学術論文 Article

入力信号の勾配を用いた逐次的 DCT 係数予測法と画像圧縮への応用

芦澤恵太[†]・小川順司^{††}・山谷 克^{††}・斎藤直樹^{†††}

A Method of Sequentially Predicting DCT Coefficients Using Gradient Information of an Input Signal and Its Application to Image Compression

By Keita ASHIZAWA, Junji OGAWA, Katsu YAMATANI and Naoki SAITO

Abstract

The JPEG standard is the most popular still image compression technique based on the discrete cosine transform (DCT). The JPEG standard achieves a high compression ratio with little perceivable loss in image quality by the quantization of the DCT coefficients and the entropy coding. The quantization of the low frequency components, however, causes the blocking artifacts. The quantization of the high frequency components also influences the representation of the texture and the object contour. In this paper, we propose a new multiple prediction scheme of AC coefficients for the DCT. Our purpose is to improve the above situation based on the AC prediction scheme for the JPEG standard. Our mathematical concept is to match the prediction in terms of the gradients at the several points equally arranged on the DCT block. We numerically compared our method with some of the other AC prediction methods previously proposed using the eight standard images.

1 まえがき

デジタル画像の圧縮方式として最も普及している JPEG 標準 方式は、8×8 画素ブロック単位の離散コサイン変換 DCT、及 び、量子化後のDCT係数に対するエントロピー符号化に基づい ている[1,2]. しかしながら、DCT係数における低周波成分の量 子化はブロックひずみと呼ばれる不自然なひずみの発生要因と なり、高周波成分の量子化はエッジ及びテクスチャの再現性を 損なう原因となる.文献[1]の 16.1 節においては、隣接ブロック の直流成分からなる双2次多項式を補間関数として用いること によって、ブロックひずみを軽減する手法が提案されている. 双2次多項式の代わりに双3次多項式を用いる手法も提案され ている[3]. 文献[4]では、2次計画法に基づき交流成分を推定す ることでブロックひずみを軽減する手法が提案されている.ま た、文献[5]では、隣接ブロックの直流成分から構成される2 次多項式に加え、第1行及び第1列の交流成分によって構成さ れる調和関数を、補間関数として段階的に用いることによっ て、量子化に起因するひずみを軽減する手法が提案されてい る.特に、文献[1,5]では、補間関数を用いて近似的に復元可能 な交流成分を予め取り除くことによる情報量の削減効果につい ても述べられている.また、文献[6]では、ブロック境界におい て入力信号の高階導関数を相殺する多項式を用いる手法を提案 している.

本論文では、入力信号の勾配を拘束条件とするラグランジュ 多項式を補間関数として逐次的に利用する手法を提案する.提 案手法では、第1交流成分の予測には隣接ブロックの直流成分 から構成される2次多項式を、第2交流成分の予測には直流成 分と第1交流成分から構成される3次多項式を、以下同様の手 順で、より高域の交流成分の予測にはより高次の関数を補間関 数として用いている.この手順に従えば、各交流成分の予測に

[†] 舞鶴工業高等専門学校電気情報工学科

^{††} 名城大学大学院都市情報学研究科

^{†††} カリフォルニア大学デイヴィス校数学科

可能なかぎり高次の多項式を補間関数として適用することが可能となる.2. において,提案手法の理論的有効性,及び,具体的な交流成分予測アルゴリズムを示すとともに,提案手法に基づく画像圧縮方式について述べる.3. では,従来の交流成分予測手法との比較数値実験を行うことで,本論文で提案する手法の画像圧縮における実用的な有効性を確認する.

2 予測とアルゴリズム

2.1 交流成分予測の数学的定式化

本節では我々が提案する交流成分予測手法の数学的概念について述べる. 区間[0,1]で定義された連続かつ十分滑らかな関数f(x)を考える. 画像処理で用いられる DCT, および, その逆変換 IDCT は, 関数f(x)を区間[-1,1]で偶関数となるように拡張することにより,次式のフーリエコサイン級数を離散化することで与えられる:

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\pi k x),$$
 (1)

$$a_{k} = 2 \int_{0}^{1} f(x) \cos(\pi kx) \, dx.$$
 (2)

このとき a_0 は直流成分, a_k ,k > 0は交流成分と呼ばれる. コ サイン級数における交流成分 a_k ,k > 0は、(2)の右辺に対して 部分積分を適用することで、次式に示すように関数f(x)の勾 配f'(x)を用いて表すこともできる:

$$a_{k} = -\frac{2}{\pi k} \left\{ \int_{0}^{1} f'(x) \sin(\pi kx) dx - [f(x) \sin(\pi kx)]_{0}^{1} \right\}$$
$$= -\frac{2}{\pi k} \int_{0}^{1} f'(x) \sin(\pi kx) dx.$$

そこで、我々は、関数f(x)の勾配f'(x)に着目し、補間多項式 を利用した交流成分予測を考えている.区間[0,1]上に等間隔 に配置されたn個の拘束点 $s_j = j/(n-1), j = 0,1,...,n-1$ にお ける勾配の値を $f'(s_j)$ とする.条件 $u'(s_j) = f'(s_j)$ を満たすよ うに構成したn次補間多項式u(x)のコサイン係数 c_k を用いて 係数 a_k を予測する手法を提案する(図 1 参照):

$$u(x) = \sum_{j=0}^{n-1} f'(s_j) L_j(x) + const,$$
(3)

$$c_{k} = 2 \int_{0}^{1} u(x) \cos(\pi kx) \, dx.$$
 (4)

