. Note that in the continuum, whether covering the disconti-
nuity by a large block or by a set of small or narrow blocks does not matter since
the discontinuity results in the countable number of slowly decaying coefficients
anyway. However, we are dealing with the finite dimensional sampled data. Con-
sequently, localizing the discontinuity with a set of small size blocks reduces the
number of slowly decaying coefficients.

This observation leads us to the following expectation: grabbing smooth regions
by largest possible blocks and using narrow blocks around the singularity should
give us more efficient approximation than splitting the domain into a set of homo-
geneous blocks. There is no need to divide a smooth region into a set of smaller
blocks, and in fact, that is wasteful due to the storage of the corner and bound-
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Fig. 5. Adaptive dyadic segmentation of the 2D Gaussian data with circular discontinuity,
which honors the geometry of the discontinuity.

ary information in each block as demonstrated earlier. Therefore, we examine the
power of the adaptive split of the domain honoring the geometry of (or the singu-
larity in) the data. Figure 5 shows such an adaptive segmentation: smaller blocks
around the singularity and progressively larger blocks away from the singularity,
which is somewhat similar to the Whitney decomposition [11]. This particular seg-
mentation has been done manually using our Java-based “Interactive Picture Par-
tition” (IPP) program developed by Gary Zhong. We are currently developing an
automatic adaptive segmentation algorithm using PHLST, and will report the de-
tails at a later date. Figure 4 also shows the performance of the approximations
based on this adaptive segmentation. Of course, we use the same segmentation for
LLST, BDCT, and LCT. As for adaptive version of C6DWT, we compute the so-
called best sparsifying basis (BSB) via `1 norm minimization [27,28] from the C6
wavelet packet tree, and approximate by sorting out the BSB coefficients. How-
ever, our numerical computation shows that the BSB for this dataset turns out to
be the standard wavelet decomposition. This confirms the well-known fact that the

16



wavelet transform performs well on piecewise smooth data. As we can easily see,
the adaptive segmentation improves the performance of LLST and BDCT. Without
adaptive segmentation, C6DWT performed best for R ≤ 25% and and R ≥ 72%,
which can be seen by comparing the curve of LLST with J = 3 in subplot (a) with
that of C6BSB (‘Coif6: adap’) in subplot (d) in Figure 4.

With adaptive segmentation, however, LLST outperformed both BDCT and C6BSB
for R ≤ 25%, which is the range of our interest.

Interestingly enough, the adaptive segmentation does not improve the performance
of LCT so much from that of nonadaptive homogeneous split; it is slightly better
only in the range R ∈ [0, 30]. The reason is that the adaptive segmentation uses
many small blocks of size 8 × 8 pixels, as shown in Figure 5. The version of LCT
in our experiments uses the so-called “fixed” folding whose bell function width is
completely determined by the smallest block size [15, Chap. 4]. Since the same bell
function is also used for processing larger blocks, LCT loses its effectiveness as we
discussed in Introduction and Section 4.1.1. To avoid such a problem, one needs to
use multiple folding LCT of Fang and Séré [9], or better yet, the time-frequency
LCT of Villemoes [10], which unfortunately constrains possible segmentation pat-
terns as we discussed in Introduction. We shall not pursue these alternative versions
of LCT here.

4.2 Approximation of Synthetic Oscillatory Images with and without Discontinu-
ity

We shall now examine the performance of these transforms on an oscillatory func-
tion, in fact, a Gabor (i.e., a modulated Gaussian) function, with and without dis-
continuity as in the simple Gaussian case.

4.2.1 A case without discontinuity

We generate the data according to the formula: f(x, y) = exp(−(x + 1/3)2 − (y +
1/3)2) · sin(5π(2x+3y)) where (x, y) ∈ [0, 1]2, and sample this with the same rate
as before.

Figure 6 shows the approximation results. Again, in principle, there should not be
any gain by splitting the data into a set of smaller blocks because the data do not
have any intrinsic singularity. In fact, both LLST and BDCT, the J = 0 case outper-
forms the other values of J , and LLST with J = 0 remains as the best performer.
Most obvious difference from the simple Gaussian case is the degradation of the
performance of C6DWT, which confirms the well-know fact that the wavelet is not
efficient for handling oscillatory data and textures. Another interesting observation
is that LCT with J = 2, 3 performs quite well for this dataset. In fact, LCT with
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Fig. 6. Quality of approximation of the 2D Gabor (i.e., modulated Gaussian) data measured
by PSNR values.

J = 2, 3 defeats LLST with J = 0 for the range R > 42%; compare Figure 6 (a)
and (c). However, the range of our interest for efficient approximation, LLST with
J = 0 still performs the best.

