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Abstract Instead of classifying individual signals, we address classification of ob-
jects characterized by signal ensembles (i.e., collections of signals). Such necessity
arises frequently in real situations: e.g., classificationof video clips or object classi-
fication using acoustic scattering experiments to name a few. In particular, we pro-
pose an algorithm for classifying signal ensembles by bringing together well-known
techniques from various disciplines in a novel way. Our algorithm first performs the
dimensionality reduction on training ensembles using either the linear embeddings
(e.g., Principal Component Analysis (PCA), Multidimensional Scaling (MDS)) or
the nonlinear embeddings (e.g., the Laplacian eigenmap (LE), the diffusion map
(DM)). After embedding training ensembles into a lower-dimensional space, our al-
gorithm extends a given test ensemble into the trained embedding space, and then
measures the “distance” between the test ensemble and each training ensemble in
that space, and classify it using the nearest neighbor method. It turns out that the
choice of this ensemble distance measure is critical, and our algorithm adopts the
so-called Earth Mover’s Distance (EMD), a robust distance measure successfully
used in image retrieval and image registration. We will demonstrate the performance
of our algorithm using two real examples: classification of underwater objects using
multiple sonar waveforms; and classification of video clipsof digit-speaking lips.
This article also provides a concise review on the several key concepts in statistical
learning such as PCA, MDS, LE, DM, and EMD as well as the practical issues in-
cluding how to tune parameters, which will be useful for the readers interested in
numerical experiments.
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1 Introduction

Many problems in pattern recognition often require comparison between ensembles
of signals (i.e., points in a high-dimensional space) instead of comparing individual
signals. For example, in a visual speech recognition problem, two or more clips of
recorded video are compared for similar patterns. Typically a video clip consists of
a sequence of images called video frames. We can view a video frame as a point and
a video clip as an ensemble of points in the high-dimensionalimage space. Thus,
comparing two video clips is equivalent to comparing two ensembles of points in the
image space. As a second example, consider the task of identifying an object on the
ocean floor given a set of sonar waveforms reflected from the object. This requires
comparing the ensembles of waveforms reflected from the unknown object with
those reflected from known objects. Then the unknown object is identified when a
match is made.

In this article, we propose an algorithm for classifying such signal ensembles.
More specifically, letX :=

⋃M
i=1X i ⊂ Rd be a collection ofM trainingensembles

X i := {xi
1, · · · ,x

i
mi
}, i = 1, · · · ,M wheremi ∈ N is the number of signals contained

in the ensembleX i andxi
k ∈ Rd is an individual signal (a vector of lengthd). We

assume that each training ensembleX i has a unique label (or class name) amongC
possible labels. LetY :=

⋃N
j=1Y j ⊂ Rd be a collection of test (i.e., unlabeled) en-

sembles whereY j := {y j
1, · · · ,y

j
n j} is the jth test ensemble consisting ofn j signals

of lengthd. Our goal is to classify eachY j , j = 1, · · · ,N, to one of the possibleC
classes given the training ensemblesX . Note that this task is different from classi-
fying each signaly j

k ∈ Y individually.
Our proposed algorithm consists of two main stages. The first(or training) stage

performs the dimensionality reduction without losing important features of the train-
ing ensembles followed by constructing a compact representation called asignature
— a generalized version of a histogram — that well representsan essence of the
ensemble in the reduced space. The second (or classification) stage embeds a given
test ensemble into the reduced space obtained in the first stage followed by classify-
ing it to the label of the training ensemble whose signature is most similar to that of
the test ensemble. Here how to define the similarity or the distance measure between
signatures will be the key issue as we will discuss below.

1.1 Dimensionality reduction

Let us now discuss the first stage in more details. The dimensionality reduction
of the input data is necessary because modern technologies often generate data of
extremely high dimension. For example, a small 128× 128 gray-scale image has
dimensiond = 16384. Such high dimensionality makes data analysis inefficient and
inaccurate. Fortunately, the data that we encounter often have low intrinsic dimen-
sionality. For example, consider the set of all 128×128 gray-scale images taken of
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an object under fixed lighting by a moving camera. This is a subset ofR16384 pos-
sessing the natural structure of a low-dimensional manifold with its dimensionality
defined by the degrees of freedom of the camera [3]. In short, it is desirable and in
fact indispensable to find an effective low-dimensional representation of the data for
the task at hand.

Perhaps, the most well-known techniques are Principal Component Analysis
(PCA) also known as Karhunen-Loève Transform (KLT) [19, Chap. 8], [17, Sec. 14.5],
and Multidimensional Scaling (MDS) [7], [19, Chap. 14], [17, Sec. 14.8]. Despite
their shortcomings (e.g., inability to capturelocal geometric information), they have
been the mainstay of dimensionality reduction. They have been applied to a variety
of applications including human face characterization [18, 35], pose estimation of
3D objects from image sequences [28], to name only a few; see also [17, Sec. 14.5]
for more examples.