ただし、const は任意の定数、 L_j はラグランジュ補間多項式の j 番目の項の原始関数であり以下で与えられる:

$$L_j(x) = \int \prod_{\substack{\ell=0\\\ell\neq aj}}^{n-1} \frac{(x-s_\ell)}{(s_j-s_\ell)} dx$$

補間多項式の次数 n と予測精度の関係については、ロルの定 理より、次式を得る[7]:

$$a_{k} - c_{k} \mid = \left| -\frac{2}{\pi k} \int_{0}^{1} (f'(x) - u'(x)) \sin(\pi kx) dx \right|$$

$$\leq \frac{2}{\pi k n!} \max_{t \in [0,1]} \left| f^{(n+1)}(t) - u^{(n+1)}(t) \right|$$

$$= \frac{2}{\pi k n!} \max_{t \in [0,1]} \left| f^{(n+1)}(t) \right|.$$
(5)

2.2 離散化

本論文ではデジタル画像, すなわち, 離散信号の変換につい て考えているので, 以下では区間[0,1]に等間隔に配置された N個のサンプリング点 $x_i = (2i+1)/(2N)$ で与えられた1次元離 散信号 $f_i = f(x_i)$ を考える(i = 0,1,...,N-1). このとき区間[0,1] における DCT およびその逆変換 IDCT は次の式で定義される:

DCT:
$$F_k = \sqrt{\frac{2}{N}} \lambda_k \sum_{\ell=0}^{N-1} f_\ell \cos(\pi k x_\ell)$$
,
IDCT: $f_i = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} \lambda_k F_k \cos(\pi k x_i)$.

ただし $\lambda_0 = 1/\sqrt{2}, \lambda_k = 1, k = 1, 2, ..., N-1$ である.特に F_0 は直流成分, F_k , k = 1, 2, ..., N-1は交流成分と呼ばれる.

交流成分 F_k の予測係数 U_k として、我々は補間多項式(3)の コサイン係数を考えている.したがって、予測係数Ukを決定す るためには、両端点を含むn個の拘束点 $s_j = j/(n-1)$, j = 0, 1, ..., n-1における入力信号の勾配 $f'(s_i)$ が必要となる. しかしながら,実際には入力信号はサンプリング点 x_iにおける 離散的なデータとしてのみ与えられるため、入力されたデータ f_i から直接的に予測係数 U_k を計算することはできない。そこ で、我々は新たなサンプリング点 $\xi_i = (j-0.5)/(n-1)$, j = 0, 1, ..., n での信号を入力データのDCT係数 F_k を用いて補間 し、両端を含む*n* 個の拘束点*s_i*, *j* = 0,1,...,*n*-1 における入力信 号の勾配 $f'(s_i)$ を近似した(付録 A. 勾配の近似). n = N+1のとき、 $\xi_i = (2j-1)/(2N)$ となり、 ξ_i 、j = 1, 2, ..., Nが x_i 、 i = 0, 1, ..., N-1と一致するため、以下では $n \le N$ を仮定する. このとき, n 次補間多項式 (3) による予測係数 U_h⁽ⁿ⁾, k = 1,2,...,N-1 は次式で与えられる(付録 B. 予測係数の構成 において導出):

$$U_{k}^{(n)} = \sum_{\hat{k}=0}^{n-2} \left\{ F_{\hat{k}}^{L} W_{k,\hat{k}}^{L} + F_{\hat{k}} W_{k,\hat{k}} + F_{\hat{k}}^{R} W_{k,\hat{k}}^{R} \right\}.$$
(6)

ただし、重み係数 $W_{k,k}$ は付録B(11)に示すように入力信号とは 無関係に計算可能な係数である。また、 F_k^L は区間[-1,0]、 F_k^R は区間[1,2]における DCT 係数である。

2.3 多段階予測アルゴリズム

(6)で定義した予測係数 U⁽ⁿ⁾ を利用し, DCT に基づいた1
 次元離散信号の順変換および逆変換を提案する:

順変換:

- ●1 次元入力信号を N 画素ブロックに分割.
- ●各ブロックで DCT を適用し *F_k* を算出.
- ●補間多項式の次数 n に上限 n ∈ {2,...,N} を設定.
- $o_k = N-1,...,\overline{n}-1$ に対し、 予測交流成分 $U_k^{(\overline{n})}$ を用いて、 残差 $V_k = F_k - U_k^{(\overline{n})}$ を算出.
- $\Diamond k = \overline{n} 2, ..., 1$ に対して以下を繰り返す:
 - ・予測係数 U_k^(k+1) を構成.
 - ・残差 $V_k = F_k U_k^{(k+1)}$ を算出.

逆変換:

- ・直流成分 F_0 ,および,残差 V_k を入力. $\Diamond k = 1,...,\overline{n} - 2$ に対し以下を繰り返す: $\cdot U_k^{(k+1)}$ を計算.
 - ・交流成分 $F_k = V_k + U_{\scriptscriptstyle b}^{(k+1)}$ を再構成.
- $o_k = \overline{n} 1,...,N-1$ に対し $U_k^{(\overline{n})}$ を計算し、交流成分 $F_k = V_k + U_k^{(\overline{n})}$ を再構成.
- ●各ブロックで IDCT を適用し *f_k* を再構成.

