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Abstract. Since the extension principles of constructing wavelet frames were presented, a lot of symmetric
and compactly supported wavelet frames with high vanishing moments have been constructed. However the
problem of constructing periodic wavelet frames with the help of extension principles is open. In this paper, we
will construct tight periodic wavelet frames using the unitary extension principle and construct pairs of dual
periodic wavelet frames using the mixed extension principle.
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1. Introduction

In recent years, some researches have shown that it is often more convenient to work with wavelet frames
than wavelet orthonormal bases in noise reduction and image compression [1]. The research of wavelet frames
is a hot point in wavelet analysis. A series of important results have been given [1]-[20].

B. Han [10] gave a characterization of tight wavelet frames of L?(R): For v € L?(R), the affine system

{¥m n}m.nez is a tight wavelet frame with bound 1 if and only if

Y e P =1 and Y 9™ (w+ @k +2)m) =0 (k€ Z).

meZ m=0

Ron and Shen [18] presented the unitary extension principle of constructing tight wavelet frames: If Hy

is a refinement filter and Hq, ..., H; are wavelet filters, and
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l 1, v=0,
ZH,'((.U)E((JJ +uvm) = for v € {0,1}, (1.1)
i=0 0, otherwise

then the corresponding affine system is a tight frame for L2(R?) with bound 1. In [19], replacing H;(w)H;(w+vn)
n (1.1) by Hz(w)i(w + vm), where I;'O, ...,f[l are dual filters, they presented further the mixed extension
principle to constructing dual wavelet frames.

These methods of constructions of wavelet frames are generalized from one-dimension to high-dimension,
from tight frames to dual frames, from a single scaling function to a scaling function vector. More importantly,
based on these approaches to constructing wavelet frames, a lot of symmetric and compactly supported wavelet
frames with high vanishing moments are constructed (See [3]-[7], [11]-[12]. [17]-[20]).

It is well-known that under some decay conditions one uses the method of periodization to construct
periodic wavelet bases with the help of wavelet bases. We use the method of periodization to construct periodic
wavelet frames with the help of wavelet frames. In [20], starting from a band-passing function v satisfying
suprZ C [-m, —€]Ule, 7], € > 0, we constructed a pair of dual periodic wavelet frames. However the problem
of constructing general periodic wavelet frames with the help of extension principles is still open. In this paper,
deleting the strong condition supp@ C [—m,—€]U[e, 7] in [20], we construct general periodic wavelet frames
using extension principles, precisely say, we prove that under some decay condition, the periodization of any
wavelet frame constructed by the unitrary extension principle is a periodic wavelet frame, the periodization of
any pair of dual wavelet frames constructed by the mixed extension principle is a pair of dual periodic wavelet
frames.

This paper is organized as follows. In section 2, we recall the concepts of frames and extension principles.
In Section 3, we state main results: the constructions of periodic wavelet frames and pairs of dual periodic
wavelet frames. In Section 4, we give the proof of main results. Finally, in Section 5, we present an example to

explain our theory.



2. Preliminaries

We recall some known concepts and results.

In this paper, we denote the inner product and the norm in L2([0, 1]¢) by (,-) and || - ||, the inner product
and the norm in L?(R?) by (-,-)z2(ra) and || - [|p2(ra), respectively. We denote the set of vertexes of the cube

[0,1]¢ by {0,1}4. For a set F of R%, a point b € R% and a number ¢ € R, denote
E+b={z+b, z€E}, cE ={cx, =€FE}.

Denote the characteristic function of a set E by Xz. For t, s € R?, denote the inner product and the norm by

t-s and [t|, |s|, respectively. For convenience, we denote

Dp =10, 2" =11*(2z%,  mez*|J{o}.

