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Abstract Instead of classifying individual signals, we addresssifasation of ob-
jects characterized by signal ensembiles (i.e., collestidrsignals). Such necessity
arises frequently in real situations: e.g., classificatibvideo clips or object classi-
fication using acoustic scattering experiments to name alfeparticular, we pro-
pose an algorithm for classifying signal ensembles by lmoptpgether well-known
techniques from various disciplines in a novel way. Our atgm first performs the
dimensionality reduction on training ensembles usingeeithe linear embeddings
(e.g., Principal Component Analysis (PCA), Multidimensb Scaling (MDS)) or
the nonlinear embeddings (e.g., the Laplacian eigenmap, ¢h€ diffusion map
(DM)). After embedding training ensembles into a lower-dirsional space, our al-
gorithm extends a given test ensemble into the trained edibgdpace, and then
measures the “distance” between the test ensemble andraathdg ensemble in
that space, and classify it using the nearest neighbor methturns out that the
choice of this ensemble distance measure is critical, anclgorithm adopts the
so-called Earth Mover’s Distance (EMD), a robust distaneasure successfully
used in image retrieval and image registration. We will destiate the performance
of our algorithm using two real examples: classificationmderwater objects using
multiple sonar waveforms; and classification of video clypgligit-speaking lips.
This article also provides a concise review on the sevesatkacepts in statistical
learning such as PCA, MDS, LE, DM, and EMD as well as the ptatissues in-
cluding how to tune parameters, which will be useful for thaders interested in
numerical experiments.
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1 Introduction

Many problems in pattern recognition often require comgmaribetween ensembles
of signals (i.e., points in a high-dimensional space) mdtaf comparing individual
signals. For example, in a visual speech recognition propte/o or more clips of
recorded video are compared for similar patterns. TypicaNideo clip consists of
a sequence of images called video frames. We can view a videtfas a point and
a video clip as an ensemble of points in the high-dimensionafie space. Thus,
comparing two video clips is equivalent to comparing twoagniles of points in the
image space. As a second example, consider the task offidegtan object on the
ocean floor given a set of sonar waveforms reflected from tfecbllhis requires
comparing the ensembles of waveforms reflected from the amkrobject with
those reflected from known objects. Then the unknown obgeictantified when a
match is made.

In this article, we propose an algorithm for classifying lssignal ensembles.
More specifically, let2” :== UM, 2" ¢ RY be a collection oM trainingensembles
2= {x], - X },i=1,--- .M wherem € N is the number of signals contained
in the ensemble?™ andx], € RY is an individual signal (a vector of length). We
assume that each training ensem#lé has a unique label (or class name) améng
possible labels. Le¥ := U’j“:l 21 c RY be a collection of test (i.e., unlabeled) en-

sembles where/ | := {le7 e ,y,‘“} is the jth test ensemble consisting 0f signals
of lengthd. Our goal is to classify eactt!, j =1,---,N, to one of the possibl€
classes given the training ensemhl&s Note that this task is different from classi-
fying each signayj € # individually.

Our proposed algorithm consists of two main stages. The(érdtaining) stage
performs the dimensionality reduction without losing imjpat features of the train-
ing ensembles followed by constructing a compact reprasientcalled asignature
— a generalized version of a histogram — that well represantsssence of the
ensemble in the reduced space. The second (or classificatage embeds a given
test ensemble into the reduced space obtained in the fige &ithowed by classify-
ing it to the label of the training ensemble whose signatsirmast similar to that of
the test ensemble. Here how to define the similarity or thiuwdé®e measure between
signatures will be the key issue as we will discuss below.

1.1 Dimensionality reduction

Let us now discuss the first stage in more details. The diroaakty reduction
of the input data is necessary because modern technoldiggsgenerate data of
extremely high dimension. For example, a small ¥2B28 gray-scale image has
dimensiond = 16384. Such high dimensionality makes data analysis inefiand
inaccurate. Fortunately, the data that we encounter oft®a fow intrinsic dimen-
sionality. For example, consider the set of all 22828 gray-scale images taken of
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an object under fixed lighting by a moving camera. This is asetibfR1384pos-
sessing the natural structure of a low-dimensional mashifath its dimensionality
defined by the degrees of freedom of the camera [3]. In shastdiesirable and in
fact indispensable to find an effective low-dimensionalespntation of the data for
the task at hand.

Perhaps, the most well-known techniques are Principal ©ompt Analysis
(PCA) also known as Karhunen-&we Transform (KLT) [19, Chap. 8], [17, Sec. 14.5],
and Multidimensional Scaling (MDS) [7], [19, Chap. 14], [1Sec. 14.8]. Despite
their shortcomings (e.g., inability to captdoeal geometric information), they have
been the mainstay of dimensionality reduction. They haenlapplied to a variety
of applications including human face characterization R%, pose estimation of
3D objects from image sequences [28], to hame only a few;lsed®/, Sec. 14.5]
for more examples.

Many nonlinear methods for dimensionality reduction haeerbproposed in
order to improve the shortcomings of PCA/MDS; see e.g., |2,41] for some
specific proposals and [25] for a comparative review on maich sechniques. Un-
like classical methods such as PCA and MDS, nonlinear msthmodeneral offer
the advantage of preserving local geometry while achiedingensionality reduc-
tion. Providing the example of a moving camera in the paggebove for moti-
vation, Belkin and Niyogi [2, 3, 4] were among the group ofestists who pro-
posed a nonlinear dimensionality reduction algorithm thatlicitly considers the
manifold structure that may very well be the intrinsic getipef the data. They
proposed thé&aplacian eigenmagLE): an embedding of data into a reduced space
spanned by the eigenvectors of the graph Laplacian definedsamilarity graph
constructed from the training data while preserving thalgeometry of the data.
If data arise from non-uniform sampling of a manifold, hoegvembedding via a
Laplacian eigenmap may result in distortion of the manifelten embedded into
the reduced space (see [22] for some examples). SensitivBgmpling densities
may be a serious drawback in certain cases. For this reasifma&h and Lafon
[9, 22] proposed a density-invariant normalization of theigits on the graph be-
fore computing the graph Laplacian. This would eliminates#évity to sampling
densities of the Laplacian eigenmaps. Furthermore, thieoesitdefineddiffusion
mapsfrom the eigenvalues and eigenvectors of the diffusion atper(defined in
Eqg. (14) below) and provided an intuitive interpretatiorhofv point clustering in
a diffusion coordinate system is linked to a Markov randontkvea the weighted
graph; see e.g., [21] for the detalls.

In this article, we will particularly focus on PCA, MDS, Laian eigenmaps,
and diffusion maps as our dimensionality reduction metlaodscompare their per-
formance.
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1.2 Nearest neighbor classification and its base distanceamge

The final step of the second stage of our proposed algorithtm &tually clas-
sify each test ensemble into one of the possible classesrhpaning its signature
with those of the training ensembles computed in the firglestdhe label of the
training ensemble whose signature is “closest” to that ofvargtest ensemble is
assigned to it. In other words, our algorithm adopts theatedk-nearest neighbor
(k-NN) classifier withk = 1 on the signatures in the reduced embedding space. The
k-NN classifier has been quite successful in many classificgiroblems despite
its simplicity; see e.g., [17, Sec. 13.3] for the detailsthdlgh our algorithm can
easily accommodate a different valuekaf 1, we will stick withk = 1 in this arti-
cle mainly because: 1) choosing the optirkakquires a relatively large number of
training ensembles; and 2) a famous result of Cover and Hajtdlaims that the
error rate of the 1-NN classifier is never more than twice thges (i.e., optimal)
rate asymptotically.

The more important issue in this second stage is the choiteedfase similarity
or distance measure for the nearest neighbor classifiereTdre many such mea-
sures for comparing given two signatures: e.g., the usuelidaan distance, the
Hellinger distance, the Kullback-Leibler divergence,. gsee [1] for the review of
many of these distances. The most robust one that is alsosuiteible for our prob-
lem turns out to be the so-calléthrth Mover’'s DistancEMD), which has been
successfully applied to many practical problems includmgge retrieval from a
large image database [33, 34], image registration and ngi6], to name a few.
To the best of our knowledge, however, using EMD for classifin of objects
characterized by signal ensembles has not been address#tidsy. In our case,
each signature may consists of different number of clustetlins” in the reduced
embedding space. Hence, the conventional distance measuaie as the Euclidean
distance, the Hellinger distance, etc., are not suitalsledo classification problem.