4.2.2 A case with discontinuity

Finally, we shall examine the toughest scenario so far: the Gabor function with the
same circular discontinuity as the one used in Section 4.1.2. We shall not only use
the homogeneous splits, but also the same segmentation pattern shown in Figure 5
for the adaptive segmentation. We shall also compute the BSB from the C6 wavelet
packet tree.

Figure 7 shows the approximation results. The performance of the approximation
are degraded for all the transforms compared to the other scenarios considered so
far, as expected. However, the overall best performer is LLST with adaptive seg-
mentation, except for the range R < 6% where BDCT with adaptive segmentation
performs slightly better. LCT with adaptive segmentation does not perform better
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Fig. 7. Quality of approximation of the 2D Gabor data with circular discontinuity measured
by PSNR values.

than LCT with J = 3 as in the case of the Gaussian with discontinuity for the same
reason: the width of the bell function is too narrow due to the smallest block size
in this adaptive segmentation. We note that C6BSB in this case tries to subdivide
the high frequency bands and performs better than the standard wavelet transform
C6DWT unlike the case of Section 4.1.2 where C6BSB is in fact C6DWT.

In summary, our experiments with these synthetic images have shown that LLST
is: 1) the best overall performer in the low ratio region of our interest; and 2) most
effective if the adaptive segmentation of the domain honoring the geometry of the
singularity in the data is used.

4.3 Barbara Face Image

Finally, we shall examine the approximation performance of various transforms us-
ing a real image. We shall use a face part of the famous image “Barbara,” shown
in Figure 1 (a), which has been frequently used for image approximation and com-
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Fig. 8. Quality of approximation of the Barbara face image measured by PSNR values.

pression tests. The size of this face part of the Barbara image is 129 × 129 pixels.
This is much more difficult to approximate than the simple Gaussian/Gabor datasets
in the previous subsections because it contains a variety of regions: smooth regions
(forehead and cheeks); more complicated regions (eyes, nose, mouth); and regions
with oscillatory patterns (scarf). In this experiment, we shall use five different ho-
mogeneous splits J = 0, 1, 2, 3, 4. Note that the J = 4 case corresponds to the
block size of 8 × 8 pixels, i.e., the standard JPEG-DCT scenario. We shall also
examine the adaptive segmentation.

Figure 8 shows our results. The zoomed-up versions in the range R ∈ [0, 20] are
shown in Figure 9. We use the IPP program as before to generate the adaptive
segmentation for LLST, BDCT, and LCT, which is shown in Figure 10. From these
figures, we observe the following:

• The performance of LLST and BDCT with the adaptive segmentation and that
of the homogeneous splits with J = 2, 3 are virtually the same.

• LLST and BDCT (with the adaptive segmentation or the homogeneous splits
with J = 2, 3) outperform C6BSB except in the range R ∈ [0, 5].

• The PSNR values of C6BSB in the range of R ∈ [2, 20] are 1 dB higher than
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Fig. 9. Zoomed up versions of Figure 8 when 0% to 20% of the original coefficients are
retained.

those of C6DWT with J = 7 (but not shown in the plots).
• LCT with adaptive segmentation is defeated by LCT with J = 2, 3, especially

in the low range R ≤ 20%, by exactly the same reason as the Gaussian/Gabor
cases.

• BDCT with J = 4 is defeated by BDCT with J = 3. This shows the non-
optimality (at least for this image) of the strategy of homogeneously splitting a
target image into a set of blocks of size 8 × 8 pixels, which is adopted in the
JPEG Baseline standard.

• Advantage of the adaptive segmentation is less obvious except the C6BSB case
for this particular image.

From these observations, unlike the synthetic datasets in Sections 4.1 and 4.2, we
can claim neither the superiority of the adaptive segmentation over the homoge-
neous splits nor that of LLST over the other transforms, in particular, over BDCT
for this particular image and in terms of the PSNR values. We shall therefore com-
pare the perceptual quality of these approximations further by displaying the recon-
structed images. Figure 11 shows the approximations using the top 5 % of the co-
efficients by these transforms with the adaptive segmentation. Figure 12 shows the
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Fig. 10. Adaptive dyadic segmentation of the Barbara face image performed interactively
using the Java-based IPP program.