Many nonlinear methods for dimensionality reduction have been proposed in
order to improve the shortcomings of PCA/MDS; see e.g., [32,12, 41] for some
specific proposals and [25] for a comparative review on many such techniques. Un-
like classical methods such as PCA and MDS, nonlinear methods in general offer
the advantage of preserving local geometry while achievingdimensionality reduc-
tion. Providing the example of a moving camera in the paragraph above for moti-
vation, Belkin and Niyogi [2, 3, 4] were among the group of scientists who pro-
posed a nonlinear dimensionality reduction algorithm thatexplicitly considers the
manifold structure that may very well be the intrinsic geometry of the data. They
proposed theLaplacian eigenmap(LE): an embedding of data into a reduced space
spanned by the eigenvectors of the graph Laplacian defined ona similarity graph
constructed from the training data while preserving the local geometry of the data.
If data arise from non-uniform sampling of a manifold, however, embedding via a
Laplacian eigenmap may result in distortion of the manifoldwhen embedded into
the reduced space (see [22] for some examples). Sensitivityto sampling densities
may be a serious drawback in certain cases. For this reason, Coifman and Lafon
[9, 22] proposed a density-invariant normalization of the weights on the graph be-
fore computing the graph Laplacian. This would eliminate sensitivity to sampling
densities of the Laplacian eigenmaps. Furthermore, the authors defineddiffusion
mapsfrom the eigenvalues and eigenvectors of the diffusion operator (defined in
Eq. (14) below) and provided an intuitive interpretation ofhow point clustering in
a diffusion coordinate system is linked to a Markov random walk on the weighted
graph; see e.g., [21] for the details.

In this article, we will particularly focus on PCA, MDS, Laplacian eigenmaps,
and diffusion maps as our dimensionality reduction methodsand compare their per-
formance.
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1.2 Nearest neighbor classification and its base distance measure

The final step of the second stage of our proposed algorithm isto actually clas-
sify each test ensemble into one of the possible classes by comparing its signature
with those of the training ensembles computed in the first stage. The label of the
training ensemble whose signature is “closest” to that of a given test ensemble is
assigned to it. In other words, our algorithm adopts the so-calledk-nearest neighbor
(k-NN) classifier withk = 1 on the signatures in the reduced embedding space. The
k-NN classifier has been quite successful in many classification problems despite
its simplicity; see e.g., [17, Sec. 13.3] for the details. Although our algorithm can
easily accommodate a different value ofk > 1, we will stick withk = 1 in this arti-
cle mainly because: 1) choosing the optimalk requires a relatively large number of
training ensembles; and 2) a famous result of Cover and Hart [11] claims that the
error rate of the 1-NN classifier is never more than twice the Bayes (i.e., optimal)
rate asymptotically.

The more important issue in this second stage is the choice ofthe base similarity
or distance measure for the nearest neighbor classifier. There are many such mea-
sures for comparing given two signatures: e.g., the usual Euclidean distance, the
Hellinger distance, the Kullback-Leibler divergence, etc.; see [1] for the review of
many of these distances. The most robust one that is also mostsuitable for our prob-
lem turns out to be the so-calledEarth Mover’s Distance(EMD), which has been
successfully applied to many practical problems includingimage retrieval from a
large image database [33, 34], image registration and warping [16], to name a few.
To the best of our knowledge, however, using EMD for classification of objects
characterized by signal ensembles has not been addressed byothers. In our case,
each signature may consists of different number of clustersor “bins” in the reduced
embedding space. Hence, the conventional distance measures such as the Euclidean
distance, the Hellinger distance, etc., are not suitable for our classification problem.

1.3 Related Works

In this subsection, we will briefly describe two works most related to ours. In [42],
the authors presented a method to characterize signal ensembles using various prob-
abilistic distance measures in the reproducing kernel Hilbert space (RKHS). First,
the signal ensembles are mapped to an RKHS via a nonlinear mapusing either a
polynomial kernel or the Gaussian kernel. Then the probabilistic distance measures
(e.g., the Bhattacharyya distance, the Kullback-Leibler divergence, the Chernoff dis-
tance, etc.) are computed in the RKHS space to determine the similarities between
signal ensembles. Our proposed method and [42] share the common objective of
classifying signal ensembles. Other than using a nonlinearmapping to transform
the data from its original space, however, our algorithm and[42] are two completely
different approaches. For example, the approach of [42] assumes that the data after
mapped to an RKHS obey the normal (or Gaussian) distribution, and they proceed to
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estimate the parameters (the mean vector and the covariancematrix) of the normal
distribution. Such an assumption is too strong and cannot beguaranteed in practice
in our opinion even if one finds a good nonlinear kernel function.

In [20], Lafon, Keller, and Coifman utilized diffusion mapsand the out-of-sample
extension scheme for signal ensemble matching problems. Our proposed algorithm
owes them quite a bit: we too use diffusion maps and their out-of-sample exten-
sion scheme, which will be reviewed in Sec. 2.4 in detail. An important differ-
ence between our algorithm and theirs, however, is the use ofEMD as the simi-
larity/distance measure instead of the Hausdorff distance(HD) they adopted; see
Eq. (22) for the definition of HD and Sec. 3 for the detailed discussion. We also
note that the techniques we employ in the signature construction stage for EMD-
based classification is not limited to the framework of the diffusion maps; in fact,
we also use the Laplacian eigenmaps and PCA in our numerical experiments be-
low. Furthermore, the advantage of EMD over HD is its robustness to outliers. As
we will see in Sec. 5 below, HD is very sensitive to outliers. In contrast, the EMD
between the signatures measures the differences between the distributions of points
within the reduced space. Therefore it is less affected by outliers, which leads to
more reliable results.