上記の順変換および逆変換における処理 $\langle i \pi - 2$ 段階の処理となる.すなわち,提案アルゴリズムにおいては、処理 $\langle c$ 処理 \circ を合わせて, $\pi - 1$ 段階の逐次的な交流成分の予測処理を行う(なお, $\pi = 2$ の場合を処理 $\langle i u$ 受としない).具体的な構成例として, $\pi = 4$,N = 8の場合の順変換及び逆変換の概略を図2に、それぞれの $U_k^{(\cdot)}$ の構成に必要となる係数 $W^{L_{k,k}}$, $W_{k,k}^{R}$ 、を表1に示す. $\pi = 4$ では、3段階の逐次的な処理を行う.図2では、各段階における予測成分の構成に必要な DCT係数を太字で表記している.図中の斜線部は、上記の処理 \circ および \langle による逐次的な処理に対応する.2.1節の(2)に示すように、予測に用いる多項式の次数が高いほど、すなわち、 π が大きいほど予測性能の向上が期待できる.しかしながら、本予測手法において、予測係数 $U_1,...,U_{N-1}$ の計算に要する演算量は、 π に対し、おおよそ乗算回数が $1.5N(\pi - 1)$ 、加減算の回数 $i 0.5N(\pi - 1)$ のオーダーで増加する.

2.4 2次元信号の変換への応用

本論文では、2.3 節で提案した1次元 DCT に対する交流成分 予測の画像圧縮への応用を考えている.DCT に基づく実用的な 画像圧縮方式として最も普及している JPEG 標準方式には、8 ×8 画素ブロック単位の2次元 DCT が用いられている.2次元