1.3 Related Works

In this subsection, we will briefly describe two works modated to ours. In [42],
the authors presented a method to characterize signal bleseusing various prob-
abilistic distance measures in the reproducing kerneldtiilbpace (RKHS). First,
the signal ensembles are mapped to an RKHS via a nonlineatusiag either a
polynomial kernel or the Gaussian kernel. Then the prolstigildistance measures
(e.g., the Bhattacharyya distance, the Kullback-Leibiegrdience, the Chernoff dis-
tance, etc.) are computed in the RKHS space to determinarttilarities between
signal ensembles. Our proposed method and [42] share thenapmbjective of
classifying signal ensembles. Other than using a nonlinegping to transform
the data from its original space, however, our algorithm[d2{lare two completely
different approaches. For example, the approach of [42jnass that the data after
mapped to an RKHS obey the normal (or Gaussian) distribudiod they proceed to
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estimate the parameters (the mean vector and the covarigaici) of the normal
distribution. Such an assumption is too strong and canngubeanteed in practice
in our opinion even if one finds a good nonlinear kernel fuorcti

In[20], Lafon, Keller, and Coifman utilized diffusion mapad the out-of-sample
extension scheme for signal ensemble matching problemsp@posed algorithm
owes them quite a bit: we too use diffusion maps and theirobgample exten-
sion scheme, which will be reviewed in Sec. 2.4 in detail. Awportant differ-
ence between our algorithm and theirs, however, is the ugeMb as the simi-
larity/distance measure instead of the Hausdorff distdrii) they adopted; see
Eq. (22) for the definition of HD and Sec. 3 for the detaileccdssion. We also
note that the techniques we employ in the signature corigirustage for EMD-
based classification is not limited to the framework of thi&udion maps; in fact,
we also use the Laplacian eigenmaps and PCA in our humeriparienents be-
low. Furthermore, the advantage of EMD over HD is its robessto outliers. As
we will see in Sec. 5 below, HD is very sensitive to outlierscbntrast, the EMD
between the signatures measures the differences betwedisttibutions of points
within the reduced space. Therefore it is less affected hiyens, which leads to
more reliable results.

1.4 Article Organization

In Section 2, we will review the basics of the particular ldimensional embedding
techniques for dimensionality reduction, i.e., Multidinsgonal Scaling/Principal
Component Analysis, the Laplacian eigenmaps, and thesiliffiumaps. Section 3
reviews the key player in our proposed algorithm: the Eartvéf’'s Distance. Sec-
tion 4 describes our proposed algorithm for sighal enserlbksification in detalil
including the practical issues such as the tuning paransefection that are im-
portant to successfully embed high-dimensional signatstime lower dimensional
spaces using the diffusion maps/Laplacian eigenmapsioBegtdescribes the re-
sults of our numerical experiments on two real datasetsewater object classifi-
cation using acoustic signals and classification of vidgmsaf digit-speaking lips.
Finally, we will conclude in Section 6 with discussion.

2 Dimensionality Reduction/Low-Dimensional Embeddings

In this section, we will review the embeddings of high-dirsiemal data into a low-

dimensional space using MDS/PCA, Laplacian eigenmapsd#iugion maps and

discuss their properties that allow us to achieve meaningfuensionality reduction

as well as their similarity and difference. We will also mwian algorithm proposed
in [20] for extending these embedding maps from traininqdatest data.



6 Linh Lieu and Naoki Saito

First of all, let 2" = {X1,---,Xm,} C RY be a set of the available training data
points (or signals). Note that using the notations definelhtiroduction, the total
number of training data points, := M, m. In this article, we assume the finite
number of data points both for training and test signalsc&i” c RY, we can
define a natural dissimilarity measudethat gives a sense of affinity between any
two data points inZ". The usual Euclidean distance is most commonly usedl as
although there are many other possibilities. Xebe a data matrix of sizd x m,
(i.e., each column vector is a training sigda@nd let¥ : 2" ¢ R™ — RS be an
embedding map from high to low dimensional spaces whetesk min(d,m,) is
the reduced dimension. With a slight abuse of notatiortPfet) denote a matrix of
embedded points of” in RS, i.e.,

w1 r(x1) ... P1(Xm,)
PYX) = (W), ., Pxm))=| 1 | =] : ER™™. (1)

LPl Ps(xa) ... L»Us().(rm)

2.1 Multidimensional Scaling and Principal Component Analigs

Multidimensional Scaling (MDS) [7], [19, Chap. 14], [17,&6d.4.8] seeks a low-
dimensional embedding that minimizes the following quanti

me m, 2
JMDs(‘P)1:_212(5(Xi7><j)*5(W(Xi),4’(xj))) ; )
i=1]=i

whered(-,-) is the “distance” between the two points in the appropriateliHean
space. In other words, MDS seeks a low-dimensional repratem of the input
data that preserves the pairwise distances as well as {@gSithough it is possible
to use any distance measures (i.e., metric),abhe most common choice by far is
the Euclidean distance, e.@(xi,X;j) = ||xi — X;|| where|| - || is the ¢2-norm. We
note that the embedding minimizidgps could be nonlinear in general.

Instead of using the distance or dissimilarity, it is alssgible to use the simi-
larity among the data points. If the similarity is defined bg tentered correlation
as

1 m,
a(xi,x;):=x-X)"(xj—-%), X:=—7YSx, 3
04:x3) 1= (04 =0T 0 =R, Xi= o3 ©
then instead of Eq. (2) one can consider the embedding maimighthe following
m, m, 2
Jes(¥) = ZZ(G(Xqu)—G(‘P(Xi)w(xj‘))) : (4)
i=1)=I

1 In the statistics literature, the data matrix is often definethagranspose of our definition, i.e.,
each row vector is a training signal.
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This is calledClassical MDSor Classical Scalin¢CS). Using the matrix-vector
notation, and leX be the centered data matrix, i.e., the mean of the colummssect
of X is subtracted from each column Xf which can be written aX = XH where
H:=1-11"/m, is the centering matrix of siz@, x m, andl:=(1,...,1)T ¢ R™,
LetW(X) := W(X)H. (Note that if we assun¢ is a linear map, theW( Y =Y¥(X),
but let us proceed without assuming this linearity now.)ml&q. (4) can be written

as
2

Jes(W) = |[XTX = PO0)TPX)|| 5)

where|| - [ is the Frobenius norm. Since rat(X)) = s and rank¥ (X)) = s—

1, the minimization oflcs(¥) leads to®(X)T¥(X) should be the best rafk—
1)-approximation ofXTX. Let X = U XVT be the singular value decomposition of

X. Then XTX VZT5VT. Hence, the best ranfs— 1) approximation ofXTX is

szl O‘kaVk wheregy are sorted in the non-increasing order. This implies that

ov]
: T
Y(X) = : =% 1Vs 1,
Os-1V{ 4

whereXs ; = diag(01,...,0s-1) andVs_1 = (v1,...,Vs_1). However, becausk ¢

R™ is an eigenvector oK corresponding to the eigenvalue O (this can be easily
seen fromH1 = 0), the mean of the column vectors of the matEWkT is 0 as
long asok = 0i.e.,k < rank(X) becaus#/] 1 = 0. In other words 3V,! is already
centered for each sudb This also implies that we can s#t(X) = >VJ as our
s-dimensional embedding as long as<1s < rank(X), which is usually the case
sinces < min(d,m,) and the training signals normally linearly independert, i.
rankX) = min(d,m,) — 1.