For a matrix 2, denote its conjugate transposed matrix by Q*, denote the unit matrix by I
2.1. Frames
Frames are generalization of orthonormal bases. Let H be a separable Hilbert space and {h,, }3° a sequence

in H. If, there is a B > 0 such that

Z ha) > < B fl3 VY feH,

then {h,}5° is called a Bessel sequence. If there exist two positive constants A, B such that

A||f||H<Z| Fha)ul> <BI fl3 ¥ fen,
then {h,}{° is called a frame for H and A, B frame bounds. If A = B, then it is called a tight frame. Let
{h,}$° and {En}‘fo be two frames for H. If, for any f € H,

=3 (Fha)rhn = (f,
n=1

n=1

then {hy, hy}5° is called a pair of dual frames for H.



Proposition 2.1 [2]. Let {h,}5° and {h,}5° be two Bessel sequences in Hilbert space H. Then

{hn, hy}5° is a pair of dual frames if and only if there exists a dense set Hy of M, such that

o0

Z(f’ h’ﬂ)H(g7 EH)H = (fa g)H v f’ gc HO'

n=1

Wavelet frames are generalization of wavelet orthonomal bases. Let {1, }} C L*(R?) and

md

Yummn =22 Y, 2™ -—n), p=1,..,1; meZ;, ne VA

If the affine system {1, m,} is a frame for L?(R?), then {¢, ,n.n} is called a wavelet frame. If two wavelet

frames {9 mn} and {@me,n} are a pair of dual frames for L2(R?), then they are called a pair of dual wavelet

frames.
2.2. Various Parseval identities

For f € L'(R?), define the Fourier transform as
Flo)= [ e ao,
R4

If f, g € L>(R?), then the Parseval identity (f, 92 (ri) = ﬁ (]?, 9)r2(rey holds.

Let f € L%([0,1]¢). Define the Fourier coefficients as

ealf) = [ fye2mintar,
J

If f, g € L*([0,1]%), then the Parseval identity (f, g) = > cx(f)cx(g) holds.
kezd

For convenience, we denote D7, = [0, 2™ —1]*(Z% —~, v € Z%. For any sequence o = {a; } e po. , define

the discrete Fourier transform as

(Fa)(n) = Z aj e 3k ne€ D).
keD7,

If the sequences o = {a }repy and B = {Bi}repy,, then the following Parseval identity holds:

S @B =27 Y (Fa)m)(FB)m.

keDy, neDy,



2.3. Extension principles
Now we recall extension principles of constructing wavelet frames.
Definition 2.2 [19]. If ¢ € L?(R?) satisfies
(i) @ is continuous at the origin and $(0) = 1,
(ii) there exists an M > 0 such that Zd |P(w + 2km)|2 < M, a.e. w € RY
kEZ
(iii) §(2w) = Ho(w)P(w), where Hy is a 27Z—periodic bounded function,
then we call ¢ a scaling function.
Proposition 2.3 (unitrary extension principle) [18]. Let ¢ be a scaling function and Hy the

corresponding refinement filter. For each i =1,...,1, let H, be a 217 —periodic bounded function. Define Yy

by ’(ZM(Q(U) = H,(w)@(w). If the matrix
Q= (Hy(w - Vﬂ-))u:O,A..,l;ue{O,l}d (2.1)

satisfies

Q=1 a.e.,

then the affine system {t,.mn}u=1, .1 mez neza is a tight wavelet frame for L2(R%) with bound 1, where Q* is
the conjugate transposed matrix and I is the unit matrix.

Proposition 2.4 (mixed extension principle) [19]. Let ¢ and ¢ be two scaling functions, and Hy, H,
two corresponding refinement filters. For each u=1,...,1, let H, and H u be 217 —periodic bounded functions.
Define v, Ju as

~ ~

%(200) = Hu(w) @(w), ¢u(2w) = H;A(w) &(w)
If both {%y,mn}u=1,. 1;mez; nezs and {@Zﬂ,m7n}AL:1,__.7,;m€Z; neza are Bessel sequences, and the matrices

Q= (H,(w—vm)) and Q=(H,(w—vm)

p=0,....1; v€{0,1}4 ( )M:O,...,l; ve{0,1}4 (22)

satisfy



then {¥y m.n, Ju,m,n}u:L...,l;mEZ,nEZd is a pair of dual wavelet frames for L2(R?).
2.4. Periodization
The periodization of wavelet frames is based on the following proposition.
Proposition 2.5 [2]. Let f € L'(R%). Then

(i) the series Y. f(t + k) is absolutely convergent for a.e. t € R%;

keza
(ii) F(t) = kZZd ft+k) e L'([0,1]%);
(iii) F(t) e 2%t qt = F(2rk), k€ Z°

[0,1)¢
Notation 2.6. If f € L'(R?), then we define

Pty = ft+0).