zoomed-up versions to see the quality of those approximations in details. It is clear
that the visual quality of the LLST approximation is closest to the original among
these transforms. The BDCT approximation reveals the annoying blocking artifact.
The LCT approximation is the worst due to the the artifact generated by the fold-
ing procedure. The C6BSB approximation is perhaps the next best, but the forehead
and cheek portions are less smooth than the LLST approximation, and the stripes of
the scarf, especially those in the righthand side, are not well approximated. These
experiments suggest that PSNR is not necessarily the best metric for judging the
quality of displayed images. In the near future, we plan to use the more perceptu-
ally correct metric such as Mean Structural Similarity Index (MSSIM) [29], which
is based on the comparison of the local patterns of pixel intensities normalized for
luminance and contrast.
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Fig. 11. Approximation of the Barbara face image by LLST, BDCT, LCT, and C6BSB
using top 5% of the representations. The adaptive segmentation shown in Figure 10 was
used for LLST, BDCT, and LCT. C6BSB was computed from the C6 wavelet packet tree.
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Fig. 12. Zoomed-up versions of Figure 11

5 Polyharmonic Local Fourier Transform: Use of the Complex Exponentials

As we discussed in Section 2, the Fourier sine coefficients of the vj component of
the PHLST decomposition posed as (1), (2), and (5) have the good decay rate, i.e.,
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O(‖k‖−2m−1), m = 1, 2, . . . The main motivation of using the sine functions was
the extra gain in the decay speed of the expansion coefficients via odd reflection
at the boundary of the domain, which in turn is the consequence of the vanishing
boundary values of vj. However, it is well understood now that the oriented patterns
are not efficiently captured and represented by using only sines (or only cosines).
It is much more efficient to use complex exponentials for representing oriented
patterns than sines alone. Because the boundary values of vj vanish, it is possible
to use the complex exponentials instead of sines, i.e., the ordinary Fourier series
expansion instead of the Fourier sine series expansion, if one can tolerate slower
decay rate of the coefficients. This slower decay is due to the periodization of the
vj component without the odd reflection. We shall call this the Polyharmonic Local
Fourier Transform (PHLFT). More precisely, let Ωj be a box of the form Ωj =
x

j
0 +

∏d
k=1(a

j
k, b

j
k), where x

j
0 is the vertex of the box closest to the origin (i.e., the

lower left corner in the case of 2D), and `j
k

∆
= bj

k −aj
k is the length of the kth side of

this box. Furthermore, let us assume that f is locally C2m on Ωj with m ≥ 1. If we
use the following boundary condition instead of (2) to solve for the uj component
(1):

∂`uj

∂ ν`
=

∂`f

∂ ν`
on ∂Ωj , ` = 0, . . . , m − 1, (11)

then the resulting vj component can be extended periodically and becomes Cm−1(Rd).
Therefore, we can expand vj into the Fourier series:

vj(x) ∼
∑

k∈Zd

ck e
2πi〈k,L−1

Ωj
(x−x

j
0
)〉
, x ∈ Ωj,

where LΩj
= diag(`j

1, . . . , `
j
d), with the coefficients |ck| decaying as O(‖k‖−m−1);

see Theorem 7 in Appendix A. Accordingly, the case with m = 1, which we shall
call Laplace Local Fourier Transform (LLFT), has the decay of order O(‖k‖−2),
which is the same as BDCT. But we gain the ability to easily detect and inter-
pret oriented patterns instead, which is difficult with BDCT or LLST. Figure 13
demonstrates this point. If one uses the block Discrete Fourier Transform (BDFT)
without removing the uj components, the DFT coefficients are all contaminated by
the Gibbs phenomenon due to the block boundaries as shown in Figure 13 (b). If
one uses LLST or BDCT, it is difficult to decipher the orientation information from
the coefficients; see Figure 13 (c), (d). On the other hand, LLFT clearly reveals
the orientation information as shown in Figure 13 (a). We note that, in practice,
one only needs to store the LLFT coefficients in the upper half plane in each block
thanks to their symmetry, assuming that an input image is real-valued. LLFT also
permits us to compute locally analytic signal, instantaneous frequency, etc., which
we will explore at a later date.
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Fig. 13. Magnitude of the coefficients in LLFT, BDFT, LLST, and BDCT of the Barbara
face image with the adaptive segmentation of Figure 10. Note that the corner pixel values
and 1D DST coefficients of the boundaries are not shown in LLFT and LLST here.