Now it is clear that the classical scaling is equivalent te popular Principal
Component Analysis (PCA), which was pointed out originaly{15]; see also [19,
Sec. 14.3], [7, Sec. 24.1]. Since the fisRCA basis vectors are the eigenvectors of
the sample covariance matriX " /m, corresponding to the largeseigenvalues,
these are the firs column vectors ofJ, which formUs. Now, from the SVD of
X, we haveXVs = UsZs or equivalentlyUs = XVsZ5 1. Now, the firsts principal
component of the centered data matixs simply the expansion of with respect
toUs. Hence, those principal components (or the expansion caeffs) are

Ud X = S5V XTX = [Z6]Ogm, 9 ] VT = ZoVs -

In other words, this is exactly the same as CS. Hence, we esteitim PCA inter-
changeably with CS or classical MDS in this article, and defin

Ybca(X) =3V, XH=UxVT. (6)
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One of the major drawbacks of PCA and CS is their inabilitynimoirporatdocal
geometric information. This is clear from Eq. (3), whichegva small value even if
Xj andx; are very close as long as— X andx; — X are almost perpendicular.

2.2 Laplacian eigenmaps

Unlike PCA/CS, Laplacian eigenmaps [2, 3] incorporaieal geometric informa-
tion in the ambient spadg? when constructing a low-dimensional embedding. To
explain this more precisely, let us define the weight fumciigx;, ;). A canonical
example of this weight function is the Gaussian:

We (Xi, Xj) i= g (80 xj)/e)? )

wheree > 0 is the scale parameter add, -) is an appropriate metric in the original
ambient spac®&9. Although there are other choices, we will use the Euclidgian
tance (i.e.f2-norm) asd throughout this article. Such a weight functiom defines
the notion of a local neighborhood at each poire 2~ via the affinity between
x and other points inZ", and the value of the scale parametegpecifies the size
of this neighborhood. Moreover, as explained in [3], when dataset?” approx-
imately lies on a lower-dimensional manifold &f, using the weightsv, on the
graph constructed from the data points corresponds to aixippation of the heat
kernel on this manifold. We also note that choosing the gmyate value of for a
given training datase®’ is quite important yet difficult in practice. We will discuss
more about it in Sec. 4.2.

Now, we seek an embedding m#fthat minimizes the following objective func-
tion

m, m,
Je(¥) = 19 (xi) = (x)) [ Pwe (xi, X ). (8)
24
Using the matrix-vector notation, this leads to the follogbptimization problem:
min _ tr(WY(X)LW(X)T) subject to¥(X)DW(X)T =1 9
oL, T (WOOLWOQT) - sublect t9¥()DY(X)T =1, (@)

where the matrices are defined as

W= (Wg(xi,xj)), D:= diag(ng(xl,xj),...,ng(xm*,xj),> .
]

J

The matrices of sizen, x m,, L := D —W, D, andW are called the (unnormalized)
graph Laplacianthe degree matrix (diagonal), and the weighted adjaceratyixn
respectively. The constraitt(X)DW(X)T = I is imposed to prevert from map-
ping X to a subspace whose dimension is lower thdhis now straightforward to
show that the minimize# (X) of Eq. (9) satisfies the following generalized eigen-
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value problem:
LY(X)T =DW(X)TA,

whereA = diag(Ao, A1,...,As—1) iS asx s diagonal matrix listing the eigenvalues
in the non-decreasingrder, i.e., 0< Ag < A3 < --- < As. The above generalized
eigenvalue problem is equivalent to

LWw(X)T = W (X)TAny, Lw:=D7L=1-D"w. (10)

Then, theLaplacian Eigenmapmf the training datase®” is defined asHy(X) €
RSxm.

Four important remarks are in order. First, notice that threvectors otHy, (X)—
if they are transposed—form the eigenvector&gf. Second, note thaly = 0 and
the corresponding eigenvector is= R™, i.e., Liw1 = 0, because if we view the
data points as nodes amg as the edge weights of a graph, then our graghlig
connectedThis constant vectdt does not provide any information (except that the
graph is fully connected, which we know a priori) and is usslf®r the embedding.
Hence, we solve Eq. (10) for this+ 1)-dimensional embedding/(X), and use
its 2nd to the last rows as tisedimensional embeddinghy (X). Finally, D~W is
now a row-stochastic matrix (i.e., the sum of each row is isggenting a transition
probability distribution of a random walk over the graphgrde, this multiplication
of D1 to L or W from left is called therow-stochastic normalizatioriThat is the
reason why we used the subscript rw in Eq. (10), which stamdsandom walk’.

Second, instead of Eq. (10), one can consider a differemhalization of the
graph Laplacian, which is sometimes useful for numericahpotation and study-
ing its relationship to the spectral geometry (see, e.g), [is is based on the
following eigenvalue problem

1 _1 _1 1
Leymym(X)T = W(X)&mAsym:  Lsym:=D 2LD 2 =1-D 2WD 2. (11)

Both Ly andLsym are called th@ormalizedgraph Laplacians. These two are related
in the following manner:

1
q"rw(x) = (’Usym(X)D72, A = /\sym~

For more about the differences between these two normializatsee the excellent
tutorial paper on the spectral clustering [24].

Third, when the data arise from non-uniform sampling of aifiaésh embedding
via a Laplacian eigenmap may result in distortion of the rdwddgiwhen embed-
ded into the reduced space. Such sensitivity to samplingitienmay be a serious
drawback in certain cases; see [22] for some examples. tnthas was one of the
motivations for Coifman and Lafon [9, 22] to develop a depgilvariant normal-
ization of the weights on the graph before computing thelytagplacian, which we
will explain in the next subsection. This normalization Wwbeliminate sensitivity
to sampling densities of the Laplacian eigenmaps. Howdvisrnormalization was
not presented in the original definition of Laplacian eigapsi[3] and is one of two
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important distinctions between the diffusion maps and thplacian eigenmaps.
(The other is the incorporation of the eigenvalues into tlag@)nTherefore, when
we refer to Laplacian eigenmaps in this article, we standdbwpiiginal definition.
When comparing the performance of different methods in oumerical experi-
ments, we perform density-invariant normalization onlyewttomputing diffusion
maps.

Fourth, the eigenvalues of the graph Laplacians have beeiesdt extensively
for many years; e.g., [8] is a fundamental reference, whe$aiton of the graph
Laplacian is in fact.sym. They have also been applied for a variety of purposes in-
cluding our own work on characterizing neuronal dendritiéguas [38]. The eigen-
vectors of the graph Laplacians have also drawn attentioentyy from computer
science and discrete mathematics communities. See ¢.fpr fBe basic reference,
and [24] for the application to spectral clustering.

2.3 Diffusion maps

Following the work of Coifman and Lafon [9, 22], we constrtlee diffusion op-
erator onZ” as follows. First, we apply thdensity-invariant normalizatioto the
weighted adjacency matri®%/, which can be written as

W:=DwD1 (12)

Then, we apply the row-stochastic normalization as the d@ph eigenmap algo-
rithm, i.e., B o
A :=D7W, (13)

whereD is the degree matrix (diagonal) W. Instead of the graph Laplacidniy
used in the Laplacian eigenmaps, the diffusion map alguritcuses on the nor-
malized weighted adjacency matrd,. One can interpref,, as thetransition
matrix of a random walk or#2” or thediffusion operatoion 2". Then, theith power
Al,, corresponds to running such random weaditeps forward in time. The informa-
tion (i.e., a random walk) propagates more easily and quiakiong the regions of
high affinity (i.e., data points connected with the largduea ofw;) than those of
low affinity. This is essentially how we capture the local getric information in
the data. The diffusion map algorithm then performs theredagalysis

A (X)T = Ybm (X) T Apw, (14)

where the eigenvalues are sortechom-increasingrder. Thediffusion mags then
defined (with a slight abuse of notation) as

W (X) := Apm4bm (X). (15)
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It is important to point out its relationship with the Lapiae eigenmap (i¥V is used
for constructind_, instead oV in Eq. (10)):

Y (X) = WHw(X), Apm =1 —Aw.

Hence the largest eigenvaluelig= 1 and the corresponding eigenvectat isR™,
i.e.,Am1 =1 Similarly to the Laplacian eigenmaps, this constant veistaseless
for the embedding. Hence, we solve Eq. (14) for ke 1)-dimensional embedding
W(X), and use its 2nd to the last rows and the eigenvalyes- - - > As for $Hp (X)
in Eq. (15).