A

From Proposition 2.5, we know that fP¢" is well-defined and it is a Z%—periodic local integrable function.

3. Main results
First, we present an approach to constructing periodic wavelet frames with the help of the unitary extension
principle.

Theorem 3.1. Let ¢ be a scaling function, and let ¥ = {¢,}! C L?(R?) satisfy

Vu(2w) = Hy(@)@w), p=0,.l, weR? (o =0),

where each H, (1 =0,...,1) is a 2rZ%—periodic bounded function. Let the matrix { be stated in (2.1). If the
equality of matrices

QQ=1I
holds, and there is a ¢ > 0 such that for each p > 0, 1, (t) = O((1 + [t|)~(F9)9) (g = ), then the system

\I/p”:{l, per o (w=1,..,1; m>0;, nEDm)}

wym,n



is a tight frame for L2([0,1]%) with bound 1, where D,, = [0, 2™ — 1]¢ (N Z.
Next, we present an approach of constructing pairs of dual periodic wavelet frames with the help of the
mixed extension principle.

Theorem 3.2. Let ¢ and @ be two scaling functions, and let {1, }} C L*(R%), {1;“}11 C L?(RY) satisfy

o~ ~

Dp(2w) = Hy@)3@),  9,(2w) = Hu(@) 3w), n=0,0l, weR! (Y=, 7o =),

where each H,, and E[u (n=0,...,1) are 2rZ—periodic bounded functions. Let matrices  and Q be stated as
in (2.2). If both {Yy mn}u=1,.. 1 mez; neze and {Ju,mm}u:l,u.,l;mEZ; nezd are Bessel sequences for L2(R4), and

the following equality of matrixes holds:

Q0 =1, (3.1)

and there exists € > 0 such that for each p > 0,

Yu(t) = O((L+1e) O+, gu(t) = O((L+ [t) ™9 (o = ¢, W0 =), (3.2)
then {WPer WP} is a pair of dual frames for L2([0,1]%), where

\ij”':{l, per (p=1,...,1; m>0; neDm)},

wym,n

\ff””z{l, PP (p=1,..,1; m>0; neDm)}.

Hym,n
Under the assumptions of Theorem 3.1, we let ¢ = ¢ and H u = H,,. Then we have Q = Q and
Q=1 P = grer,

Using Theorem 3.2, we deduce that {¥P¢" WP} is a pair of dual frames for L2([0,1]%). So, by the definition,

UPeT is a tight frame for L2([0, 1]¢) with bound 1, i.e., Theorem 3.1 is proved. So we only need prove Theorem 3.2.

4. Proof of Theorem 3.2
By Proposition 2.1, we know that in order to prove {¥Pe", ‘I/””} is a pair of dual frames for L2(]0,1]%),

we only need to prove the following:



(i) WP and UPeT are both Bessel sequences for L2([0,1]%);

(ii) for any trigonometric polynomials f and g,

!
(£, 9) = (£, (s, Z > Z U (95 UhS )
pu=1 m>0 n€Dp,
We prove (i) and (ii) in the next Lemmas 4.1 and 4.2, respectively.

Lemma 4.1. The sequences UP°" and WP are both Bessel sequences for L2([0, 1]9).