nput.								
$ \cdot \begin{array}{c c} f_0^L & f_1^L & f_2^L & f_3^L & \cdots & f_7^L & f_0 & f_1 & f_2 & f_3 & \cdots & f_7 & f_0^R & f_1^R & f_2^R & f_3^R & \cdots & f_7^R & \cdots \end{array} $								
DCT coefficients on each interval.								
$ \cdot \left[\boldsymbol{F}_{0}^{L} \boldsymbol{F}_{1}^{L} \boldsymbol{F}_{2}^{L} \boldsymbol{F}_{3}^{L} \cdots \boldsymbol{F}_{7}^{L} \right] \left[\boldsymbol{F}_{0} \right] \boldsymbol{F}_{1} \left[\boldsymbol{F}_{2} \right] \boldsymbol{F}_{3} \cdots \boldsymbol{F}_{7} \left[\boldsymbol{F}_{0}^{R} \right] \boldsymbol{F}_{1}^{R} \left[\boldsymbol{F}_{2}^{R} \right] \boldsymbol{F}_{3}^{R} \cdots \boldsymbol{F}_{7}^{R} \left[\boldsymbol{F}_{3}^{R} \cdots \boldsymbol{F}_{7}^{R} \right] \cdots $								
Compute $U_3^{(4)},, U_{N-1}^{(4)}$ from DCT coefficients in boldface.								
• Compute $V_k = F_k - U_k^{(4)}, \ k = 3,,7.$								
$\cdot \begin{bmatrix} \boldsymbol{F}_0^L & \boldsymbol{F}_1^L & \boldsymbol{F}_2^L & \boldsymbol{V}_3^L & \cdots & \boldsymbol{V}_7^L \end{bmatrix} \begin{bmatrix} \boldsymbol{F}_0 & \boldsymbol{F}_1 & \boldsymbol{F}_2 & \boldsymbol{V}_3 & \cdots & \boldsymbol{V}_7 \end{bmatrix} \begin{bmatrix} \boldsymbol{F}_0^R & \boldsymbol{F}_1^R & \boldsymbol{F}_2^R & \boldsymbol{V}_3^R & \cdots & \boldsymbol{V}_7 \end{bmatrix} \cdots$								
Compute $U_2^{(3)}$ from DCT coefficients in boldface.								
Compute $V_2 = F_2 - U_2^{(3)}$.								
$\cdot \boldsymbol{F}_{0}^{\boldsymbol{L}} \boldsymbol{F}_{1}^{\boldsymbol{L}} \boldsymbol{V}_{2}^{\boldsymbol{L}} \boldsymbol{V}_{3}^{\boldsymbol{L}} \cdots \boldsymbol{V}_{7}^{\boldsymbol{L}} \boldsymbol{F}_{0} \boldsymbol{F}_{1} \boldsymbol{V}_{2} \boldsymbol{V}_{3} \cdots \boldsymbol{V}_{7} \boldsymbol{F}_{0}^{\boldsymbol{R}} \boldsymbol{F}_{1}^{\boldsymbol{R}} \boldsymbol{V}_{2}^{\boldsymbol{R}} \boldsymbol{V}_{3}^{\boldsymbol{R}} \cdots \boldsymbol{V}_{7}^{\boldsymbol{R}} \boldsymbol{V}_{3}^{\boldsymbol{R}} \cdots \boldsymbol{V}_{7}^{\boldsymbol{R}}$								
Compute $U_1^{(2)}$ from DCT coefficients in boldface.								
Compute $V_1 = F_1 - U_1^{(2)}$.								
[Forward transform]								
nput. $P_{1} = P_{1} $								
$ \mathbf{F}_0^{\mathbf{Z}} V_1^{\mathbf{Z}} = V_2^{\mathbf{Z}} V_3^{\mathbf{Z}} \cdots V_7^{\mathbf{Z}} \mathbf{F}_0^{\mathbf{Z}} V_1^{\mathbf{Z}} = V_2^{\mathbf{Z}} V_3^{\mathbf{Z}} \cdots V_7^{\mathbf{Z}} \mathbf{F}_0^{\mathbf{Z}} V_1^{\mathbf{Z}} = V_2^{\mathbf{Z}} V_3^{\mathbf{Z}} \cdots V_7^{\mathbf{Z}} \cdots V_7^{\mathbf{Z}} \mathbf{F}_0^{\mathbf{Z}} \mathbf{F}_0^{$								
Compute $U_1^{(2)}$ from DCT coefficients in boldface.								
Reconstruct $F_1 = V_1 + U_1^{(2)}$.								
$ \cdot \begin{bmatrix} \boldsymbol{F}_0^L & \boldsymbol{F}_1^L & \boldsymbol{V}_2^L & \boldsymbol{V}_3^L \cdots & \boldsymbol{V}_7^L \end{bmatrix} \begin{bmatrix} \boldsymbol{F}_0 & \boldsymbol{F}_1 & \boldsymbol{V}_2 & \boldsymbol{V}_3 & \cdots & \boldsymbol{V}_7 \end{bmatrix} \begin{bmatrix} \boldsymbol{F}_0^R & \boldsymbol{F}_1^R & \boldsymbol{V}_2^R & \boldsymbol{V}_3^R \cdots & \boldsymbol{V}_7^R \end{bmatrix} \cdots $								
Compute $U_2^{(3)}$ from DCT coefficients in boldface.								
Reconstruct $F_2 = V_2 + U_2^{(3)}$.								
$\cdot \boldsymbol{F}_{0}^{\boldsymbol{L}} \boldsymbol{F}_{1}^{\boldsymbol{L}} \boldsymbol{F}_{2}^{\boldsymbol{L}} \boldsymbol{V}_{3}^{\boldsymbol{L}} \cdots \boldsymbol{V}_{7}^{\boldsymbol{L}} \boldsymbol{F}_{0} \boldsymbol{F}_{1} \boldsymbol{F}_{2} \boldsymbol{V}_{3} \cdots \boldsymbol{V}_{7} \boldsymbol{F}_{0}^{\boldsymbol{R}} \boldsymbol{F}_{1}^{\boldsymbol{R}} \boldsymbol{F}_{2}^{\boldsymbol{R}} \boldsymbol{V}_{3}^{\boldsymbol{R}} \cdots \boldsymbol{V}_{7}^{\boldsymbol{R}} \boldsymbol{I}_{3}^{\boldsymbol{L}} \cdots$								
Compute $U_3^{(4)}, \dots, U_{N-1}^{(4)}$ from DCT coefficients in boldface.								
• Reconstruct $F_k = V_k + U_k^{(4)}, k = 3,,7.$								
$\cdot F_{0}^{L} F_{1}^{L} F_{2}^{L} F_{3}^{L} \cdots F_{7}^{L} F_{0} F_{1} F_{2} F_{3} \cdots F_{7} F_{0}^{R} F_{1}^{R} F_{2}^{R} F_{3}^{R} \cdots F_{7}^{R} \cdots F_{7}^{R} F_{1}^{R} F_{2}^{R} F_{3}^{R} \cdots F_{7}^{R} \cdots F_{7}^{R} F_{1}^{R} F_{2}^{R} F_{3}^{R} \cdots F_{7}^{R} F_{1}^{R} F_{2}^{R} F_{3}^{R} \cdots F_{7}^{R} F_{1}^{R} F_{2}^{R} F_{1}^{R} F_{1}^{R} F_{2}^{R} F_{1}^{R} F_{1}^$								
Output via IDCT.								
$ \int_{0}^{L} \int_{1}^{L} \int_{2}^{L} \int_{3}^{L} \cdots \int_{7}^{L} \int_{0}^{L} \int_{1}^{L} \cdots \int_{7}^{R} \int_{0}^{R} \int_{1}^{R} \int_{0}^{R} \int_{1}^{R} \int_{0}^{R} \int_{0}^{R}$								
[Inverse transform]								
図の・N-0に計するの段階(〒-4) のを次め加速に とえ 晒赤佐 ちょうざい								

図2: N = 8 に対する3段階(π = 4)の逐次的処理による順変換および逆 変換.

DCT およびその逆変換である 2 次元 IDCT の計算は、入力され た 2 次元の信号 f_{k_1,k_2} , k_1 , $k_2 = 0,1,...,7$ に対し、1 次元 DCT (IDCT) を各列毎に垂直方向に適用後、得られた係数に対し、 さらに各行毎に水平方向に 1 次元 DCT (IDCT) を適用すること によって実現する。垂直、水平の順は問わない、以下では、2 次元 DCT 係数を F_{k_1,k_2} , k_1 , $k_2 = 0,1,...,7$ と表記する。2.3 節で 提案した段階的な予測処理を用いた順変換をそれぞれの 1 次元 DCT に適用することで、2 次元 DCT 変換の交流成分 F_{k_1,k_2} , $k_1 = k_2 \neq 0$ を残差 V_{k_1,k_2} に置き換えることが可能となる。(文献 [6], 図 3 を参照)。ただし、2 次元 DCT 係数 F_{k_1,k_2} における直流 成分は $F_{0,0}$ であり、交流成分は F_{k_1,k_2} , $k_1 = k_2 \neq 0$ である。

3 数値実験

本章では、2.4 節で提案した手法の実用的な有効性を確認す るため、1) DCT のみを用いた場合、2) DCT に交流成分予測を 適用した場合、3) ハール・ウェーブレット変換に交流成分予測 を適用した場合[8]、それぞれに対して提案手法との比較数値実 験を行う.