1.4 Article Organization

In Section 2, we will review the basics of the particular low-dimensional embedding
techniques for dimensionality reduction, i.e., Multidimensional Scaling/Principal
Component Analysis, the Laplacian eigenmaps, and the diffusion maps. Section 3
reviews the key player in our proposed algorithm: the Earth Mover’s Distance. Sec-
tion 4 describes our proposed algorithm for signal ensembleclassification in detail
including the practical issues such as the tuning parameterselection that are im-
portant to successfully embed high-dimensional signals into the lower dimensional
spaces using the diffusion maps/Laplacian eigenmaps. Section 5 describes the re-
sults of our numerical experiments on two real datasets: underwater object classifi-
cation using acoustic signals and classification of video clips of digit-speaking lips.
Finally, we will conclude in Section 6 with discussion.

2 Dimensionality Reduction/Low-Dimensional Embeddings

In this section, we will review the embeddings of high-dimensional data into a low-
dimensional space using MDS/PCA, Laplacian eigenmaps, anddiffusion maps and
discuss their properties that allow us to achieve meaningful dimensionality reduction
as well as their similarity and difference. We will also review an algorithm proposed
in [20] for extending these embedding maps from training data to test data.
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First of all, letX = {x1, · · · ,xm⋆} ⊂ Rd be a set of the available training data
points (or signals). Note that using the notations defined inIntroduction, the total
number of training data pointsm⋆ := ∑M

i=1mi . In this article, we assume the finite
number of data points both for training and test signals. Since X ⊂ Rd, we can
define a natural dissimilarity measureδ that gives a sense of affinity between any
two data points inX . The usual Euclidean distance is most commonly used asδ
although there are many other possibilities. LetX be a data matrix of sized×m⋆

(i.e., each column vector is a training signal)1, and letΨ : X ⊂ Rm⋆ → Rs be an
embedding map from high to low dimensional spaces where 1≤ s≪min(d,m⋆) is
the reduced dimension. With a slight abuse of notation, letΨ(X) denote a matrix of
embedded points ofX in Rs, i.e.,

Ψ(X) := (Ψ(x1), . . . ,Ψ(xm⋆)) =




ψT
1
...

ψT
s


=




ψ1(x1) . . . ψ1(xm⋆)
...

...
ψs(x1) . . . ψs(xm⋆)


 ∈ Rs×m⋆ . (1)

2.1 Multidimensional Scaling and Principal Component Analysis

Multidimensional Scaling (MDS) [7], [19, Chap. 14], [17, Sec. 14.8] seeks a low-
dimensional embedding that minimizes the following quantity:

JMDS(Ψ) :=
m⋆

∑
i=1

m⋆

∑
j=i

(δ (xi ,x j)−δ (Ψ(xi),Ψ(x j)))
2 , (2)

whereδ (·, ·) is the “distance” between the two points in the appropriate Euclidean
space. In other words, MDS seeks a low-dimensional representation of the input
data that preserves the pairwise distances as well as possible. Although it is possible
to use any distance measures (i.e., metric) asδ , the most common choice by far is
the Euclidean distance, e.g.,δ (xi ,x j) = ‖xi − x j‖ where‖ · ‖ is the ℓ2-norm. We
note that the embedding minimizingJMDS could be nonlinear in general.

Instead of using the distance or dissimilarity, it is also possible to use the simi-
larity among the data points. If the similarity is defined by the centered correlation
as

α(xi ,x j) := (xi−x)T(x j −x), x :=
1

m⋆

m⋆

∑
i=1

xi , (3)

then instead of Eq. (2) one can consider the embedding minimizing the following

JCS(Ψ) :=
m⋆

∑
i=1

m⋆

∑
j=i

(α(xi ,x j)−α (Ψ(xi),Ψ(x j)))
2 . (4)

1 In the statistics literature, the data matrix is often defined asthe transpose of our definition, i.e.,
each row vector is a training signal.
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This is calledClassical MDSor Classical Scaling(CS). Using the matrix-vector
notation, and let̃X be the centered data matrix, i.e., the mean of the column vectors
of X is subtracted from each column ofX, which can be written as̃X = XH where
H := I−11T/m⋆ is the centering matrix of sizem⋆×m⋆ and1 := (1, . . . ,1)T ∈Rm⋆ .
LetΨ̃(X) :=Ψ(X)H. (Note that if we assumeΨ is a linear map, theñΨ(X) =Ψ(X̃),
but let us proceed without assuming this linearity now.) Then, Eq. (4) can be written
as

JCS(Ψ) =
∥∥∥X̃T X̃−Ψ̃(X)TΨ̃(X)