Two important remarks are in order here. First, one can afiogthe symmetric
version Asym := D-2WD~Z in a similar manner aksym Of Eq. (11). In order to
computetby (X), we can use either: 1) SVD @, and use the 2nd tG+ 1)st left
singular vectors; or 2) symmetric eigenvalue solverﬁ@;m, and then normalize
its 2nd to(s+ 1)st eigenvectors by the 1st eigenvecﬁﬁl corresponding to the
eigenvaluel\p =1 (i.e.,ﬂsymf)% 1=D21 ). For the details on this normalization, see
Appendix B of [20].

Second, Coifman and Lafon defined the approxintéffesion distancdetween
two data pointss; andx; in the original ambient space is simply tlie distance
between the embedded points in the diffusion space, i.e.,

Sbm (Xi,Xj) 1= || Hhwm (%) — %o (X)) | = \/kzlf\ft(ll’k(xi) — U(x)))?,

whereyi(x;) is the(k,i)th entry of the matridtbu (X) € RS*™ following the con-
vention of Eq. (1), which does not include the first eigenvett

2.4 Out-of-sample multiscale extension via geometric hanmcs

Our goal is in classifying newly obtained unlabeled teseentsles based on a clas-
sification rule learned from the labeled training ensembtesrder to make mean-
ingful inference from the training ensembles to the tesemides, we need to have
the same low-dimensional representation for all ensemblest is, we need to em-
bed test ensembles into the same reduced space as thegmansiembles. Hence,
it becomes necessary for us to extend the embedding map ¢tednpu the training
ensembles to the test ensembles. If the embedding map isGB;Aden such ex-
tension is quite simple: it suffices to expand the centerstddata matrixy =Y H
by the left singular vectorss of X, i.e.,UST\? is the extension of the test ensembles
by PCA. For a nonlinear map such as the Laplacian eigenmapshandiffusion
maps, we employ the multiscale extension scheme propog2@]irwhich is based
on “geometric harmonics” originally introduced in [22, @h&] and [10]. Let us
call this scheme GHME (geometric harmonics multiscaleresiten) for short. We
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now review the GHME scheme using our matrix-vector notatistin the previous
subsections.

The GHME scheme is an improvementtbe Nystbm extension methopko-
posed in [14, 5]. First consider the Gaussian kernel magfindd on the training
datasetZ” with the scale parameter > 0, which is different frome used in the
weight function in Eq. (7) for constructing the Laplaciageimaps and the diffu-
sion maps as follows:

Wo(X) = (wo(xi,x)) = (&7 =I%/o%) & gmoxm., (16)

SinceW, (X) is positive semi-definite, let us consider the eigenfumcégpansion
of this kernel matrix:

o]

Wy(X) =@M, @:=| : [ eR™™  M:=diagt,...,Um,). (17)
2
where the nonnegative eigenvalygs } are sorted in non-increasing order, and the
column vectors ofp", i.e., {@1,...,@m, } form an orthonormal basis fd?(.2") C

R™, and@; := (@(X1),...,@(Xm,))". Now, consider th&th eigenpair( u, @), i.e.,
Wy (X) @k = Lk@k- Theith row of this equality gives us
1 M
W(Xi) = m JZlWU(Xivxj)(»q((Xj)-

The Nystdm extension ofg from 2" toy € % is defined as
_ 1M
=— ) Wg(Y,Xj Xj)- 18
w(y) e ,Zl o (Y: X)) G(Xj) (18)

Since the eigenvectofgpy} form an orthonormal basis féf(.2"), any functiorf :=
(f(x1),..., f(xm )" € £2(Z) (e.g.,fT can be any row of the Laplacian eigenmap
W (X) or the diffusion mapHs,, (X)) can be expanded as

m,

f=3 (f.00 o

K=1
and thejth entry of both sides gives us

my

f(xj) = > (f, @) a(x;).-

k=1

Thus the Nystdm extension off from 2" toy € # can be defined as
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<f7 (pk> ak(y)

M3

f(y):=

=~
Il
e

In order to understand what we have done here, let us pluglBYjir( the righthand
side of the above equation.

BS
z
E

<
|
M3

il
o
T
=~
i
)

Wo (Y, Xj) @(X})

E
=

D) O

I

[l

i

F|

s
5
—
<

=Wy (y,)) @M taf, (19)
where we borrowed the convenient notation of MATLRE, i.e.,

Wo (Y, :) i= (W (Y, X1), - .., Wo (Y, Xm, )) € R

We observe that the range of the extension in Eq. (18) is ptiopal too. If the
ratio ||y — x;|| /o is large for allxj € 27, theng,(y) will be numerically small and
hence may not be meaningful. Hence the extension scalkould be as large as
possible. On the other hand, for large enoaglthe kernel matrisV; (X) defined in
Eqg. (16) becomes ill-conditioned, i.g1 tends to O more quickly compared to the
case of smalb. Thus the Nystim extension in (18) will blow up. Furthermore, it is
well known hat the extension range depends on the smootbhtssfunction to be
extended [22, Chap. 3], [10]. Kis fairly smooth, it can be extended far away from
the training set while it has limited extension rangé ifaries wildly on.2". We can
clearly see these problems in Eq. (19): it truly boils dowthiill-conditionedness
of Wy (X). In fact, if we can comput® 1 without blowing up, i.e.{m, = 0, then
®"M~1® =W;,(X)~! because of Eg. (17). Moreover, by setting: xj € 2" in the
righthand side of Eq. (19) recovef$x;):

Wo (Xj, 1) @TM 1O = wy (x,)Wo (X) " =ef f = f(x)),

wheree; € R™ is the jth standard basis vector R™:. In practice, howeveW; (X)

is ill-conditioned, and we need to truncaé ! to the firstp x p submatrix andp

to the firstp rows wherep satisfying 1< p < m, must be appropriately chosen. Let
Mal, @, be these truncated matrices. Then, Eq. (19) can be apprdmathout
blowup:

f(y) = W (y,:) @y M, tdpf
= Wg (Y, :)Wo,p(X)Tfa (20)

2 MATLAB is a registered trademark of The MathWorks, Inc., 3 Appli#l Drive, Natick, MA
01760-2098.
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whereWy p(X)":= @] M, 1@, is thepseudoinversef W (X) using their topp sin-
gular values and vectors. Hence, if we want to extend a lonedsional embedding
map¥ (X) = [¢a] -+ [@s]", we have

Py(y) T
Py)=1| | = {Woly,)DOpM Dy [a] -]}
Ps(y)

— {Wo(y,) DTMy T oW (X) T}

= W(X) Py M, W (,Y)
= W(X)Wq p(X)TWe (1Y),

wherews (,y) := (W (X1,Y), - ., Wo (Xm,,¥))T = Wg(y,:)T € R™L,
The GHME scheme determines this rgméf the pseudoinverse by the following:

pargmax{“1 gn}. (22)
1<k<m, \ Hk

wheren > 0 is some fixed condition number. In other worgss the largest possible
stable rank oV (X), which is bounded from above hy. Clearly, if one setg) too
large, p = m, may occur. The extensiohin Eq. (20) is well-defined om2” U %,
but it is not equal tof on the training setZ” unlessp = m, ando is set so small
thatW (X) has a stable inverse. Such a case, however, is not of ouesttezcause
setting o too small practically disconnects data points4f. In fact aso — 0,
W5 (X) — | as long as; # xj for all i # j in £, Yet observe that if the value of
o decreases, the eigenvalygs— 0 more slowly. This allows us to use largein
Eqg. (20), makingf a better approximation of on .2". Based on this observation,
the GHME iteratively searches for an extensfothat approximate$ on .2~ with
an preset error tolerange> 0 by slowly decreasing the value of the extension scale
o. The GHME scheme can be summarized as follows:

Algorithm 2.1 (The GHME of Lafon, Keller, and Coifman[20]) Suppose f is a
function defined on the training sé&t” and to be extended to a new datagét

Step 1:  Fix a condition numbey > 0 and an error tolerancg > 0. Set the ex-
tension scaler = gy for some large valuey.