Proof. For convenience, we let

MN

DR (AR A

pu=1 m>0 neD,,
l
— § : |f T per
v Pu,m, n
pn=1 m>0 n€D,,

In order to prove that ¥P" and UPer are both Bessel sequences, we need to prove that there exist B, B >0

such that for any f € L2([0,1]%), we have

Ty(H + ISP < B fIP
TN +ILDP<BIfI

By the definition of ¢’ = we have

wym,mns
l
S Z Z Z |(f7 '(/)u,m,n(' +k))|
p=1 m>0 n€D,, kezd

However,

2 2
( Z |(f7 ’(/);LJrL,n('_"k)”) S 2 ( E |(f7 '(/);LJrL,n('_"k)”)
keB

kezd (0,3V4d)

2
+ 2( Z |(fa wu,m,n('+k))|> 212114-2[2,
k¢ B(0, 3v/4d)

where B(0, 7) is the ball with center 0 and radius r. So we have

l
<23 > > (h+ 1) =:2J1 +2J,

pn=1 m>0 ne€D,,



where

> S0 @tk at]

1 m20 n€Dm \ keB(0,3Vd) [o.1]4

Since the number of integral points in the ball B(0, 3v/d ) is finite, we deduce

2

S0t Rl | =00 X[ SO0 D,

kEB(0,3vd) [011]d keB(0,3Vd) [0,1]¢

where the bound of O(1) only depends on d. Again, by

¢u,m,n(t + k) = ¢u,m,n—2’"k(t)7

we have

l
1)2 Z / p,m,n( dt|2 Z Z Z | fX[O 1] "/)umn L2(R4) |
pn=1 meZ nezd [0.1]¢ pn=1 meZ neczd

By the assumptions, we know that {¢, mn, p=1,....; meZ; n€ Zd} is a Bessel sequence for LQ(Rd)7

so we deduce that there exists B; > 0 such that
J1 < B fXpe T2 @ay= B £ 1%

Now we compute Jo.

2

l
=YY o Guma R (4.1)

p=1 m>0 neD,, k&€ B(0,3Vd)

We extend f(t) from [0, 1]¢ to a Z?—periodic function. So, by the Schwarz inequality, we have

(s Gmn(- + B))] = / FOBpmn®dt | <[ 1] / @t | (4.2)

[0,1]4—Fk [0,1]4—k

By (3.2), we have

[pman () = O2T) (1 + |2mt — p|)~20+9)4,

For n € D, and t € [0,1]¢ — k, k ¢ B(0, 3v/d), we have

t| > |k| = Vd >3Vd—Vd=2Vd and [|n|<2™V4d,



This implies that
|27t —n| > 27t = |n| > 2"Vd and |27t —n| > 2771t > 277 (K] - Vd) > 277 |k].

So we get
S [uma@Pdt = 0@™) [ (1+[2m —n])"20Fdt
[0,1]¢—k [0,1]¢—k

—_ O(Q(l—e)dm) f (1 4 |2mt _ nl)—(2+e)d dt
[0,1]9—k

_ 0(2(176)dm)(1 4 2m72|k|)7(2+6)d.
By (4.2), we deduce that for n € D,,, k & B(0, 3vVd),

(Fs Bramn -+ )] = O@EA=II™Y | £ (14 272k~ +9).

Again, since

1 dt
E =0 / = 0(27™4)
4 9m=2|k|)(1+5)d m—2|]\d+ <L
kgB(0, 3V/d) (14 2m=2[k) s R (1 +2m=2fe])™

we have

S 1 a4 R =0 (2730 )
kgB(0,3V4d)

Hence, by (4.1), we have

=0 117 > Y 2@ =o( 1) Y 2 =0l f ),

m>0 neD,, m>0
So there exists a By > 0 such that |Jo| < By || f ||*

Therefore, we have
Ty(f) +1(f, D> < 2B +2B+1) | fI?=:B| f|?*.

Similarly, we have T (f) + |(f, 1|2 < B f||> Lemma 4.1 is proved.