	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6	k = 7
$W_{k,0}^L$	1.42 E - 1	6.97E - 2	3.98E - 2	1.89E - 2	1.27 E - 2	6.64E-3	3.26E - 3
$W_{k,1}^L$		-6.97E-2	-4.88E-2	-2.32E-2	-1.56E - 2	-8.16E-3	- 3.99E - 3
$W_{k,2}^L$			2.82E - 2	1.34E - 2	8.99E - 3	4.70E - 3	2.30E - 3
$W_{k,0}$	0	-1.39E-1	0	-3.78E-2	0	-1.33E-2	0
$W_{k,1}$		0	-8.57 E - 2	0	-2.97 E - 2	0	-7.72E-3
$W_{k,2}$			0	3.09E - 2	0	6.29 E - 4	0
$W_{k,0}^R$	-1.42E-1	6.97E – 2	-3.98E - 2	1.89E - 2	-1.27E-2	6.64 E - 3	-3.26E-3
$W_{k,1}^R$		6.97E – 2	-4.88E-2	2.32 E - 2	-1.56E - 2	8.16E - 3	- 3.99E - 3
$W^R_{k,2}$			-2.82E-2	1.34E - 2	-8.99E-3	4.70E - 3	-2.30E-3

表 1: \overline{n} = 4,N = 8 に対する重み係数 W_{kk} の値(有効数字3桁).

3.1 DCT との比較

はじめに、8×8画素ブロック単位のDCT係数を基準に、提案 手法において予測に用いる補間多項式の次数の上限 πを引き上 げた際の交流成分の予測性能の比較を行う.次に、従来のDCT 交流成分予測手法を比較対象に、入力画像と圧縮後の再構成画 像との誤差を用いて、画像圧縮における提案手法の優位性を確 認する.さらに、同圧縮率の再構成画像を用いて主観的な画質 評価も行う.以下の数値実験においては条件を揃えるため、提 案手法を含む各手法において、すべての交流成分を残差に置き 換え、一般的な設定の量子化テーブル(文献[1]、Table 4-1.を 参照)を用いることとする.テスト画像には、図3に示す代表 的な8種の標準画像を用いる.

3.1.1 交流成分予測の性能比較

画像圧縮における符号化の観点からは、交流成分 F_{k_1,k_2} に対して残差 V_{k_1,k_2} が小さいほど良いと考えられるため、次式により提案手法の性能を評価する:

$$G(k_1, k_2) = 100 \times \left(1 - \frac{\langle |V_{k_1, k_2}|\rangle}{\langle |F_{k_1, k_2}|\rangle}\right).$$

上式における(・)は、最も外側に位置するブロックを除いた、す べてのブロックにおける平均値を意味する.もし、DCT係数 F_{k_1,k_2} が完全に予測された場合は、残差 V_{k_1,k_2} は0となるため、上 式より $G(k_1,k_2)$ は100となる.処理を多段階化していくこと で、どの成分が改善されるかを明確にするために、 (k_1,k_2) を表 2に示す5つのグループに分け、 $k_1,k_2 \leq 4$ の各成分に対する $G(k_1,k_2)$ の値、及び、'others'の欄に残りの交流成分に対する平 均値を示す.なお、表2中の各値は、図3に示した8種類のテ スト画像に対する平均値である.

提案手法では、各段階において高次の補間多項式を構成する ことにより、交流成分の段階的な予測性能の改善を目的として いる.まず、 $\overline{n}=3$ を $\overline{n}=2$ と比較すると、グループ2以降の各 成分に改善が見て取れる.これは、 $\overline{n}=3$ では、テンソル積の各 1次元 DCT において第2交流成分以降を $\overline{n}=2$ より高次の関数 を用いて予測することによる.同様に、 $\overline{n}=4$ を $\overline{n}=3$ と比較す ると、グループ3以降の各成分が、 $\overline{n}=5$ を $\overline{n}=4$ と比較すると、

図3:数値実験に用いたテスト画像.

表 2:予測性能評価.

グループ1:	(k_1, k_2)	$\overline{n} = 5$	$\overline{n} = 4$	$\overline{n} = 3$	$\overline{n} = 2$
	(01)	20.7	20.7	20.7	20.7
	(10)	22.1	22.1	22.1	22.1
ゲループ2・	(1,0)	13.6	13.6	13.6	13.6
	(0,2)	16.3	16.3	16.3	8.3
	(2,0)	15.4	15.4	15.4	8.0
	(1,2)	11.7	11.7	11.7	7.1
	(2,1)	11.5	11.5	11.5	7.0
	(2,2)	10.8	10.8	10.8	5.3
グループ3:	(0,3)	10.2	10.2	7.2	3.7
	(3,0)	10.1	10.1	6.8	3.1
	(1,3)	6.2	6.2	4.0	1.6
	(3,1)	7.7	7.7	5.4	2.8
	(2,3)	7.7	7.7	6.2	2.2
	(3,2)	8.1	8.1	6.1	2.3
	(3,3)	6.6	6.6	3.9	0.7
グループ4:	(0,4)	7.0	5.5	5.2	2.9
	(4,0)	6.9	5.1	5.0	2.7
	(1,4)	3.7	2.7	2.8	1.5
	(4,1)	4.8	3.3	3.5	2.1
	(2,4)	4.4	3.6	3.9	1.7
グループ5:	(4,2)	5.9	4.4	4.7	2.3
	(3,4)	5.7	4.8	3.3	0.8
	(4,3)	5.9	4.5	3.5	1.0
	(4,4)	4.1	2.1	2.6	1.0
	others	1.9	2.0	1.4	0.5