Step2: Compute eigenvaludgi} and orthonormal eigenvectorSgy} of the
Gaussian kernel matrix Y(X) and expand f (on the training se¥’) in this
eigenbasis.

Step 3:  On the training se®’, approximate f by defined in Eq(20) by finding
p in Eg.(21). Then compute the approximation error

1/2
Err:= (z |<f7<pk>2> .
k>p
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If Err > p, seto «— %o and return to Step 2. Otherwise, continue.
Step 4: Using the value of p obtained in Step 3, compute thedpmoximate
extension defined in EQRO) for eachy € #':

F(y) ~ Wo (y,:) @p My dpf = wo (y, ))Wo p(X)F.

3 Earth Mover’s Distance

Once our training ensembles are embedded in a lower-dimesisspace, saR®
(normally 1< s< min(d, m,)), via the diffusion map or Laplacian eigenmaps so as
the test ensembles are via the GHME scheme as reviewed indghioys section,
we are ready to classify the latter. To do so, we need to dyaatiiscrepancy (or
measure a “distance”) between a test ensemble and eacimgraimsemble ifRS.
One of the simplest ideas such as the sum of the pairwised&aciidistances (in the
embedding space) between the data points in one ensembtbasalin the other
ensemble will not work because: 1) there may be a few ouilietisose ensembles
that ruin such a distance measure; and 2) the number of diifs fgignals) in each
ensemble may be different in general so that the simple sutimeoflistances may
lead to an erroneous label assignment.

Another idea is to use the Hausdorff distance (HD), which used by Lafon,
Keller, and Coifman as the ensemble distance measure [B@]HD between any
two ensembles?’, % C RS is defined as

du (2, %) ;= max| maxmin ||x —y||, maxmin||x — 22
H( ’ ) (ye@xeﬂf” y”’xeﬁ'l’ye?]/l yl)’ ( )

where|| - || denotes the Euclidean distanceRf As our numerical experiments in
Sec. 5 demonstrates, also as one can easily imagine fromdtfistion, the HD is
still quite sensitive to the outliers.

The above considerations have led us to adoptBheh Mover's Distance
(EMD) as a discrepancy/distance measure between ensemihiies is more ro-
bust and more suitable in our classification problems thanother measures. In
this section, we briefly review the key aspects of the EMD.

The definition of EMD is based on the solution to a discogiémal mass trans-
portation problem EMD represents the minimum cost of moving earth (or sand)
from some source locations to fill up holes at some sink loaatiIn other words,
given any two mass (or probability) distributions, one aérthcan be viewed as a
distribution of earth and the other a distribution of hoteen the EMD between the
two distributions is the minimum cost of rearranging the sismsone distribution
to obtain the other. In the continuous setting, this probieknown as thévionge-
Kantorovich optimal mass transf@roblem and has been well studied over the past
100 years (see [13] for an introductory reading on the proplé@he importance
here is that EMD can be used to measure the discrepancy betweenultidimen-
sional distributions.
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In the discrete setting, the optimal mass transfer problembe formulated as
a linear optimization problem as follows [33, 34]. Suppogewant to quantify the
discrepancy between two ensembles of signals (or featuterg? of lengths € N.
Suppose all the signals in one ensemble are groupedrirdioisters using a clus-
tering algorithm such as thé-means algorithm (see Sec. 4.1 for what we actually
use to construct a signature in our experiments; for theldethvarious clustering
algorithms, see e.g., [17, Chap. 14]) and this ensembl@iesented by a set of
cluster centers and the associated weights (member pipwieithin each cluster)
asP = {(X1,p1), -+, (Xm, Pm) }. Note that one can optionally normalize the weights
pi’s so thaty; pi = 1, which allows us to viewP as a probability distribution of the
signals inZ" overRR®. Suppose the other ensembleis represented, using the same
procedure, by a set of cluster centers and weigh@ = {(§1,01), -+, (Yn,0n)}-
SuchP andQ are called thesignaturesof the ensembles. Viewing as a source
(earth) distribution an@ as a sink (hole) distribution, we can now formulate the
discrete optimal mass transport problem leading to the EMIR aneasure of the
discrepancy between two signatureandQ.

Suppose the cost of moving one unit of mass figro §; is c(%i, y;), andfi; de-
notes the amount of mass flow frogto ¥;. There are many possibilities in defining
this cost, but we usgl/2)|[%i —; %, i.e., the half of thesquaredEuclidean distance,
which gives more preference to closely placed points tharuiual Euclidean dis-
tance between them. Then, the transportation cost is dedmed

COST(Pa Qa F) = Z z C()’Zhyj)fija
i=1j=1

whereF := [fj;] € R™". The optimal mass transfer problem seeks the ffiéwhat
transfers the maximum allowable amount of earth to fill uphtbkes with minimum
total transportation cost, i.e.,

F* = argminCOSTR,Q,F),

whereF € SC R™" means thaF must satisfy the following set of constraints:

(i) fij >0, foralli,j;
(i) Z?zlfij < pj,forall 1<i<m;
@iy ™, fij<qjforalll<j<n;and

(V) 357 fij =min (Zi”ll P q,—) :

These constraints ensure that: (i) one can only move easth Brto Q, not vice
versa; (i) the amount of earth moved frdis no more than the sum of the weights
pi; (iii) the amount of earth received &is no more than the sum of the weiglags
and (iv) the maximum allowable amount of earth is moved.

Once the optimal flowr* from P to Q is found, EMD is then defined as the total
cost normalized by the total flow:
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_ COSTPQ,F*) 337 1c%i.¥))f

EMD(PQ) = — = J _ 2=t P2 23
(RQ) itadia itayia @3)

Notice that the normalization factor is the total weightlué smaller signature due
to the constraint (iv). This normalization ensures that lEnaignatures are not
favored in the case when two signatures have different weegyhts. Furthermore,
EMD is symmetric, i.e., EMDP,Q) = EMD(Q, P) for any two distribution$®> and
Q. Notice also that each signature may consists of differantber of clusters or
“bins” in the reduced embedding space as indicatethlandn above. Since there
is no guarantee to have the same number of cluster centdrs signature for each
ensemble, EMD is more suitable for our classification pnoblempared to the
other metrics. Finally, notice that the EMD directly depgmtP andQ, which are
not uniquely determined from the ensembl&sand# . In other words, the EMD
depends on the clustering algorithm to constRiendQ. Hence, it requires care to
construct the signatures, which we will discuss in detafét. 4.1.

4 An Algorithm for Signal Ensemble Classification using
Low-Dimensional Embeddings with Earth Mover’s Distance

In this section, we will describe our proposed algorithm lssify test signal en-
sembles#!,...,#N given training signal ensembleg™,..., 2™ using a low-
dimensional embedding and the EMD as the ensemble distaeasure. Then, we
will describe how to construct appropriate signatures afeenbles in the embed-
ding space. Finally, we will discuss an important practisale, i.e., how to select
several key tuning parameters in our algorithm.

We summarize our proposed method for signal ensemble fitatsin in the
following algorithm.

Algorithm 4.1 (Signal Ensemble Classification via a Low-Dinensional Embedding and EMD)
LetZ = U{\il 2% = U'j\':l@J be the training and test ensembles, respectively.

Step 1. Training Stage using:

i. Preset alarge enough initial dimensidn< sy < min(d, m,) of the embed-
ding space.

ii. ChooseW¥ from {%bca, Hw, Fsym, WDlM}, construct a low-dimensional em-
bedding mapV : 2" c RY — R%, and embed?” into the temporary reduced
space inR%,

i. Fori =1:M, construct a signature Rusing¥(X') € R%.

iv. Determine the appropriate reduced dimensiod s< .

v. Fori=1:M, adjust the signature FAn the final reduced spadgs.

Step 2. Test Stage far:
i. Extend the learned may in Step 1 to the test ensembies
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ii. Forj=1:N, constructthe signatureQf#.

iii. ~Forj =1:N,computd EMD(P',Q))}M, and findj :=argmin_;y EMD(P',Q!).
Assign the test ensemi#é! the label of.2™'i. That is,assign a label by the
1-nearest neighbor classifier with EMD as its base distanceangre

We will now describe what are important for implementing aandning the above
algorithm for given signal ensembles.