Lemma 4.2. Let f and g be trigonometric polynomials, i.e.,

F&) =" ca(f)e?™™ ! and g(t) = > calg) ™™,

nez? nezl

10



where the sequences {c,(f)} and {c,(g)} have only finitely many nonzero terms. Then the following formula

holds
1
(£.9) = (f, Z > Z a9 VR ) (4.3)
pu=1 m>0 n€D.,,
Proof. This argument is divided into four steps.
Step 1. We prove that P (t) = @P"(t) = 1.
Since ¢ € L'(R?), we know that @ is continuous and lim @(w) = 0. By a known result [9, 13], we have

|w|—00

P(2ma) = 0 for any a € Z%¢\ {0}. Again, by Proposition 2.5, we have

PrT(t) =Y pt+s) =Y 2mv) et =1,
sezd vezd
Similarly, we have @P¢"(t) = 1.
Step 2. Now we rearrange and rewrite the following series:
Yo (o ehm)(g, @) and Y (f wRT)(g. OB
n€ED, n€Dy,

First, we deduce that

kezd seZd

(f, ehi)e, @)™ = ( > (f; <pm,n(-+k))> ( 2. (9, %,n(~+8))‘>

= 2 2, emal-+K)(G Gmnl(-+5))”

SEZL keZd

Since p(t) = O((1 + [t])~F99) G(t) = O((1 + [t])~(+99), we deduce that the last series in this formula is
absolutely convergent. From this, we know that the above operation is reasonable, and the last series of the

above equation can be rearranged, so we have

(f, b ) (g, @)™ =Y D (fs G-+ R Brn(-+E+5))7 (4.4)
s€Zd kezd
We define
Fs(t) = f(t)X[O,l]dfsa Gs(t) = g(t)X[O,l]dfm (45)

11



where s € Z% and X[o,1¢— is the characteristic function of the set [0, 1]¢ — 5. Since f and g are Z%—periodic

functions, by (4.4) and (4.5), we have

(fs ehm)lg, &)™ = 2 2

S€Z4 keZ

F )t + k) dt ) ({ [ 9@ n(t+k+s) dt)
0

)Pt + k) dt) ( I 9@, (t+k) dt) (4.6)

[0,1]d_

s€Z4 kezd

= X X

s€Z9 kez

J Fo()@pn(t + k) dt) <fG cpmnt+k)dt>

(
ZZ(
(

Since @m.n(t + k) = ©mn_ami(t), by (4.6), we have

> (fs @per )(g, @%Tn)i = > > X (o, (Pm,n—Q’"k)LQ(Rd)(Gsa ‘Zm,n—ka)Zz(]Rd)
n€D,, s€Zd n€Dy, keZd
(4.7)
= Z Z (FOa @m,k)LZ(Rd)(Gs» &m,k)zz(Rd)-
sEL keZd
Similarly, for each p > 0, we have
S 9 )T = S S (Foy Yt 2 (G Do) o - (4.8)
n€D,, s€Zd keZd
Step 3. Prove that for any m > 0, we have
l m N
(f Dlg D7 +>0 >0 D (e 00e, b0 = D (f i, )9 Poesrn) ™
p=1 j=0 neD, NEDm 41
We consider the sum of the right side in (4.8) over u =0, ...,1,
= Z Z Z Fo, wum k)L2(R%) (G57 ¢Nmk)L2(Rd) (49)

n=0 sczd keczd

By the Parseval identity of the Fourier transform and @ZM(QW) = H,(w) p(w), we deduce that

(Fo, Ypmie)r2@ey =27 % (2m)~ / Fo(w) ¥, (2 mw) e "k dy

Rd

=5 (2m)” /Fo )P 2 W) H, (27 ) e TR dy

12



=27 (2m) ¢ Z Fy(w + 2" ) 3(27™ 1w + o) H (27" tw + ma) e R do,

d
[=2mm, 2mp]d a€Z

Since H,, is bounded, we have

/ Z \ﬁo (w+2" M ra) (27w + 1) Hy (27 w4 ma)| | dw

d
[=2mm,2mq]d a€Z

< Hy ey / 1Bo(w) B2 'w)] dw < oo,
]Rd

So, the exchange of the integral and the summation is reasonable in the above formula, again, by periodicity of