6 Discussion

In this section, we shall first discuss issues that are left open in PHLST. Then we
shall describe possible extensions and applications using PHLST and its relatives.
We shall also discuss the related concepts and methods proposed previously by
other researchers and conclude this article by describing the difference of their
work from ours.
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6.1 Open Issues

6.1.1 Compression with quantization

A strategy for lossy image compression using PHLST remains an open issue. Un-
like the image approximation, which simply keeps a subset of the exact expansion
coefficients and corner pixel values as we discussed in Section 4, lossy image com-
pression truly reduces the number of “bits” required to represent a given image
approximately and converts it to a stream of bits via the process of quantization.
In the JPEG Baseline standard [30,31], the DCT-II coefficients in each block of
8× 8 pixels are divided by the entries of the so-called Luminance Quantization Ta-
ble (LQT) and further rounded into the nearest integers. This quantization process
tends to suppress the higher frequency coefficients than the lower frequency coeffi-
cients so that this process can result in many zeros (i.e., more compression) without
sacrificing visual fidelity too much. In fact, LQT was determined by psychophysi-
cal experiments on the visibility of the DCT-II basis vectors [30, Sec. 4.1.3] for the
square block of 8 × 8 pixels. The Baseline method further uses the zigzag search
of the quantized coefficients in each block to record the end of the block position
instead of recording all the subsequent zeros in the block. Finally, this quantized
sequence (integers) are encoded by some entropy coder (e.g., the Huffman coder or
the arithmetic coder) for further compression in a “lossless” manner.

Unfortunately, we cannot directly use this LQT adopted in the JPEG Baseline stan-
dard for PHLST because it is optimized only for DCT-II of 8 × 8 pixel blocks, and
not optimal for any other settings. In fact, it is not optimal even for DCT-II if the
size of a block is different from 8 × 8 pixels. Therefore, if we wish to follow this
approach, we would need to calibrate the LQT specifically for DST used in PHLST
for various pixel sizes such as 9×9, 17×17, 33×33, etc. It would be too costly (in
human resources) to conduct such psychophysical experiments. Also, the PHLST
representation consists of three different items in each block: four corner pixel val-
ues, the 1D DST coefficients of the block boundary; and the 2D DST coefficients
of the residual component. We need to examine whether these three components
should be quantized separately or not.

We are currently investigating simpler uniform quantizers with “dead zone” (a spe-
cial bin covering the zero value). This dead zone can get rid of noise in input data
if its width is appropriately chosen because any coefficients within this zone are
quantized to zero, i.e., killed. Thus, the width of the dead zone plays the role of the
threshold in denoising algorithms. The subtle and interesting issue here is how to
choose the width of the dead zone as well as that of the uniform bins outside of the
dead zone, which determines the resolution of the quantization. Yet another open
issue is that of encoding after quantization. Just like the JPEG Baseline standard,
it is possible to use the zigzag search to detect the trailing zeros in each block,
and encode the resulting quantized sequences via Huffman coder. However, it still
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remains to be investigated whether such an approach is most suitable for PHLST.

6.1.2 Segmentation and denoising

Another open problem is how to automatically and adaptively segment a given input
image to achieve more efficient approximation and compression. Note that what
we mean segmentation here is different from usual image segmentation studied in
the image analysis and computer vision literature where one wishes to faithfully
segment an image into a set of objects or domains whose boundaries are general
smooth curves. What we want to do here is to simply split an image into a set
of adaptive dyadic blocks honoring the geometric structure of input data as much
as possible. For example, we wish to obtain segmentations like those shown in
Figures 5, 10 completely automatically rather than manually using an interactive
program like IPP. We already demonstrated that such adaptive dyadic splits help
image approximation in Section 4. We need to confirm that the same is true for
image compression, which necessarily includes the cost of recording the geometry
of adaptive splits.

We are currently investigating a hierarchical and recursive split-and-merge strat-
egy similar to the best-basis algorithm of Coifman and Wickerhauser [32] in spirit.
Clearly, the key is what criterion we should employ to judge whether smaller blocks
should be merged into larger blocks. One of the most promising and natural criteria
is the Minimum Description Length (MDL) criterion [33–36]. Viewing each split
pattern of an image in PHLST as a model, the MDL criterion suggests that we
should choose among many possible models the one giving the shortest descrip-
tion (counted in bits) of the data and the model. This leads to the minimization
of the infidelity of the model to the data and the complexity of the model itself in
a balanced manner. In the case of PHLST, the MDL criterion is particularly ap-
pealing since PHLST does not provide an orthonormal basis. Instead, it provides
“nonhomogeneous” representations using the corner pixels, 1D DST coefficients of
the boundaries, and the 2D DST coefficients of the residuals, as explained in Sec-
tion 4. Thus, the sparsity criterion using `p norm with 0 < p ≤ 1 makes less sense
contrary to the case of the libraries of orthonormal bases such as local cosines and
wavelet packets. It makes more sense to count the description length in bits needed
to encode such nonhomogeneous representations.