∥∥∥
2

F
, (5)

where‖ · ‖F is the Frobenius norm. Since rank(Ψ(X)) = s and rank(Ψ̃(X)) = s−
1, the minimization ofJCS(Ψ) leads toΨ̃(X)TΨ̃(X) should be the best rank(s−
1)-approximation ofX̃T X̃. Let X̃ = UΣVT be the singular value decomposition of
X̃. Then,X̃T X̃ = VΣTΣVT . Hence, the best rank-(s−1) approximation ofX̃T X̃ is
∑s−1

k=1 σkvkvT
k whereσk are sorted in the non-increasing order. This implies that

Ψ̃(X) =




σ1vT
1

...
σs−1vT

s−1


= Σs−1V

T
s−1,

whereΣs−1 = diag(σ1, . . . ,σs−1) andVs−1 = (v1, . . . ,vs−1). However, because1∈
Rm⋆ is an eigenvector of̃X corresponding to the eigenvalue 0 (this can be easily
seen fromH1 = 0), the mean of the column vectors of the matrixΣkVT

k is 0 as
long asσk 	 0 i.e.,k≤ rank(X̃) becauseVT

k 1 = 0. In other words,ΣkVT
k is already

centered for each suchk. This also implies that we can setΨ(X) = ΣsVT
s as our

s-dimensional embedding as long as 1≤ s≤ rank(X̃), which is usually the case
sinces≪ min(d,m⋆) and the training signals normally linearly independent, i.e.,
rank(X̃) = min(d,m⋆)−1.

Now it is clear that the classical scaling is equivalent to the popular Principal
Component Analysis (PCA), which was pointed out originallyby [15]; see also [19,
Sec. 14.3], [7, Sec. 24.1]. Since the firstsPCA basis vectors are the eigenvectors of
the sample covariance matrix̃XX̃T/m⋆ corresponding to the largests eigenvalues,
these are the firsts column vectors ofU , which formUs. Now, from the SVD of
X̃, we haveX̃Vs = UsΣs or equivalentlyUs = X̃VsΣ−1

s . Now, the firsts principal
component of the centered data matrixX̃ is simply the expansion of̃X with respect
to Us. Hence, those principal components (or the expansion coefficients) are

UT
s X̃ = Σ−1

s VT
s X̃T X̃ =

[
Σs|Os×(m⋆−s)

]
VT = ΣsV

T
s .

In other words, this is exactly the same as CS. Hence, we use the term PCA inter-
changeably with CS or classical MDS in this article, and define

ΨPCA(X) := ΣsV
T
s , XH = UΣVT . (6)
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One of the major drawbacks of PCA and CS is their inability to incorporatelocal
geometric information. This is clear from Eq. (3), which gives a small value even if
xi andx j are very close as long asxi−x andx j −x are almost perpendicular.

2.2 Laplacian eigenmaps

Unlike PCA/CS, Laplacian eigenmaps [2, 3] incorporatelocal geometric informa-
tion in the ambient spaceRd when constructing a low-dimensional embedding. To
explain this more precisely, let us define the weight function w(xi ,x j). A canonical
example of this weight function is the Gaussian:

wε(xi ,x j) := e−(δ (xi ,x j )/ε)2
, (7)

whereε > 0 is the scale parameter andδ (·, ·) is an appropriate metric in the original
ambient spaceRd. Although there are other choices, we will use the Euclideandis-
tance (i.e.,ℓ2-norm) asδ throughout this article. Such a weight functionwε defines
the notion of a local neighborhood at each pointx ∈X via the affinity between
x and other points inX , and the value of the scale parameterε specifies the size
of this neighborhood. Moreover, as explained in [3], when the datasetX approx-
imately lies on a lower-dimensional manifold inRd, using the weightswε on the
graph constructed from the data points corresponds to an approximation of the heat
kernel on this manifold. We also note that choosing the appropriate value ofε for a
given training datasetX is quite important yet difficult in practice. We will discuss
more about it in Sec. 4.2.

Now, we seek an embedding mapΨ that minimizes the following objective func-
tion

JLE(Ψ) :=
m⋆

∑
i=1

m⋆

∑
j=1
‖Ψ(xi)−Ψ(x j)‖

2wε(xi ,x j). (8)

Using the matrix-vector notation, this leads to the following optimization problem:

min
Ψ(X)∈Rs×m⋆

tr
(
Ψ(X)LΨ(X)T) subject toΨ(X)DΨ(X)T = I , (9)

where the matrices are defined as

W := (wε(xi ,x j)) , D := diag

(

∑
j

wε(x1,x j), . . . ,∑
j

wε(xm⋆ ,x j),

)
.

The matrices of sizem⋆×m⋆, L := D−W, D, andW are called the (unnormalized)
graph Laplacian, the degree matrix (diagonal), and the weighted adjacency matrix,
respectively. The constraintΨ(X)DΨ(X)T = I is imposed to preventΨ from map-
ping X to a subspace whose dimension is lower thans. It is now straightforward to
show that the minimizerΨ(X) of Eq. (9) satisfies the following generalized eigen-
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value problem:
LΨ(X)T = DΨ(X)TΛ ,

whereΛ = diag(λ0,λ1, . . . ,λs−1) is a s× s diagonal matrix listing the eigenvalues
in the non-decreasingorder, i.e., 0≤ λ0 ≤ λ1 ≤ ·· · ≤ λs. The above generalized
eigenvalue problem is equivalent to

LrwΨrw(X)T = Ψrw(X)TΛrw, Lrw := D−1L = I −D−1W. (10)

Then, theLaplacian Eigenmapof the training datasetX is defined asΨrw(X) ∈
Rs×m⋆ .