図 4:JPEG 標準方式に対する各手法の優位性: PSNR Gain=PSNR 値(各比較手法を適用)ーPSNR 値(JPEG 標準方式).

グループ4において各成分に対する予測性能が改善されてい る. これらの結果は、段階的な処理を取り入れることが、予測 性能の改善に対し有効であることを示している. しかしなが ら、グループ5、すなわち、'others'の欄を見ると $\pi=2$ から $\overline{n}=3$ 、及び、 $\overline{n}=3$ から $\overline{n}=4$ においては性能の改善が見て取れ るものの、 $\overline{n}=5$ では $\overline{n}=4$ よりわずかに性能は悪化している. このことから、 $\pi\geq 6$ を適応したとしても、演算量の増加に見合 うだけの性能の向上が期待できないと考えられる.

3.1.2 再構成画像の客観的な画質評価

実際の画像圧縮における提案手法の有効性を確認するため, 再構成画像の画質の評価を行う.まず,客観的な評価指標とし て次式で定義される PSNR 値を用いた比較を行う:

PSNR = 20 log10 (Peak/RMSE).

PSNR 値は、2 乗誤差を入力信号のピーク値で正規化すること によって得られる誤差評価指標であり、ここで Peak は圧縮画 像の最大画素値、RMSE は原画像と圧縮画像の平均2 乗誤差の 平方根である。PSNR 値の算出においては、各手法の性能を公 平に評価するために、テスト画像の最も外側のブロックは除外 した。比較対象は、隣接ブロックの直流成分のみで構成される 双2 次多項式を予測に用いた方法[1](以下,QSFIT と表記する こととする)、QSFITと同様の方法で第1行および第1列の交流 成分を予測し、残りの交流成分を第1行および第1列の交流成 分から構成されるポアソン方程式の解を用いて予測する方法 PHLCT[5]、及び、テンソル積の各1次元DCTにおいて、本論文 と同様の方法で第1交流成分を予測し、第2段階として残りの 交流成分を入力信号のブロック境界における1階と3階の導関 数を相殺する関数を利用して予測する方法[6](以下では TP1&3 と表記)である.QSFIT との性能比較は、高次の多項式を予測 に用いた場合の優位性を確認することを目的としている. PHLCT は2段階の予測処理を、TP1&3 はテンソル積の各1次元 DCT において2段階の予測処理を行っている.この2手法と $\pi \ge 4$ (テンソル積の各1次元DCT において3段階以上)の比較 により、予測処理を多段階にすることの有効性を検証すること が可能となる.図4に、同一のビットレートに対し、各手法を 用いた後のPSNR 値から JPEG標準方式による PSNR 値を差し 引いた値を示す.

図4から、提案手法 \overline{n} = 5,4 では、すべてのテスト画像でビッ トレートに依ることなく比較3手法より再構成画像が原画像に 近いことがわかる.また, $\overline{n}=2$ はQSFITより, $\overline{n}\geq 3$ はPHLCT よりそれぞれ高い性能を示している.これは、再構成画像の品 質という観点からも、ブロック境界のみではなく、内部での勾 配にも着目することが有効であることを示した結果である.提 案手法間の性能を比較すると、再構成画像の品質は予測に用い る多項式の最高次数に伴って向上していることがわかる.しか し, Boats, Goldhill, Lenna, Sailboat においては, $\overline{n} = 5 \sigma$ $\overline{n} = 4$ に対する性能の改善はほとんど見て取れない.また、Airplane, Barbara, Mandrill, Milkdrop においても, \overline{n} を大きくし ていったときの改善幅が徐々に小さくなっていくことがみてと れる.これらのことから、前節で述べたように、多項式の最高 次数 π をこれ以上高くしていっても, 演算量の増加に見合うだ けの再構成画像の品質の向上は期待できないことが予想され る. さらに, Barbara, Boats, Mandrill においては, 高ビット レートにおいても低ビットレートと同程度の改善幅を示してい る. これら3画像は高周波成分の含まれるブロックの割合が高

いためと考えられる.なお、本稿には掲載しないが、種々の周 波数やスケールのガボール関数に対する実験においても、この 傾向を確認した.