4.1 Signature construction and embedding dimension estiioa

The above overall algorithm did not show the detailed differes between the case
when one chooséshca and the cases of the nonlinear embedding maps %g,,
Yoym, and‘.UDlM}. In this section, we will describe these differences in illeta

Let us first describe Step 1-iii, i.e., the signature comsion step. If we use
PCA as¥, then we use the standakdmeans algorithm to construct the clusters
in the topsy PCA coordinates of2"'. For theK-means algorithm, it is essential
to determine the number of clustefs for each training ensembl€ . There are
many possibilities for determining the number of optimalstérs (see e.g., [17,
Sec. 14.3.11)), out of which we use a heuristic yet simplehoetalled the “elbow”
criterion. This can be explained as follows. As we increasenumber of clusters,
the fitness (or within-cluster dissimilarity) function, igh is the sum of all point-to-
centroid distances, will decrease very rapidly at first thlemly. This will result in
a “kink”or “elbow” in the plot of the fitness function versusa number of clusters.
Hence, we choose the number of clusters at the elbow as theaheandidate for
the number of clusters to form for the given data.

On the other hand, if we use the Laplacian eigenmaps or thgsitih map as
W, then we use thelongated Kmeans ¢ékmeangalgorithm [39] to determine the
number of clusters in the signature for each training ensem'. The idea of
ekmeansvas adapted from the spectral clustering algorithm prapasd30] by
replacing the Euclidean distance with an elongated distamthe computation of
point-to-center distances. In [39], the elongated digdpedist) between two points
X,C € R% js defined as

1 cc’

e-dis(x,c) := (x—¢)"Mg(x—C), Mgy := JU=R)+aR, Roi= 7. (24)

As one can see from this definition, the e-dist considers ttmoponents of the vec-
tor x — c: 1) the radial componer®(x — c), i.e., the orthogonal projection af— ¢

onto the directior; and 2) the traversal componéht- P;) (x—c), i.e., the comple-
mentary projection oX — ¢ with respect ta. The parametesr controls the balance
between these two components: the smalldrsecomes, the more traversal direc-
tion is emphasized in the distance computation. In all ofrmumerical experiments
below, we setr = 0.2, the value recommended by the authors in [39]. The use of
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the e-dist allows us to group points lying inside a thin ektieg ellipsoid to form a
cluster, as opposed to inside a sphere.

Ekmeangxploits the geometric properties of the eigenvectorseftlaph Lapla-
cian matrix or the adjacency matrix to cluster the data artdraatically deter-
mine the number of intrinsic clusters. It starts the clustgiprocess in the top
2 eigenspace with three initialized centers: two centetsvatdifferent elongated
clusters and one at the origin of the eigenspace. If therenare than two elon-
gated clusters, the center at the origin will be dragged taster not yet accounted
for. Then the algorithm moves the clustering process todpe3teigenspace, cre-
ating three cluster centers and adds a fourth center at thm.orhis process is
repeated until no additional cluster is found. This clustgprocess stops at the top
K eigenspace if there ake (intrinsic) clusters in the data.

Step 1-iv determines the appropriate dimensofthe final reduced embedding
space. In the case 8f = Ypca, sis determined by the decay of the singular values
ok of the centered training data matrk. In fact, using PCA, we can combine
Steps 1-iii, iv, and v into a single step by first estimating #ffective dimension
s by the decay of the singular values, then construct a sigmatuR® for each
2" using theK-means algorithm with the elbow criterion. By this way, werd
need to readjust the signatures in Step 1-v. As for the L&plagigenmaps and
diffusion maps, suppose tlekmeanslgorithm finds an intrinsic dimensidg for
each training ensemblg'. This numbek; is also the intrinsic number of clusters
in that ensemble. This intrinsic number Kf clusters does not change when the
ensembleZ”’ is embedded into an eigenspace of dimension greatettharhis is
because no additional cluster other thanKhelongated clusters already accounted
for will be found even if2"' is embedded into such a larger eigenspace. Therefore,
it is natural to set the dimension of the reduced embeddiagesfor the training
ensembles?” to be the maximum of; overalli=1,...,M, i.e.,s:= max<i<m K.

Step 1-v is necessary for both the Laplacian eigenmaps andifflusion map
asW because of the following reason. The cluster centers fegrabke.2”' deter-
mined byekmeansn Step 1-iii are vectors in the toi-dimensional subspace of
the temporary reduced spaRé&. Step 1-iv determines the final dimensisof the
reduced space. In order for us to use EMD in Step 2, howeVdheatluster cen-
ters must be ifRS. Hence, to bring all cluster centers if&5, we need to re-cluster
2 "’s embedded points iR by running the standarid-means with the e-dist as its
base distance measure to reform Kaeclusters. Here, we use the previous cluster
memberships as a starting condition for the stakdaneans. At the end of this re-
clustering process, all cluster centers of the signaturedoh training ensemble are
in the final reduced spad®®.

Finally, in Step 2-i, we extend the learned map to the testrabtes. I = Ypca,
then this extension can be computed simply@y? If ¥ =Yy, Yym, Or Ybwm, then
we use the GHME Algorithm 2.1.
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4.2 On tuning parameters

Other than the dimensionality of the reduced embedding space, there are three
more tuning parameters to be determined in our proposedatiethe scales for

the weightswe (x;,x;j) defined in Eq. (7); the error tolerangein approximating

the extension of the nonlinear embedding maps; and thefduboihd n for the
condition number of the extension kernel. Clearly we havsdiect each of these
parameters wisely. We describe now how to tune these pagesnet

4.2.1 Determination ofe

The scales > 0 for Gaussian weighta/s(x,y) should be chosen so that the cor-
responding weighted graph is numerically connected. Cetadeess of the graph
guarantees the existence and uniqueness of the eigeneectesponding to the
smallest eigenvalue 0 df,, in Eg. (10) and the largest eigenvalue 14, in
Eq. (14), and therefore of the stationary distribution af Markov random walk
process on the graph. Thus, when computing diffusion magsyalue fore must
be large enough to ensure that every point in the graph isemed to at least one
other point. It is clear, however, that any affinity or dissarity between the data
points is obscured i is too large sincav, converges to 1 regardless of its argu-
ments (i.e., every data point is equally similar to any otbeint) ase increases
to infinity. One suggestion given in [24] is to chooséin the order of the mean
distance of a point to its kth nearest neighb@wherek is proportional to the log-
arithm of the number of points in the graph). In our numerageriments below,
we selecte to be the mean of the Euclidean distances from each poinsto it
nearest neighbors. We determine tkisy running cross-validation experiments on
the training setZ". We start withk = 1, run a cross-validation trial, and record the
results. Next, continue to incremeéanby Ak and run a cross-validation trial until the
classification results stop to improve. When this happerspthvious value fok,
sayk*, may already be optimal. To ensure that tkids indeed optimal, however,
we decreasé\k to |Ak/2| and search for possibly better value foaroundk* if

we setAk large. The initial size ofAk depends on the total number of the training
signalsm,. In our lip-reading example, we start witkk = 5 since the training set
is large (990< m, < 1204). However, in the classification of underwater objects
m, is small (96< m, < 120), so we start witlhk = 1. As an illustration, in our lip-
reading example below, the average valuefodetermined by this cross-validation
search method (over 100 experimental trials) turned outeté®when EMD was
used for the ensemble distance measure and 14 with HD. Thesgpproximately
1.4% to 16% of the training signals,. For the underwater object classification,
any values ok* € [2,30] with EMD andk* € [8,40] with HD produced the same
optimal classification results. Thekgs correspond to about 2% to 40% o . We
note that whelik is, say, 5% of the number of the training signals, the coordmg
Gaussian-weighted graph has approximately 5% percens efdges weighted by
a weight greater than or equal tgel, and the rest have smaller weights. In other
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Fig. 1 The largest 300 eigen- 1
values of the diffusion kernel
in one trial of the lip-reading
experimentge = 657). o8l
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words, the graph is sparse but not too sparse. With this eludig, the spectrum of
the diffusion kernel decays relatively fast. In Fig. 1 wetgtee largest 300 eigen-
values of the normalized diffusion mat, defined in Eq. (13) of one trial of the
lip-reading experiments. The value ofis 657 corresponding tlk* = 16. We see
that the eigenvalues decrease quickly. Fast decay of tletrapeimplies that any
random walk initiated on the graph converges quickly todestate and that the
diffusion distance can be approximated more accurately svismaller number of
eigenfunctions. In other words, we should be able to detestering behaviors in
the data with a small number of time stapf®r such a case. In the numerical ex-
periments in Sec. 5, we useé: 1 in the diffusion maps defined in Eq. (15). Setting
t =1 and optimizinge is certainly an easier strategy compared to the simultesigou
seeking the optimal combinationbf 1 ande although the latter may generate bet-
ter classification results. Also, there may be datasets achndome value of > 1
results in better classification than setting 1. At least for those datasets in Sec. 5,
however, having found the valueappropriate for the data while settihg= 1 was
enough for identifying grouping patterns.