There are several additional advantages to use the MDL criterion here. First, it
forces us to incorporate a quantization procedure to convert the representation into a
sequence of bits. Secondly, it can achieve simultaneous compression and denoising
of input data. Similarly to the case of wavelets and the libraries of orthonormal
bases shown by Saito [36], Chang et al. [37], and Hansen and Yu [38] among others,
we expect that the MDL-based method will achieve the desired results for PHLST.
Finally, the MDL formulation allows us to incorporate easily various noise models
and prior models for distribution of the expansion coefficients: it can automatically
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select the most suitable noise model and coefficient distribution models out of many
competing models. This is advantageous since it is well known that the Laplace (or
double exponential) distribution or the generalized Gaussian distribution are more
suitable to model the wavelet coefficients [38] and DCT coefficients [39] of natural
images than the Gaussian distribution. The DST coefficients in PHLST are expected
to behave in a similar manner.

6.1.3 Nonlinear approximation with PHLST

Another open issue is to obtain precise nonlinear approximation results using PHLST.
Such a task remains elusive compared to the case of the orthonormal wavelets or
splines. Let us briefly explain why this is so. First, let us introduce some important
concepts of the nonlinear approximation. Let X be some function space (e.g.,the
Besov space) defined on a domain Ω ⊂ R

d, and let Σn ⊂ X be a nonlinear man-
ifold so that any function belonging to Σn can be exactly representable by at most
n parameters. Examples of such Σn include a set of functions that can be exactly
specified by at most n basis functions selected from a basis set for X and a set of
piecewise constant functions with n knots or breakpoints for d = 1. We now define
the n-term approximation error of f ∈ X ⊂ Lp(Ω) as follows:

σn(f)p
∆
= inf

g∈Σn

‖f − g‖p,

where 1 ≤ p ≤ ∞. In the nonlinear approximation setting, the goodness of Σn

is measured by the decay rate of the worst case n-term approximation error as n
increases:

σn(X)p
∆
= sup

f∈X
σn(f)p ≤ Cn−α, (12)

where α > 0. Clearly, the larger the value of α, the better the manifold Σn. The
primary difficulty in obtaining n-term approximation results for PHLST lies in the
strategy to optimally distribute the resources of n terms (or numbers) to the ge-
ometry information {Ωj}, the polyharmonic components {uj}, and the residuals
{vj}. Even with a homogeneous split of Ω, it is challenging to derive an optimal
allocation of n terms into the {uj} and {vj} components. Another difficulty, which
is clearly related to the primary one above, is to determine a good function space
X that allows us to obtain the best possible n-term approximation results, i.e., the
largest α > 0 in (12). We need to start attacking a simpler case of 1D functions
here since DeVore in his plenary lecture [40] pointed out that obtaining nonlinear
approximation results for an even simpler “Spline-Fourier” method with d = 1
(where a target function is segmented into several pieces brutally and each piece is
approximated by the truncated Fourier series) is still open. On the other hand, it is
encouraging to know that if Ω = [0, 1]d without any further split, then the precise
nonlinear approximation results are known [41].
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6.2 Extensions and Applications

In this subsection, we shall list possible extensions and applications of PHLST and
its relatives.

6.2.1 PHLST/PHLFT in the frequency domain

Nothing prevents us from operating PHLST/PHLFT in the frequency domain. In
fact, this strategy may be an excellent alternative to the wavelet packets and the
brushlets [42]. The frequency support of each wavelet packet basis function is not
completely localized except for the Shannon wavelet packets. On the other hand,
each of the Shannon wavelet packets has unbounded support in the spatial domain,
which makes them less useful. The frequency support of each brushlet basis func-
tions is more localized than that of the wavelet packets, but still overlaps with that
of the adjacent brushlets due to the use of the folding operations in the frequency
domain. The PHLST/PHLFT in the frequency domain may overcome these short-
comings of the wavelet packets and the brushlets. We note that it is important to
subtract the global u component from the original image f before converting it to
the frequency domain. Otherwise, sharp horizontal and vertical lines crossing at the
origin (the DC component) are generated due to the Gibbs phenomenon from the
domain boundary, which interfere our analysis of the frequency information of the
image. This is evident from Figure 13 (b), which shows the local version of this
annoying interference.