3.1.3 再構成画像の主観評価

最後に,処理を多段階化したことによる主観的な影響を評価 するために、圧縮レート0.20bppにおける再構成画像を図5に示 す. 括弧内の値は各手法を用いた再構成画像の PSNR 値であ る. 上段はブロック歪が現れやすい Lenna の頬, 下段は斜め線 の再現性を比較するため Airplane における垂直尾翼部分の拡大 図である.比較のため、提案手法において最も段階数を多くし た \overline{n} =5の優位性を示すため、現画像に加え、 \overline{n} =2. 及び、DCT に基づく JPEG 標準方式による再構成画像を並べた.特に上段 Lennaの頬、及び、まぶた部分では顕著であるが、JPEG標準方 式で現れているブロックひずみが、提案手法においては軽減さ れることが観察できる. $\overline{n}=5$ と $\overline{n}=2$ を比較した際には、 $\overline{n} = 5$ の方がよりブロックひずみが軽減されている.また、Airplaneの垂直尾翼部分の比較では, $\overline{n} = 2$ に対しても, $\overline{n} = 5$ の斜 め線の再現性の明らかな優位性が観察できる. さらに、Airplaneの機体マーク右下の円で囲んだ平仮名の「つ」の字型をし た境目が、 $\overline{n} = 2$ 、及び、JPEG標準方式では崩れてしまうのに 対し, \overline{n} =5による再構成画像においては確認できる.これらの 結果は、斜め線、及び、曲線の表現に対して、本提案手法が有 効であること、ブロック内部の勾配情報が重要であることを示 唆していると考えられる.

3.2 ハール・ウェーブレット変換との特性比較

我々は、DCTのみでなく、ハール・ウェーブレット変換に交 流成分予測を組み込む手法 HMPROT を既に提案している[8]. HMPROT による再構成画像では,離れ小島ノイズ (文献[8], 4.

画像圧縮への応用),及び,過度の平滑化が問題となる.圧縮 レート 0.80 bpp における提案手法 $\overline{n} = 5$ と HMPROT による再 構成画像を図6に示す.括弧内の値はPSNR値である.図6 上段に示した Goldhill では、離れ小島ノイズによる画像のチラ つきが屋根部分を中心に観察できる. 図6中段 Mandrill では、 ひげ部分がチラつくだけでなく、過度の平滑化により鼻孔周囲 の紋様が消えてしまっている. 図6下段 Barbara においては, 本来は直線であるテーブルの足の右側にノイズが現れ、テーブ ル後方にある本棚と床との斜めの直線が過度に平滑化されてし まっている.提案手法 π=3による同一ビットレートでの再構 成画像に対する PSNR 値は提案手法の方が劣るものの、画像の チラつき、過度の平滑化による質感の損失、直線の表現などに 関しては提案手法の優位性が確認できる.

4 むすび

本論文では、入力信号の勾配を拘束条件とするラグランジュ 多項式を用いて、DCT 係数の低周波成分から高周波成分を逐次 的に予測する方法を提案した.また,DCTに基づく静止画像の 圧縮に着目し、逆変換の際に量子化後の係数と予測係数を複合 的に用いることによって量子化を原因とするノイズの影響を軽 減する手法を構築した. さらに、代表的な標準画像を用いた数

Original

Original

DCT (29.94 dB)

図 5: 各手法による 0.20bpp 圧縮後の再構成画像.

DCT (28.86 dB)

図 6:HMPROT との特性比較.

値実験によって、提案手法に基づく画像圧縮技術の有効性を確認した.

謝辞

貴重な御意見と御指摘を頂いた査読者の方々に深く御礼申し 上げる.本研究は、名城大学からの学術研究奨励助成制度(研 究成果展開事業費), US Office of Naval Research grant N00014 -07-1-0166,US National Science Foundation grant DMS-0410406の補助を受けて行なわれた.ここに記して感謝の意を 表する.

参考文献

- W.B. Pennebaker and J.L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, New York, 1993.
- G.K. Wallace, "The JPEG still picture compression standard," IEEE Trans. Consumer Electronics, vol.38, pp.xviii-xxxiv, 1992.
- [3] G. Lakhani, "Improved equations for JPEG's blocking artifacts reduction approach," IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp.930-934, 1997.
- [4] 福田光一,川中彰, "DCT 画像符号化におけるブロックひずみ抑制の

ための2次計画法とLPFを用いた適応処理,"信学論(A), vol.J 82-A,pp.142-150,1999.

- [5] K. Yamatani and N. Saito, "Improvement of DCT-based compression algorithms using Poisson's equation," IEEE Trans. Image Process., vol.15, pp.3672-3689, 2006.
- [6] 芦澤恵太,山谷克,"高階導関数に着目した段階的な DCT 係数予測 と画像圧縮への応用,"信学論(A),vol.J91-A,pp.808-816,2008.
- [7] 須之内治男,石渡恵美子,"数値計算[新訂版],"サイエンス社, 2003.
- [8] 芦澤恵太,山谷克,斎藤直樹,"多近傍情報による予測と残差直交変換の階層化およびその画像圧縮への応用,"日本応用数理学会論文誌,vol.17,pp.239-257,2007.