We note that the value &f or k found to be optimal for the diffusion maps may
not be optimal for the Laplacian eigenmaps, and vice versas;Twe need to deter-
mine the optimak separately for each case. We could stak at1 and increment
by Ak as described above. However, if we have already found thmapvaluek*
for the diffusion map (or the Laplacian eigenmap) and if watta save the compu-
tational time to find the optimal valuefor the Laplacian eigenmap (or the diffusion
map), then we could proceed as follows. We start the searthkwi k*; then we
increasek by e.g.,Ak = 5 and proceed as described above. If the classification is
not improving, we also need to search in the opposite doectie., decreaskeby
Ak =5 and proceed (in decreasing direction) as described abower numerical
experiments below, we computed the diffusion map first. &fwee, when search-
ing for the optimak for the Laplacian eigenmap, we took the approach described i
this paragraph. The optimal valkdound when computing the Laplacian eigenmaps
(the random walk version) is 60 (EMD) and 67 (HD) for the lgading experiments
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(averaging over 100 experimental trials) while in the umgger object classifica-
tion any values ok € [12,40 (EMD) andk = 7 or 13 (HD) generated the optimal
classification results. For the symmetric version of thelaapn eigenmaps, the av-
erage optimak was 57 (EMD) and 62 (HD) for the lip-reading experiments whil
any values ok € [3,8] (EMD) andk € [1,8] (HD) were optimal for the underwater
object classification.

4.2.2 Determination ofp

When choosing a value for the error toleramcéor the approximation of the out-
of-sample extension of the nonlinear embedding maps initlgn 2.1 that is used

in Step 2-i of our Algorithm 4.1, we should keep in mind thataa#l error bound

p corresponds directly to a small extension saalas we discussed in Sec. 2.4.
Suppose we know a priori that the function we want to extenfhiily smooth

on our training ensembleg”. Then we can expect the extension to have a large
extension range. In this case, we can be greedy and setall, i.e., we want the
extensiort¥ to be very close t&/ on .2". A heuristic value to set fop is 1% of the
number of the training signals,. This gives an average of@ bound on the error

at each point where the approximation is being computed.

4.2.3 Determination ofn

To determine a cutoff thresholgl for the condition number of the Gaussian exten-
sion kernel matritV; (X) in Eq. (16), we have to keep in mind the approximation
error tolerance. If p is small, them has to be large. In addition, asincreases, the
condition number of the kernel matrix also increases. Tdiptdow largen might
get, we can take advantage of Step 1 of our Algorithm 4.1.xké the condition
number ofAny, Asym, Lrw, OF Lsym With the parameteg optimally chosen in Step 1.
Itis easy to show that the condition numbe@f(X) is proportional t if 0 =¢.
Furthermore, since we usually set the initil> € in Algorithm 2.1, the condition
number of the initial Gaussian kernel is larger tikatdence we can consider setting
n larger thark and inversely proportional tp. In our numerical experiments, we
setn = min(k,10)/p.

5 Numerical Experiments and Results

We now illustrate how our proposed algorithm can be appledignal ensemble
classification problems where the data characterizing ebjgtt consist of ensem-
bles of signals instead of a single signal. We will show twaraples of application.
The first example is classification of underwater objectsarialyzing Synthetic
Aperture Sonar (SAS) waveforms reflected from the objedie Jecond example
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is a lip-reading application in which we identify the spokeard from a sequence
of video frames extracted from a silent video segment. As \eationed earlier,
we use PCA, Laplacian eigenmaps (two different normatreti,, andLsym), and
diffusion map. We will also compare the performance of EMDhwthat of the
Hausdorff distance (HD) defined in Eq. (22) in our classifaaproblems.

5.1 Classification of underwater objects

The data in this example were provided by the Naval Surfacefaiéa Center,

Panama City (NSWC-PC), FL. They were collected from threfeifit controlled

experiments in a fresh water test pond at NSWC-PC. For defdife experiments,
see [29]. In each of the three experiments, two objects wiared — either buried
in the sand or proud — at the bottom of the pond. In each expatinone object
was a sphere made of an iron casing filled with a different ristend the other
object was a solid aluminum cylinder of different length. ilusoidal pulse was
transmitted across the floor of the pond and the reflectecsigvere recorded over
a period of time sampled at uniform rate. The data obtainetbao waveforms re-
flected from the entire area of the pond floor. Waveforms epwading to objects
are extracted and preprocessed using the algorithms deddri [26, Chap’s. 3, 4],
which is an improved version of the algorithm presented #].[Zhis yields ensem-
bles of waveforms per object, and each ensemble consisézaimgular blocks of
waveforms.

Our goal is to identify objects according to their materi@positions regardless
of their shapes. We name the sphere and the cylinder in Expatij asSjandCj,
for j = 1,2,3. SphereSl was filled with air, so we categorize it as one class with
label IA for iron-air. Sphere&? andS3 were filled with silicone oil so we group
them into another class with labks for iron-silicone. All three cylinders were of
the same diameter and of the same material, so we groupedriteeane class with
label Al for aluminum. We note, however, that the physical lengt@bfand that of
C2 were the same while that 68 was slighly shorter than the half 6fL andC2.

These waveform data are of extremely high dimension: eathptzntx; is a
rectangular block of waveforms (i.e., 2D array) of size 1ibgs-range samples)
by 600 (time samples), i.ed,= 17 x 600; see Fig. 4 for some examples. As for the
number of ensembles, we have six ensembles correspondimgs®six objectss |,
Cj, j = 1,2,3. The number of data points (blocks of waveforms) containeshch
ensemble was 8, 8, 16 @1, 2, S3, respectively while that of the three cylinders
was 32 each. We set aside one ensemble of waveforms (condisgdo one object)
as atest ensemble and trained our algorithm on the remédiaegets. For example,
when we use th&l ensemble as a test ensemble, we have, using our not&fien,
U?:l 2, % =%1 ie.,M=5andN = 1 while the number of data points (each of
which is of size 1% 600) in each ensemble isy =8,y = 16,mz = my = mg = 32,
andn; = 8. Then we applied the steps in Algorithm 4.1 to classify tst bbject.
We cycled through all six objects, that is, we repeated thssification process six



24 Linh Lieu and Naoki Saito

Table 1 Identification of Underwater Objects

Object c1 c2 C3 sl 1Y) 3
True Label Al Al Al 1A IS IS
EMD Al Al Al IS IS 1A
PCA HD Al Al Al IS IS 1A
LE EMD Al Al Al Al IS IS
w HD Al Al Al Al Al IS
LE EMD Al Al Al Al IS IS
sym HD Al Al Al Al IS IS
DM EMD Al Al Al Al IS IS
HD Al Al Al Al IS IS

times. The classification results for all six runs are showidble 1. Using EMD
coupled with nonlinear dimensionality reduction methdd#( LEy, LEsym), we
consistently and correctly classify all three cylindersbfects of clas#\l and the
spheres2 andS3 as objects of clasks. Moreover, the mistake of labeling the
sphereSl asAl is also consistent. Note that this error is expected sineeldss
IA contains only one member ensemBle We have no training data for this class
when the spher8l is left out as test data. Furthermore, note that ha8inas part of
the training data does not confuse the classification of pher®@s2 andS3 when
one of the nonlinear dimensionality reduction methods gliad. This is not the
case when PCA is used for dimensionality reduction. We viditdss more on this
phenomenon in Sec. 6 below.