6.2.2 Use of the Neumann boundary condition

It is possible to use the Neumann boundary condition instead of the Dirichlet condi-
tion in (3). This will give us the O(‖k‖−4) decay rate of the vj components instead
of O(‖k‖−3) in the case of the Dirichlet boundary condition. To do so, we need
to modify (3); we shall solve the following Poisson equation with the Neumann
boundary condition: 




∆uj = Kj in Ωj

∂uj

∂ν
=

∂fj

∂ν
on ∂Ωj

, (13)

where Kj is a constant that needs to be computed as follows:

Kj =
1

|Ωj|
∫

∂Ωj

∂fj

∂ν
ds,

which is the boundary integral of ∂fj/∂ν normalized by |Ωj| (the volume of the
domain). This constant Kj is necessary for (13) to have a unique solution (modulo
an additive constant); see e.g., [43, page 84]. The solution uj is not just a function
having the same normal derivative at the boundary with the original function fj;
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one can show that it is the minimizer of the total squared curvature integral on
the domain Ωj . Once we get the solution uj, the residual function vj = fj − uj

clearly satisfies ∂vj/∂ν = 0 on ∂Ωj . Assuming that fj ∈ C2(Ωj), we can show
that the residual vj has at least C2 smoothness across the block boundary when it is
extended by the even reflection. Therefore, if we use the Fourier cosine series ex-
pansion of vj we get the coefficients with decay rate O(‖k‖−4). See also Theorem 7
in Appendix A. We naturally call this version of the transform the Polyharmonic
Local Cosine Transform (PHLCT). However, this method of course requires to es-
timate the first order normal derivative of data at the boundary. We are currently
investigating this issue with our collaborator, Katsu Yamatani, and getting encour-
aging results [44].

6.2.3 Extension to higher orders of polyharmonicity

We believe that PHLST with polyharmonicity m > 2 is not practical consider-
ing the need to estimate ∂2(m−1)fj/∂ν2(m−1) in (2) and the numerical sensitivity
to compute these high order derivatives. However, the case of m = 2, i.e., BLST
(biharmonic local sine transform), remains to be investigated; we are interested in
knowing whether BLST is of practical interest for image approximation and com-
pression or not. In theory, the Fourier sine coefficients of the vj components in
BLST should decay as O(‖k‖−5) instead of O(‖k‖−3) in LLST. However, the ef-
fectiveness of BLST still hinges on the accuracy of the second order normal deriva-
tive estimates at the boundary. Thus developing a robust method to estimate those
derivatives from noisy data will be an challenging but important project. Note that
such a method will also be useful for other purposes, for example, edge detection.

6.2.4 Extension to higher dimensions

It is important to realize that the information contained in the boundary becomes
more and more meaningful as the dimension increases. For example, in 1D, the
boundary of an interval simply consists of two endpoints. In 2D, the boundary of a
domain becomes a 1D curve whereas in 3D, this becomes a 2D surface. If the data
is supported in a 3D cube, then the boundary consists of six faces of that cube. It
is also important to recognize that the boundary structure is recursively organized.
For example, the boundary of each 2D face of a 3D cube consists of four 1D edges,
and the boundary of each 1D edge in turn consists of two corners. We can take
advantage of this recursive structure: we can process each component, i.e., edges,
faces, bodies, etc., by PHLST of the corresponding dimensions. The simple, hierar-
chical, and recursive algorithmic structure of PHLST can be carried over to higher
dimensions in a straightforward manner. In particular, PHLST for 3D datasets is
promising for efficient approximation, compression, and local feature computation
for 3D medical images and 3D geophysical data, which we are currently investigat-
ing in collaboration with our graduate student Noel Smith [45].
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6.2.5 Other potential applications

Because of its ability to completely localize the analysis of an input image and
sparsify its representation equipped with a fast algorithm, there are many potential
applications of PHLST. For example, its application to image zooming and interpo-
lation is promising since PHLST does not suffer from the boundary effect/the Gibbs
phenomenon, which is often a nuisance in image zooming. Commonly used image
zooming/interpolation techniques such as pixel replication, bilinear interpolation,
bi-cubic interpolation have all drawbacks, especially with large magnifications. The
pixel replication is computationally most efficient, but generates annoying blocky
zoomed images. The bilinear interpolation generates superfluous horizontal and
vertical artifacts, and this is also true for the bi-cubic interpolation to a lesser ex-
tent. One can use DCT for image zooming, but again one may see the artifacts
generated by the even reflection at the boundaries. Sinc (or band-limited) interpo-
lation is theoretically ideal but its straightforward implementation does not work
well due to the Gibbs phenomenon.

Another important application of PHLST is local feature computation. PHLST al-
lows us to evaluate and compute various attributes (e.g., directional derivatives)
at any point in the domain Ωj even if we start from discrete samples. See Equa-
tions (7)–(10). We are currently investigating the interpolation of image values
along a given curve as well as directional derivatives along such a curve, which
is not easy using the conventional methods.