A 勾配の近似

勾配の計算には、次の差分近似を用いる:

$$f'(s_j) \simeq (n-1) \{ f(\xi_{j+1}) - f(\xi_j) \}.$$
(7)

ただし $\xi_j = (j-0.5)/(n-1), j = 0,1,...,n$. 上式の計算のために ξ_j における信号を補間する必要がある. 入力データ f_i の低次の DCT 係数 F_k から構成される次式のフーリエコサイン級数 *ϕ*(*x*)を考える:

$$\phi(x) = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} \lambda_k F_k \cos(\pi k x).$$

上式において $x = \xi_j$ とすると、k = n-1のとき $\cos(\pi k\xi_j) = \cos(\pi (j-0.5)) = 0$ であることから、第n-1項は常に0となる. よって、第n-2項までの低次の項を用いて $f(\xi_j)$ 、j = 1,...,n-1を近似する:

$$f(\xi_j) \simeq \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k F_k \cos(\pi k \xi_j).$$

なお, $f(\xi_0)$ および $f(\xi_n)$ については, $\xi_0 \in (-0.5, 0)$, $\xi_n \in (1, 1.5)$ であることから,区間[-1, 0],[1, 2]におけるそれぞれのDCT 係数 F_{b}^{L} , F_{b}^{R} を用いて同様の近似を行うこととする:

$$f(\xi_0) \simeq \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k F_k^L \cos(\pi k \ (\xi_0 + 1)), \tag{9}$$

$$f(\xi_n) \simeq \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k F_k^R \cos(\pi k \ (\xi_n - 1)).$$
(10)

ここで、コサイン級数の引数がそれぞれ ξ_0+1, ξ_n-1 となって いるのは座標系の整合性を確保するためである. (8)を(7)に代 入することで、拘束点 $s_i, i = 1,...,n-2$ における勾配の近似と して、低次の DCT 係数から構成される以下の近似値を得る:

$$f'(s_i) \simeq (n-1) \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k F_k \left\{ \cos(\pi k \hat{\xi}_{i+1}) - \cos(\pi k \hat{\xi}_i) \right\}$$

さらに、(7)、(8)、(10)より、区間の両端点 $s_0 = 0$ 、 $s_{n-1} = 1$ における勾配を以下のように近似する:

$$f'(0) \simeq (n-1) \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k \{ F_k \cos(\pi k \xi_1) - F_k^L \cos(\pi k (\xi_0 + 1)) \},$$

 $f'(1) \simeq (n-1) \sqrt{\frac{2}{N}} \sum_{k=0}^{N} \lambda_k \{F_k^R \cos(\pi k \ (\xi_n - 1)) -F_k \cos(\pi k \xi_{n-1})\}.$

B 予測係数の構成

(3)における f'(s_j)に付録Aの近似を適用しu(x)を新たに構成する:

$$u(x) = f'(0) L_0(x) + \sum_{j=1}^{n-2} f'(s_j) L_j(x) + f'(1) L_{n-1}(x)$$

= $(n-1) \sqrt{\frac{2}{N}} \times \left[\sum_{k=0}^{n-2} \lambda_k \{F_k \cos(\pi k \xi_1) - F_k^L \cos(\pi k (\xi_0 + 1))\} L_0(x) \right]$

$$+ \sum_{j=1}^{n-2} \left\{ \sum_{k=0}^{n-2} \lambda_k F_k \left\{ \cos\left(\pi k \xi_{j+1}\right) - \cos\left(\pi k \xi_j\right) \right\} L_j(x) \right\}$$

$$= (n-1) \sqrt{\frac{2}{N}} \sum_{k=0}^{n-2} \lambda_k \left[-\cos\left(\pi k \left(\xi_0 + 1\right)\right) L_0(x) F^{L_k} + \left\{ \cos\left(\pi k \xi_1\right) L_0(x) - 2\sin\left(\frac{\pi k}{2(n-1)}\right) \sum_{j=1}^{n-2} \sin\left(\pi k s_j\right) L_j(x) - \cos\left(\pi k \xi_{n-1}\right) L_{n-1}(x) \right\} F_k + \cos\left(\pi k \left(\xi_n - 1\right)\right) L_{n-1}(x) F_k^R \right]$$

この補間多項式 *u*(*x*) に DCT を適用することによって,予測係数 *U_k*を得る:

$$U_{k} = \sum_{\hat{k}=0}^{n-2} \{ F_{\hat{k}}^{L} W_{k,\hat{k}}^{L} + F_{\hat{k}} W_{k,\hat{k}} + F_{\hat{k}}^{R} W_{k,\hat{k}}^{R} \}.$$

ただし $W_{k,k}^L$, $W_{k,k}$, $W_{k,k}^R$ は, 以下に示すように入力信号とは無関係に計算可能な定数係数である:

$$\begin{split} W_{k,\hat{k}}^{L} &= (1-n)\sqrt{\frac{2}{N}}\lambda_{\hat{k}}\cos\left(\pi\hat{k}\left(\xi_{0}+1\right)\right)w_{k,0},\\ W_{k,\hat{k}} &= (n-1)\sqrt{\frac{2}{N}}\lambda_{\hat{k}}\left\{\cos\left(\pi\hat{k}\xi_{1}\right)\left(w_{k,0}-(-1)^{\hat{k}}w_{k,n-1}\right)\right.\\ &-2\sin\left(\frac{\pi\hat{k}}{2(n-1)}\right)\sum_{j=1}^{n-2}\sin\left(\pi\hat{k}s_{j}\right)w_{k,j}\right\},\\ W_{k,\hat{k}}^{R} &= (n-1)\sqrt{\frac{2}{N}}\lambda_{\hat{k}}\cos\left(\pi\hat{k}\left(\xi_{n}-1\right)\right)w_{k,n-1},\\ w_{k,j} &= \sqrt{\frac{2}{N}}\lambda_{k}\sum_{\ell=0}^{N-1}L_{j}\left(x_{\ell}\right)\cos\left(\pi kx_{\ell}\right). \end{split}$$
(11)