H,,, we deduce that

(Fo, Ypmi) ey =27 % (2m) ¢ / (> > Bw+2mn2d +v) 32 " w+n(2d +v))

[amn, ampla /€04 vE{0,1}d

CH,2 w4 w) bem 2 Tike do, (4.10)

Similarly, we have

(Gay Ypamk)r2(eay =27 % (2m) 7 / (3 Y Guw+2mm(28 + 1) 5@ ™ w+ w28 + 7))
[omn, gmnja B'€LT TE{0,1}

. Eu(27m71w + 7)) e”2 ik qy, (4.11)

Since {(2m*t1m)~% ¢~2 "ikwl ., is an orthonormal basis for L2([—2™r,2™x]4), by (4.10) and (4.11),

using the Parseval identity of the Fourier series, we have

Z (FOa q/),u,m,k)Lz(]Rd)(G’m Jy,m,k)iz(ﬂ{d)
keza

= (2m)~¢ / Z Z Fo(w + 2™ w20/ + 1)) 227w + 7(2a’ + 1)) H,2 " 'w+7v)
[72771,71—’27‘”7[-]4 a’ezd UG{O,l}d
o Z Z ES (w2126 + 1)) ?,5(27’"7%0 +7(2a/ +v)) IA{iN(Q*m*ll/ + ) dw.
B'ezd re{0,1}4

13



Again, by (4.9), we deduce that

Py=(2m) Y / > Y Rlw+2mn2d +0)Ga(w+ 2" n(2f + 7))

sezd [—2m 7, 2mp]d o, B’ €L v,7€{0,1}¢

1
P2 " v+ 7(2d +v)) 35(27m71w + (268" + 7)) ( Z H,2 ™ v+ ) I}u(27m71w + 77)

pn=0

By the assumption Q0 = 1, for each u, we have
l ~
Z H,2 ™ 'w+m)H,2 " 'wtnr) =
= 0, v,
Again, letting

U (W) = Z Fy(w+ 2" 21a) 2(27™ H(w + 2" 21a)),
acZ?

~

Vms@) = 3 Gylw+ 27 2aB) H2 ™ (w + 2720 B)),
Bezd

we conclude that

P, = (2m)~¢ > Ik U (w + 2" 1) vy, (W + 271 71) dw
s€Zd ve{0,1}4 [—2mq 2mp]d

= ey ¥ J U (@) Vs (w) dw,

s€Zd ve{0,1}d [—2mg 2mp]—2m+ligry
Noticing that u,,(w) and vy, s(w) are 2™+27Z?—periodic functions and
U (27w, 2ma)? — 2™ rw) = [-3- 2™, 27a],
ve{0,1}4

we have

Pp=(2m)"" > / U (W) Vs (W) dw.

se€zd [—2m+1y, 2m+1g]d

Using the Parseval identity of the Fourier series, we obtain that

U (W) T, s (w) dw

[—2m+1g 2m+17]d

14

>dw

(4.12)

(4.13)



= 2—(m+1)d (27T)_d Z( / um(w) e—Q’mflik-w dw )

kezd [—2m+1lg 2m+1g]d

o U s(w)e 2" Nk du )~
[—2m+1y, gmtlz]d

— 9—(m+1)d (271_)7d Z ( /ﬁo(w) 5(2777171&]) efz—m—lik-w dw )

kezZd Rd

/G 2_m 1 )e_zfmflik"” dw )™
Again, by the Parseval identity of the Fourier transform and (4.13), we have
P = Z Z (Fo, ma1.k)r2wa)(Gs, Prmt1k) 2 (gay- (4.14)

s€Zd keZd

By (4.9) and (4.14), it follows that

Z Z(Fm LPerl,k)L?(]Rd)(va ¢m+1,k)£2(Rd)
s€Zd kezd

= Z Z (FO, Qam,k)LQ(]Rd)(G& SZWLJC)Zz(Rd)