6.3 Relation to the Other Work

Retrospectively speaking, our work is related to many previous works done by other
scientists. However, we did not find exactly the same strategy as ours in the other
works. As early as 1938, Cornelius Lanczos [46] suggested that “denoising” and
interpolation of digital signals sampled on a equispaced grid over a finite interval
should be very nicely dealt with by trigonometric polynomials once the edge effect
is taken care of. This was only an abstract given at the AMS conference. Somehow,
a full version of the paper did not appear until 1952 [47]. He first used the line
removal idea [46] corresponding to the 1D LLST in our case, and then proposed to
remove a higher order polynomials [47,48]. As far as we know, Lanczos is one of
the first scientists who recognized the importance of representing and interpolating
data sampled at equispaced grid points using a combination of trigonometric poly-
nomials and algebraic polynomials. He clearly understood that only using algebraic
polynomials leads to the infamous Runge phenomenon, and only using trigonomet-
ric polynomial leads to the Gibbs phenomenon. Zygmund had a similar idea (i.e.,
removal of singularities) for different purposes in 1935 or earlier [49, Sec. 2.13].
See also [2, Sec. 2.2], [50, Chap. 4], [51, Chap. 2], and [48, Chap. 2]. The book
of Kantrovich and V. I. Krylov [52] cites an early attempt of extending a function
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supported on [0, 1] to [−1, 1] smoothly and periodically (with period 2) by Maliev
[53,54]. Smirnov [55] also cites the work of A. N. Krylov for speeding up the de-
cay of Fourier coefficients of a compactly supported function using the line and
polynomial removal.

In 1990, Madych and Nelson [56,57] introduced the so-called “polyharmonic car-
dinal splines”, which uses the polyharmonic equations to interpolate the data given
on the lattice Z

d in R
d. Their main concern, however, is the interpolation, and they

are not concerned with the residuals at all.

The “polysplines” proposed by Kounchev [58,59] are also related to our PHLST.
In his case, though, he used a sequence of decreasing subdomains Ω = Ω0 ⊃
Ω1 ⊃ · · · instead of the disjoint subdomains of our case. This led him to develop
a new version of multidimensional wavelets. Again, he is not concerned with the
residuals.

All of the above scientists except Lanczos only focused on the u component. As far
as we know, Lanczos was the only one who seriously considered the residual v, but
explored his idea neither for higher dimensions nor for multiscale setting.
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A Proof of Theorem 1

First we prove the following auxiliary theorems:

Theorem 6 Let T be a torus (i.e., [0, 1]), and f ∈ Cm(T) and periodic. Further-
more, let us assume that f (m+1) exists and in BV [0, 1]. Then its Fourier coefficient
ck = f̂(k) decays as O(|k|−m−2).

PROOF. We use the periodicity of f , i.e., f (`)(0) = f (`)(1), ` = 0, 1, . . . , m, and
integration by parts.

f̂(k)=
∫ 1

0
f(x) e−2πikx dx

=
e−2πikx

−2πik
f(x)

∣∣∣∣∣

1

0

+
1

2πik

∫ 1

0
f ′(x) e−2πikx dx

=
e−2πikx

−(2πik)2
f ′(x)

∣∣∣∣∣

1

0

+
1

(2πik)2

∫ 1

0
f ′′(x) e−2πikx dx

= · · ·

=
e−2πikx

−(2πik)m+1
f (m)(x)

∣∣∣∣∣

1

0

+
1

(2πik)m+1

∫ 1

0
f (m+1)(x) e−2πikx dx

=
1

(2πik)m+1

∫ 1

0
f (m+1)(x) e−2πikx dx

By assumption, f (m+1) ∈ BV [0, 1], so we can use the theorem of Taibleson [60] to
get:

|f̂(k)| ≤
V
(
f (m+1)

)

(2π)m+1|k|m+2
,

where V (·) is the total variation of the argument over [0, 1]. This implies that
f̂(k) = O (|k|−m−2). 2
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Theorem 7 Let T
d be a d-dimensional torus (i.e., [0, 1]d), and f ∈ Cm(Td) and pe-

riodic. Furthermore, let us assume that ∂m+1
j f exists and in BV [0, 1], j = 1, . . . , d.

Then its Fourier coefficient ck = f̂(k) decays as O(‖k‖−m−2).