Four important remarks are in order. First, notice that the row vectors ofΨrw(X)—
if they are transposed—form the eigenvectors ofLrw. Second, note thatλ0 = 0 and
the corresponding eigenvector is1 ∈ Rm⋆ , i.e., Lrw1 = 0, because if we view the
data points as nodes andwε as the edge weights of a graph, then our graph isfully
connected. This constant vector1 does not provide any information (except that the
graph is fully connected, which we know a priori) and is useless for the embedding.
Hence, we solve Eq. (10) for the(s+ 1)-dimensional embeddingΨ(X), and use
its 2nd to the last rows as thes-dimensional embeddingΨrw(X). Finally, D−1W is
now a row-stochastic matrix (i.e., the sum of each row is 1, representing a transition
probability distribution of a random walk over the graph). Hence, this multiplication
of D−1 to L or W from left is called therow-stochastic normalization. That is the
reason why we used the subscript rw in Eq. (10), which stands for ‘random walk’.

Second, instead of Eq. (10), one can consider a different normalization of the
graph Laplacian, which is sometimes useful for numerical computation and study-
ing its relationship to the spectral geometry (see, e.g., [8]). This is based on the
following eigenvalue problem

LsymΨsym(X)T = Ψ(X)T
symΛsym, Lsym := D−

1
2 LD−

1
2 = I −D−

1
2WD−

1
2 . (11)

BothLrw andLsym are called thenormalizedgraph Laplacians. These two are related
in the following manner:

Ψrw(X) = Ψsym(X)D−
1
2 , Λrw = Λsym.

For more about the differences between these two normalizations, see the excellent
tutorial paper on the spectral clustering [24].

Third, when the data arise from non-uniform sampling of a manifold, embedding
via a Laplacian eigenmap may result in distortion of the manifold when embed-
ded into the reduced space. Such sensitivity to sampling densities may be a serious
drawback in certain cases; see [22] for some examples. In fact, this was one of the
motivations for Coifman and Lafon [9, 22] to develop a density-invariant normal-
ization of the weights on the graph before computing the graph Laplacian, which we
will explain in the next subsection. This normalization would eliminate sensitivity
to sampling densities of the Laplacian eigenmaps. However,this normalization was
not presented in the original definition of Laplacian eigenmaps [3] and is one of two
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important distinctions between the diffusion maps and the Laplacian eigenmaps.
(The other is the incorporation of the eigenvalues into the map). Therefore, when
we refer to Laplacian eigenmaps in this article, we stand by its original definition.
When comparing the performance of different methods in our numerical experi-
ments, we perform density-invariant normalization only when computing diffusion
maps.

Fourth, the eigenvalues of the graph Laplacians have been studied extensively
for many years; e.g., [8] is a fundamental reference, whose definition of the graph
Laplacian is in factLsym. They have also been applied for a variety of purposes in-
cluding our own work on characterizing neuronal dendrite patterns [38]. The eigen-
vectors of the graph Laplacians have also drawn attention recently from computer
science and discrete mathematics communities. See e.g., [6] for the basic reference,
and [24] for the application to spectral clustering.

2.3 Diffusion maps

Following the work of Coifman and Lafon [9, 22], we constructthe diffusion op-
erator onX as follows. First, we apply thedensity-invariant normalizationto the
weighted adjacency matrixW, which can be written as

W̃ := D−1WD−1. (12)

Then, we apply the row-stochastic normalization as the Laplacian eigenmap algo-
rithm, i.e.,

Ãrw := D̃−1W̃, (13)

whereD̃ is the degree matrix (diagonal) of̃W. Instead of the graph LaplacianLrw

used in the Laplacian eigenmaps, the diffusion map algorithm focuses on the nor-
malized weighted adjacency matrix̃Arw. One can interpret̃Arw as thetransition
matrixof a random walk onX or thediffusion operatoronX . Then, thetth power
Ãt

rw corresponds to running such random walkt steps forward in time. The informa-
tion (i.e., a random walk) propagates more easily and quickly among the regions of
high affinity (i.e., data points connected with the larger values ofwε ) than those of
low affinity. This is essentially how we capture the local geometric information in
the data. The diffusion map algorithm then performs the eigenanalysis

ÃrwΨDM(X)T = ΨDM(X)TΛDM , (14)

where the eigenvalues are sorted innon-increasingorder. Thediffusion mapis then
defined (with a slight abuse of notation) as

Ψ t
DM(X) := Λ t

DMΨDM(X). (15)
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It is important to point out its relationship with the Laplacian eigenmap (if̃W is used
for constructingLrw instead ofW in Eq. (10)):

Ψ1
DM(X) = Ψrw(X), ΛDM = I −Λrw.