SEZL keZd

l
+Z Z Z(FO’ ’(/)mek)LQ(le)(Gm wu,m,k)£2(Rd)- (415)

w=1 sezd keZd
In the last equality of (4.15), we use 10.m.k = ©m,k and 1207%;C = Qm k-
By (4.15), (4.7), and (4.8), we have
1

S e B )T = Y (g, BT A YL Y (s e (g R )

nED 11 nebD,, p=1 ne€D,,

By ¢t (t) = @6 (t) = 1 and Dy = {0}, we know that when m = 0, we have
l ~
(f, Dy, Z 009 Vo) = D (o AATg F)
p=1 neDy

In general, for any trigonometric polynomials f and g and m > 0, we have

l m
(F g DT+ >0 D (e )e, 00" = D (f bt )9 @t )™ (4.16)

p=1 j=0 nebD; NED 11

15



Step 4. For any trigonometric polynomials f and g, we have

Smi= Y (f ht)g, @on)”™ = (fg),  m—co. (4.17)
n€Dy,
In fact, since @}y’ om = @b, Qo Lom = @b, we have
D (s ehi)g. it)” = Y (f @b g, Et)
neED,, neDy,
where D,,, = [0, 2™ — 1]¢ and D}, = [-2™~!, 2m~1 — 1], Since f and g are both trigonometric polynomials,
there exists mg € Z* such that
FO =Y (™™ gt) = alg) ™™, where cx(f) = cklg) =0 (k & Dj,)- (4.18)

kezd kezd

Again, let

szvzfjn(t) — Z dy, eQTrik~t7 @frfjn(t) _ Z Jk eQﬂ'ik‘t.

he kezd
By Proposition 2.5, we have
md 2 k i
i = () (2mk) = 27% BT 7B (),
glvk _ 277”7d$(2’ﬂ—k) e 27r7,(k n)

Since ¢ (f) = ck(g9) =0, k &€ Dy, by the Parseval identity of the Fourier series, we have

[\]

et = X = ¥ (a0

_md 2’/T/€ 2mi (1.
2 SO( )) ezm(kn)7 m2m0~
keD?, keD:,

27’7L
Similarly, we have

~per _md
(ga @fn,n) = Z Ck(g)2 2 50(
keDx,

2k, 2mi
2%)6%(’6.”)) m Z mo.

Using the Parseval identity of the discrete Fourier transform, we obtain that for m > my,

2rk . =, 27k

27)90(27)~

Smi= Y (fs @hm)g, @hen)™ = Y alf)enl9) &

neDy keD:y,

m
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Again, by (4.18), we have ¢ (f) = cx(g) =0 (k & D;,,.), so, for m > my,

Sw= Y Al a5,
keD;,

Since lin}J Plw) = 111% af(w) =1, we have

lim S, = Z cr(fen(g) = Z ce(f)er(9)-

m— 00
keDy, . kezd

Again, by the Parseval identity of the Fourier series, we get (4.17).
From (4.16) and (4.17), we deduce that for any trigonometric polynomials f and g, we have

l %)
(f D@ D7+ D0 S b ) (g, Ol )" =(f, 9),

pu=1 j=0 neD;

i.e., (4.3) holds. Lemma 4.2 is proved.

Proof of Theorem 3.2. By Lemma 4.1, we know that the sequences ¥P*" and UPer are both Bessel
sequences. By Lemma 4.2, we know that for any trigonometric polynomials f and g, (4.3) holds. Again, since
the set of trigonometric polynomials is dense in L2([0,1]%), using Proposition 2.1, we know that {W¥Pe" \Ilp”}

is a pair of dual frames for L%([0,1]¢). Theorem 3.2 is proved.