Classification of the objects using HD is less consistentragrtbe different di-
mensionality reduction/embedding methods. The main re&sothis is that HD
is highly sensitive to outliers. For a closer look, let usrak#e the distribution of
the points embedded by the Laplacian eigenmap (the randdknversion) into the
lower-dimensional space. Fig. 2 shows three sets of pomtsedded into the first
three coordinates of L computed from the training data consisting of all three
cylinders and the spher&t andS3. The spher&? is first left out as test data then
embedded into the same reduced embedding space via the GEtMEs. In this
figure, blue crosses correspond to cylin@8r(classAl), green triangles correspond
to spheres3 (classlS), and red circles correspond to the unlabeled test olg§2ct
(true label isIS). Black stars are the cluster centers, i.e., the repretbagain the
signature of each object. We see that the circles (correbpgto object?) are on
average close to the triangles (corresponding to olg@ctut because of the points
along the long tail 083, the HD betweel®2 andS3 turns out to be larger than that
betweer2 andC3. The actual EMD and HD values are shown in Table 2. Note that
the dimensiors of the reduced embedding space is actually 12 not 3 in this.cas
We can see from Table 2 that the smallest EMD value @93 corresponding to
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Fig. 2 Three underwater objects in the first three\.EoordinatesC3 (crosse}, S3 (triangles,
unlabeled test obje&? (circles). Stars indicate the cluster centers. The Laplacian eigenmtisi
case was computed from the training data consisting of all thyigeders and the spheré&l and
3.

Table 2 EMD and HD values in the LE coordinates between sphere obj&tand all other
objects. k = 13 for this example)

Object C1 Cc2 C3 S1 S3
EMD 0.0070 00064 00057 00085 00053
HD 0.1917 02374 01237 01500 01684

S3 and the smallest HD value isi237 corresponding t03. Thus, EMD correctly
labels objec®2 aslS, but HD mislabelss2 asAl.

5.2 Lip reading experiment

In this section, we present our results on a simplified versibthe lip-reading
problem to illustrate how our proposed algorithm can be iadph practice. The
objective of lip reading is to train a machine to automaltjcegcognize the spoken
words from the movements of the lips captured on silent vegments (no sound
is involved). Much research effort has been devoted to ttga.alany published
algorithms involve sophisticated feature selection. is #xample, we simply per-
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Fig. 3 Examples of the preprocessed video frames used in our lip-reagpeyiments. Both the
top row and the bottom row are the subsets of the video framesispeéalk digit 'one’. Note that
the bottom row corresponds to the situation when the subjecespak’ while smiling.

Table 3 Lip-Reading total recognition errors (averaged over 1Qfeexnental trials)

PCA PCA LEw LEnw LEsym LEsym DM DM
EMD HD EMD HD EMD HD EMD HD

5.3% 94% 361% 361% 260% 276% 241% 252%

form dimensionality reduction on the sequences of images (iideo frames). We
do not extract any particular lip features from the imagdianhose in [31, 40] and
many other publications. Furthermore, the lips data we e wollected from one
speaker. It may be necessary to extract and use more soptestifeatures when
more speakers, i.e., more variations in the lips, are irachlv

We recorded a subject speaking the first five digits (‘ongfive’) ten times using
a Nikon Coolpix digital camera sampling at a rate of 60 frampes second. We
then extracted the video frames from each movie clip andhiiddllowing simple
preprocessing. First, we convert the images from color &y gcales ranging from
0to 255. Then we cropped each image to &5® pixels window around the lips to
compensate for translations. (The speaker’s nose was thaitea color marker to
facilitate automatic cropping of the video frames). Fig8rehows subsets of video
frames of two such movie clips. For each spoken digit, we oamyd selected five
video sequences from the available ten such sequences @olbertion as training
ensembles. This gave us a total of 25 video sequences aaitliagrensembles and
another 25 for test ensembles. Hence, using our notatiorex@erimental setting
foreach runis:2” =2, 27, # =2, Y1, i.e.,M =N = 25, while 30< m, n; <
63 (i.e., the number of video frames in each sequence vagimeekn 30 and 63),
and the dimension of each data point (i.e., a video frame )55 x 70.

We applied Algorithm 4.1 to classify the test video sequentée repeated the
whole process 100 times. The total misclassification ratesréging over 100 ex-
perimental trials) are shown in Table 3. Again, we see thagusMD gives smaller
recognition errors than using HD except the.Ease where the results tied. Table 3
shows high classification errors for the Laplacian eigersnapparticularly, LEy
while those of DM are at least more than 10% better. Comparditkeise nonlinear



Signal Ensemble Classification 27

Fig. 4 Selected waveforms corresponding to the spB&rgop row) and spher&3 (bottom row in
the underwater object experiment. The horizontal axis sspres time (600 time samples) whereas
the vertical axis indicates the 17 cross-range coordinates.

dimensionality reduction methods, however, PCA, i.e.,lilear method, worked
much better for this dataset, i.e.3%6 with EMD and 94% with HD.

6 Discussion and Conclusion

We have seen that PCA performed better than the local n@mlimethods in the
lip-reading experiment whereas the situation was opposttee underwater objects
classification experiment. The reason is because the dhdring patterns in the
lip-reading problem are ‘global’ whereas those in the un@¢er-objects problem
are ‘local’. To explain this in more details, suppose we veewideo sequence by
eyes. In order for us to determine what the spoken word dgtisalve need to see
how the lips move throughout the entire video sequence. Waotlcare so much
that the shape of the lips in each individual video frameighgly different from
what we have seen in the past. As long as the dynamics (omota@ments) of the
lips in this video sequence are similar to what we remembenwvauld be able to
recognize the spoken word. In other words, titagectory of the video frames in the
embedded space is decisive. Recognizing and discrimingatich trajectories is a
‘global’ pattern recognition problem. We believe that ie tieason why PCA in the
lip-reading experiment outperformed the diffusion mapd baplacian eigenmaps.

On the other hand, the sonar waveform blocks of the same ataspiite homo-
geneous. Toillustrate this, we display in Fig. 4 some setesamples of waveforms
reflected from the spheré&l andS3 in the underwater-objects experiment. Recall
that each rectangular block is viewed as one data point. Waea clearly that the
blocks belonging to sphel®l are quite different from those from sphe3@ while
our eyes can barely discern the differences between thkdlathin the same class.
Local nonlinear methods can map each class to the tightealileed’ clusters and
enhance the between-class differences compared to PCA.iSTthie reason why
these local nonlinear methods outperformed PCA for thisnpte.
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In conclusion, we have proposed an algorithm for classifyabjects that are
characterized or described by ensembles of signals usowr-dimensional embed-
ding and the Earth Mover’s Distance (EMD). Our algorithnsagt the framework
for application of EMD to such classification problems. Wednahown that EMD
is more robust to noise and hence more appropriate for digwtion of ensembles
than the Hausdorff distance.

We have provided two examples of practical application®farproposed algo-
rithm. The lip-reading application is of global-patterrtur&, therefore dimension-
ality reduction by PCA proved successful. On the other hémal classification of
underwater objects is of local-pattern nature, thus dinogiadity reduction by non-
linear local methods such as diffusion maps and Laplacigenenaps gave better
results than PCA.

We did not incorporate the discriminant information durithg training stage
explicitly in this article. For example, we have not commghtke performance of
our proposed method with the other typical classificatioatsyy, i.e., extracting
discriminant features via e.g., Local Discriminant Ba§6,[37] followed by set-
ting up a classifier, e.g., Linear Discriminant Analysis,[Chap. 4], Support Vector
Machines [17, Chap. 12], etc., on the extracted featureovectVe plan to investi-
gate the embedding techniques explicitly incorporatimgdiscriminant information
during the training stage. Some of our attempts along théecton can be found in
[26].
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