PROOF. We proceed essentially the same way as Körner [61, page 409]. We con-
sider each variable xj in turn. Since f as a function of xj (with all the other variables
fixed) belongs to Cm(T) and ∂m+1

j f ∈ BV [0, 1], we can use Theorem 6 as:
∣∣∣∣
∫

T

f(x1, . . . , xj, . . . , xd) e−2πikjxj dxj

∣∣∣∣ ≤
Cj

|kj|m+2
, (A.1)

where Cj > 0 is a constant depending on j and kj is a jth frequency index (nonzero
integer). Then,

|f̂(k)|=
∣∣∣∣
∫

T

· · ·
∫

T

f(x1, . . . , xd) e−2πi
∑

j
kjxj dx1 · · · dxd

∣∣∣∣

≤
∫

T

· · ·
∫

T

∣∣∣∣
∫

T

f(x1, . . . , xd) e−2πikjxj dxj e−2πi
∑

`6=j
k`x`

∣∣∣∣ dx1 · · · dxj−1 dxj+1 · · · dxd

≤
∫

T

· · ·
∫

T

Cj

|kj|m+2
dx1 · · · dxj−1 dxj+1 · · · dxd

=
Cj

|kj|m+2
.

Therefore, we have the following estimate:

|f̂(k)| ≤ Cj

|kj|m+2
j = 1, . . . , d, kj 6= 0. (A.2)

Thus, if k 6= 0, then

|f̂(k)| ≤ min
1≤j≤d

Cj|kj|−m−2

≤
(

max
1≤j≤d

Cj

)
·
(

min
1≤j≤d

|kj|−m−2
)

=
(

max
1≤j≤d

Cj

)
·
(

max
1≤j≤d

|kj|
)−m−2

≤
(

max
1≤j≤d

Cj

)
·
(
‖k‖/

√
d
)−m−2

=
C

‖k‖m+2
,

where C = max1≤j≤d Cj · d1+m/2 > 0. This implies the conclusion of the theo-
rem. 2
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Now, we prove Theorem 1.

PROOF. In this proof, for the notational simplicity, we use u, v, Ω instead of
uj, vj, Ωj , which will not generate any confusion. Since Ω is a rectangle in R

d,
it is easy to convert it to a unit cube T

d = [0, 1]d by rescaling and translation,
which only changes the constants in the following argument. Therefore, we as-
sume that Ω = T

d below. Let us now consider the residual v(x) over Ω. Let
x = (x1, . . . , xd) ∈ [0, 1]d, and σ = (σ1, . . . , σd) be a d-dimensional vector whose
entries consist of only 1 or −1. Now, the odd extension ṽ(x) of v(x) to the extended
cube Ω̃

∆
= [−1, 1]d can be defined as follows:

ṽ(σ1 · x1, . . . , σd · xd)
∆
=

(
d∏

k=1

σk

)
· v(x1, . . . , xd), (x1, . . . , xd) ∈ [0, 1]d.

The boundary conditions of u(x) are:

u
∣∣∣
∂Ω

= f
∣∣∣
∂Ω

,

∂2u

∂ ν2

∣∣∣∣∣
∂Ω

=
∂2f

∂ ν2

∣∣∣∣∣
∂Ω

,

...
∂2m−2u

∂ ν2m−2

∣∣∣∣∣
∂Ω

=
∂2m−2f

∂ ν2m−2

∣∣∣∣∣
∂Ω

.

Therefore, these imply the following in terms of ṽ:

ṽ|∂Ω = 0, (A.3)
∂2k

j ṽ(x1, . . . , xj−1,−1, xj+1, . . . , xd) = ∂2k
j ṽ(x1, . . . , xj−1, 1, xj+1, . . . , xd) = 0,

(A.4)
∂2k

j ṽ(x1, . . . , xj−1, 0−, xj+1, . . . , xd) = ∂2k
j ṽ(x1, . . . , xj−1, 0+, xj+1, . . . , xd) = 0,

(A.5)
∂2k+1

j ṽ(x1, . . . , xj−1,−1, xj+1, . . . , xd) = ∂2k+1
j ṽ(x1, . . . , xj−1, 1, xj+1, . . . , xd),

(A.6)
∂2k+1

j ṽ(x1, . . . , xj−1, 0−, xj+1, . . . , xd) = ∂2k+1
j ṽ(x1, . . . , xj−1, 0+, xj+1, . . . , xd),

(A.7)

where j = 1, . . . , d and k = 0, . . . , m − 1. Note that k = 0 in Equation (A.4)
means ṽ|

∂Ω̃
= 0, which is different from (A.3). Equations (A.3)–(A.7) imply that

ṽ ∈ C2m−1(Ω̃) and periodic. Therefore, we can invoke Theorem 7 with m replaced
by 2m − 1 so that we get:

f̂(k) = O
(
‖k‖−2m−1

)
for k 6= 0. 2
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