5. Example
We start from a known example [18] of wavelet frames to construct a pair of dual periodic wavelet frames.

Let 7 € Z* and the scaling function ¢ satisfy

. w 2T
@(w)<sm2> ,  weR

@
2

Then @(2w) = Ho(w) $(w), where Ho(w) = cos®™ 4. Let

H,(w) =/CY, sin* g cos?TH %, 1< p <2,

where C% = % Then H,(w) is a 2r—periodic bounded function and the matrix

Q= (Hy(w—vm))u=1,..2r; v=0,1

17



satisfy Q*Q = I. For each px = 1,...,27, define ¢, as

sin?™tH @

INES
—
o
—_
SN—

Du(2w) = H,(w) plw) = i \/0757 cos Tu(

INISIENES

)27’

A known result [18] shows that {9, j k}u=1,... 2r; j kez is a tight frame for L?(R) with bound 1.

By Theorem 3.1, we know that {1, Z?k; pw=1,..,2r; j >0, k=0,1,..,29 — 1} is a tight frame for

L?([0,1])with bound 1. By Proposition 2.5, we have

k() =D uga(2mr) e (5.2)

VEZ

er .

Since 1, is a spline of degree (217 — 1), z/;ﬁ ;.1 18 a periodic spline function with period 1. By (5.1) and (5.2), we

know that the Fourier coefficients

Gy k2rv) = 2% ¢, (27 ) e~ 2mikv/2

id .y CF (cos 279 27u)27 1 (sin 279 2 q) 27 _o—itl ik,
¢ 27 (2= 2mv)2r € .

Acknowledgments The authors are thankful to referees for their valuable comments.

References

[1] J. J. Benedetto and S. D. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl.
Comput. Harmon. Anal. 5 (1998), 389-427.

[2] C. K. Chui, An introduction to wavelets, Academic press, Boston, 1992.

[3] C. K. Chui and W. He, Compactly supported tight frames associated with refinable functions, Appl. Comput.
Harmon. Anal., 8 (2000), 293-319.

[4] C. K. Chui, W. He, and J. Stockler, Compactly supported tight and sibling frames with maximum vanishing
moments, Appl. Comput. Harmon. Anal., 13 (2002), 224-262.

[5] C. K. Chui, W. He, J. Stockler, and Q. Sun, Compactly supported tight affine frames with integer dilations and
maximum vanishing moments, Adv. Comput. Math., 18 (2003), 159-187.

[6] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput.
Harmon. Anal.,14 (2003), 1-46.

[7] 1. Daubechies and B. Han, Pairs of dual wavelet frames from any two refinable functions, Constr. Approx. 20:2
(2004), 325-352.

18



8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

M. Frazier, G.Garrigos, X. Wang, and G. Weiss, A characterization of functions that generate wavelet and related
expansion, J. Fourier Anal. Appl., 3 (1997), 883-906.

B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory, 124 (2003),
44-88.

B. Han, On tight dual wavelet frames, Appl. Comput. Harmon. Anal. 4 (1997), 380-413.
B. Han and Q. Mo, Multiwavelet frames from refinable function vectors, Adv. Comput. Math., 18 (2003), 211-245.

B. Han and Q. Mo, Symmetric MRA tight wavelet frames with three generators and high vanishing moments, Appl.
Comput. Harmon. Anal. 18 (2005), 67-96.

E. Hernandez and G. Weiss, A first course on wavelets, CRC Press, Boca Raton, FL. 1996.

Q. Jiang, Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators, Adv.
Comput. Math., 18 (2003), 247-268.

R. Long and W. Chen, Wavelet basis packets and wavelet frame packets, J. Fourier Anal. and Appl., 3(3) (1997),
239-256.

L. Mu, Z. Zhang, and P. Zhang, On the higher-dimensional wavelet frames, Appl. Comput. Harmon. Anal. 16
(2004), 44-59.

A. Petukhov, Symmetric framelets, Constr. Approx. 19 (2003), 309-328.

A. Ron and Z.W. Shen, Affine systems in L?*(R?): The analysis of the analysis operator, J. Funct. Anal. 148(2)
(1997), 408-447.

A. Ron and Z.W. Shen, Affine systems in L?(R?) II: Dual systems, J. Fourier Anal. Appl. 3 (1997), 617-637

Z. Zhang, Periodic wavelet frames, Adv. Comput. Math., 22 (2005), 165-180.

19