Hence the largest eigenvalue isλ0 = 1 and the corresponding eigenvector is1∈Rm⋆ ,
i.e., Ãrw1 = 1. Similarly to the Laplacian eigenmaps, this constant vector is useless
for the embedding. Hence, we solve Eq. (14) for the(s+1)-dimensional embedding
Ψ(X), and use its 2nd to the last rows and the eigenvaluesλ1≥ ·· · ≥ λs for ΨDM(X)
in Eq. (15).

Two important remarks are in order here. First, one can also define the symmetric
versionÃsym := D̃−

1
2W̃D̃−

1
2 in a similar manner asLsym of Eq. (11). In order to

computeΨDM(X), we can use either: 1) SVD of̃Arw and use the 2nd to(s+1)st left
singular vectors; or 2) symmetric eigenvalue solver forÃsym, and then normalize

its 2nd to(s+ 1)st eigenvectors by the 1st eigenvectorD̃
1
2 1 corresponding to the

eigenvalueλ0 = 1 (i.e.,ÃsymD̃
1
2 1= D̃

1
2 1 ). For the details on this normalization, see

Appendix B of [20].
Second, Coifman and Lafon defined the approximatediffusion distancebetween

two data pointsxi andx j in the original ambient space is simply theℓ2 distance
between the embedded points in the diffusion space, i.e.,

δ t
DM(xi ,x j) := ‖Ψ t

DM(xi)−Ψ t
DM(x j)‖=

√
s

∑
k=1

λ 2t
k (ψk(xi)−ψk(x j))2,

whereψk(xi) is the(k, i)th entry of the matrixΨDM(X) ∈ Rs×m⋆ following the con-
vention of Eq. (1), which does not include the first eigenvector 1.

2.4 Out-of-sample multiscale extension via geometric harmonics

Our goal is in classifying newly obtained unlabeled test ensembles based on a clas-
sification rule learned from the labeled training ensembles. In order to make mean-
ingful inference from the training ensembles to the test ensembles, we need to have
the same low-dimensional representation for all ensembles. That is, we need to em-
bed test ensembles into the same reduced space as the training ensembles. Hence,
it becomes necessary for us to extend the embedding map computed on the training
ensembles to the test ensembles. If the embedding map is PCA/CS, then such ex-
tension is quite simple: it suffices to expand the centered test data matrix̃Y = YH
by the left singular vectorsUs of X̃, i.e.,UT

s Ỹ is the extension of the test ensembles
by PCA. For a nonlinear map such as the Laplacian eigenmaps and the diffusion
maps, we employ the multiscale extension scheme proposed in[20], which is based
on “geometric harmonics” originally introduced in [22, Chap. 3] and [10]. Let us
call this scheme GHME (geometric harmonics multiscale extension) for short. We
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now review the GHME scheme using our matrix-vector notationas in the previous
subsections.

The GHME scheme is an improvement ofthe Nystr̈om extension methodpro-
posed in [14, 5]. First consider the Gaussian kernel matrix defined on the training
datasetX with the scale parameterσ > 0, which is different fromε used in the
weight function in Eq. (7) for constructing the Laplacian eigenmaps and the diffu-
sion maps as follows:

Wσ (X) := (wσ (xi ,x j)) =
(

e−‖xi−x j‖
2/σ2

)
∈ Rm⋆×m⋆ . (16)

SinceWσ (X) is positive semi-definite, let us consider the eigenfunction expansion
of this kernel matrix:

Wσ (X) = ΦTMΦ , Φ :=




φT
1
...

φT
m⋆


 ∈ Rm⋆×m⋆ , M := diag(µ1, . . . ,µm⋆). (17)

where the nonnegative eigenvalues{µ j} are sorted in non-increasing order, and the
column vectors ofΦT , i.e.,{φ1, . . . ,φm⋆} form an orthonormal basis forℓ2(X ) ⊂
Rm⋆ , andφ i := (φi(x1), . . . ,φi(xm⋆))

T . Now, consider thekth eigenpair(µk,φ k), i.e.,
Wσ (X)φ k = µkφ k. Theith row of this equality gives us

φk(xi) =
1
µk

m⋆

∑
j=1

wσ (xi ,x j)φk(x j).

The Nystr̈om extension ofφ k from X to y ∈ Y is defined as

φ k(y) :=
1
µk

m⋆

∑
j=1

wσ (y,x j)φk(x j). (18)

Since the eigenvectors{φ k} form an orthonormal basis forℓ2(X ), any functionf :=
( f (x1), . . . , f (xm⋆))

T ∈ ℓ2(X ) (e.g.,fT can be any row of the Laplacian eigenmap
Ψrw(X) or the diffusion mapΨ t

DM(X)) can be expanded as

f =
m⋆

∑
k=1

〈f,φ k〉φ k,

and thejth entry of both sides gives us

f (x j) =
m⋆

∑
k=1

〈f,φ k〉φk(x j).

Thus the Nystr̈om extension off from X to y ∈ Y can be defined as
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f (y) :=
m⋆

∑
k=1

〈f,φ k〉φ k(y).

In order to understand what we have done here, let us plug Eq. (18) in the righthand
side of the above equation.

f (y) =
m⋆

∑
k=1

〈f,φ k〉

µk

m⋆

∑
j=1

wσ (y,x j)φk(x j)

=
m⋆

∑
k=1

φT
k f

µk
wσ (y, :)φk

= wσ (y, :)ΦTM−1Φ f, (19)

where we borrowed the convenient notation of MATLABR© 2, i.e.,

wσ (y, :) := (wσ (y,x1), . . . ,wσ (y,xm⋆)) ∈ R1×m⋆

.
We observe that the range of the extension in Eq. (18) is proportional toσ . If the

ratio ‖y−x j‖/σ is large for allx j ∈X , thenφ k(y) will be numerically small and
hence may not be meaningful. Hence the extension scaleσ should be as large as
possible. On the other hand, for large enoughσ , the kernel matrixWσ (X) defined in
Eq. (16) becomes ill-conditioned, i.e.,µk tends to 0 more quickly compared to the
case of smallσ . Thus the Nystr̈om extension in (18) will blow up. Furthermore, it is
well known hat the extension range depends on the smoothnessof the function to be
extended [22, Chap. 3], [10]. Iff is fairly smooth, it can be extended far away from
the training set while it has limited extension range iff varies wildly onX . We can
clearly see these problems in Eq. (19): it truly boils down tothe ill-conditionedness
of Wσ (X). In fact, if we can computeM−1 without blowing up, i.e.,µm⋆ 	 0, then
ΦTM−1Φ =Wσ (X)−1 because of Eq. (17). Moreover, by settingy = x j ∈X in the
righthand side of Eq. (19) recoversf (x j):

wσ (x j , :)ΦTM−1Φ f = wσ (x j , :)Wσ (X)−1f = eT
j f = f (x j),

whereej ∈Rm⋆ is the jth standard basis vector inRm⋆ . In practice, however,Wσ (X)
is ill-conditioned, and we need to truncateM−1 to the firstp× p submatrix andΦ
to the firstp rows wherep satisfying 1≤ p < m⋆ must be appropriately chosen. Let
M−1

p , Φp be these truncated matrices. Then, Eq. (19) can be approximated without
blowup:

f (y) ≈ wσ (y, :)ΦT
p M−1

p Φpf

= wσ (y, :)Wσ ,p(X)†f, (20)

2 MATLAB is a registered trademark of The MathWorks, Inc., 3 AppleHill Drive, Natick, MA
01760-2098.
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whereWσ ,p(X)† := ΦT
p M−1

p Φp is thepseudoinverseof Wσ (X) using their topp sin-
gular values and vectors. Hence, if we want to extend a low-dimensional embedding
mapΨ(X) = [ψ1| · · · |ψs]

T , we have

Ψ(y) =




ψ1(y)
...

ψs(y)


 ≈

{
wσ (y, :)ΦT

p M−1
p Φp[ψ1| · · · |ψs]

}T

=
{

wσ (y, :)ΦT
p M−1

p ΦpΨ(X)T}T

= Ψ(X)ΦT
p M−1

p Φpwσ (:,y)

= Ψ(X)Wσ ,p(X)†wσ (:,y),

wherewσ (:,y) := (wσ (x1,y), . . . ,wσ (xm⋆ ,y))T = wσ (y, :)T ∈ Rm⋆×1.
The GHME scheme determines this rankpof the pseudoinverse by the following:

p = argmax
1≤k≤m⋆

{
µ1

µk
≤ η

}
. (21)

whereη > 0 is some fixed condition number. In other words,p is the largest possible
stable rank ofWσ (X), which is bounded from above byη . Clearly, if one setsη too
large, p = m⋆ may occur. The extensionf in Eq. (20) is well-defined onX ∪Y ,
but it is not equal tof on the training setX unlessp = m⋆ andσ is set so small
thatWσ (X) has a stable inverse. Such a case, however, is not of our interest because
settingσ too small practically disconnects data points inX . In fact asσ → 0,
Wσ (X)→ I as long asxi 6= x j for all i 6= j in X . Yet observe that if the value of
σ decreases, the eigenvaluesµk→ 0 more slowly. This allows us to use largerp in
Eq. (20), makingf a better approximation off on X . Based on this observation,
the GHME iteratively searches for an extensionf that approximatesf on X with
an preset error toleranceρ > 0 by slowly decreasing the value of the extension scale
σ . The GHME scheme can be summarized as follows:

Algorithm 2.1 (The GHME of Lafon, Keller, and Coifman[20]) Suppose f is a
function defined on the training setX and to be extended to a new datasetY .

Step 1: Fix a condition numberη > 0 and an error toleranceρ > 0. Set the ex-
tension scaleσ = σ0 for some large valueσ0.

Step 2: Compute eigenvalues{µk} and orthonormal eigenvectors{φ k} of the
Gaussian kernel matrix Wσ (X) and expand f (on the training setX ) in this
eigenbasis.

Step 3: On the training setX , approximate f byf defined in Eq.(20) by finding
p in Eq.(21). Then compute the approximation error

Err :=

(

∑
k>p

| 〈 f ,φk〉 |
2

)1/2

.
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If Err > ρ , setσ ← 1
2σ and return to Step 2. Otherwise, continue.

Step 4: Using the value of p obtained in Step 3, compute the final approximate
extension defined in Eq.(20) for eachy ∈ Y :

f (y)≈ wσ (y, :)ΦT
p M−1

p Φpf = wσ (y, :)Wσ ,p(X)†f.

3 Earth Mover’s Distance

Once our training ensembles are embedded in a lower-dimensional space, sayRs

(normally 1≤ s≪min(d,m⋆)), via the diffusion map or Laplacian eigenmaps so as
the test ensembles are via the GHME scheme as reviewed in the previous section,
we are ready to classify the latter. To do so, we need to quantify a discrepancy (or
measure a “distance”) between a test ensemble and each training ensemble inRs.
One of the simplest ideas such as the sum of the pairwise Euclidean distances (in the
embedding space) between the data points in one ensemble andthose in the other
ensemble will not work because: 1) there may be a few outliersin those ensembles
that ruin such a distance measure; and 2) the number of data points (signals) in each
ensemble may be different in general so that the simple sum ofthe distances may
lead to an erroneous label assignment.

Another idea is to use the Hausdorff distance (HD), which wasused by Lafon,
Keller, and Coifman as the ensemble distance measure [20]. The HD between any
two ensemblesX ,Y ⊂ Rs is defined as

dH(X ,Y ) := max

(
max
y∈Y

min
x∈X

‖x−y‖,max
x∈X

min
y∈Y

‖x−y‖
)

, (22)

where‖ · ‖ denotes the Euclidean distance inRs. As our numerical experiments in
Sec. 5 demonstrates, also as one can easily imagine from thisdefinition, the HD is
still quite sensitive to the outliers.

The above considerations have led us to adopt theEarth Mover’s Distance
(EMD) as a discrepancy/distance measure between ensembles, which is more ro-
bust and more suitable in our classification problems than the other measures. In
this section, we briefly review the key aspects of the EMD.

The definition of EMD is based on the solution to a discreteoptimal mass trans-
portation problem. EMD represents the minimum cost of moving earth (or sand)
from some source locations to fill up holes at some sink locations. In other words,
given any two mass (or probability) distributions, one of them can be viewed as a
distribution of earth and the other a distribution of holes,then the EMD between the
two distributions is the minimum cost of rearranging the mass in one distribution
to obtain the other. In the continuous setting, this problemis known as theMonge-
Kantorovich optimal mass transferproblem and has been well studied over the past
100 years (see [13] for an introductory reading on the problem). The importance
here is that EMD can be used to measure the discrepancy between two multidimen-
sional distributions.
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In the discrete setting, the optimal mass transfer problem can be formulated as
a linear optimization problem as follows [33, 34]. Suppose we want to quantify the
discrepancy between two ensembles of signals (or feature vectors) of lengths∈ N.
Suppose all the signals in one ensemble are grouped intom clusters using a clus-
tering algorithm such as theK-means algorithm (see Sec. 4.1 for what we actually
use to construct a signature in our experiments; for the details of various clustering
algorithms, see e.g., [17, Chap. 14]) and this ensemble is represented by a set ofm
cluster centers and the associated weights (member population within each cluster)
asP = {(x̂1, p1), · · · ,(x̂m, pm)}. Note that one can optionally normalize the weights
pi ’s so that∑i pi = 1, which allows us to viewP as a probability distribution of the
signals inX overRs. Suppose the other ensembleY is represented, using the same
procedure, by a set ofn cluster centers and weightsQ = {(ŷ1,q1), · · · ,(ŷn,qn)}.
SuchP andQ are called thesignaturesof the ensembles. ViewingP as a source
(earth) distribution andQ as a sink (hole) distribution, we can now formulate the
discrete optimal mass transport problem leading to the EMD as a measure of the
discrepancy between two signaturesP andQ.

Suppose the cost of moving one unit of mass fromx̂i to ŷ j is c(x̂i , ŷ j), and fi j de-
notes the amount of mass flow from̂xi to ŷ j . There are many possibilities in defining
this cost, but we use(1/2)‖x̂i− ŷ j‖

2, i.e., the half of thesquaredEuclidean distance,
which gives more preference to closely placed points than the usual Euclidean dis-
tance between them. Then, the transportation cost is definedas

COST(P,Q,F) :=
m

∑
i=1

n

∑
j=1

c(x̂i , ŷ j) fi j ,

whereF := [ fi j ] ∈ Rm×n. The optimal mass transfer problem seeks the flowF∗ that
transfers the maximum allowable amount of earth to fill up theholes with minimum
total transportation cost, i.e.,

F∗ = argmin
F∈S

COST(P,Q,F),

whereF ∈ S⊂ Rm×n means thatF must satisfy the following set of constraints:

(i) fi j ≥ 0, for all i, j ;
(ii) ∑n

j=1 fi j ≤ pi , for all 1≤ i ≤m ;
(iii) ∑m

i=1 fi j ≤ q j , for all 1≤ j ≤ n ; and

(iv) ∑m
i=1 ∑n

j=1 fi j = min
(

∑m
i=1 pi ,∑n

j=1q j

)
.

These constraints ensure that: (i) one can only move earth from P to Q, not vice
versa; (ii) the amount of earth moved fromP is no more than the sum of the weights
pi ; (iii) the amount of earth received atQ is no more than the sum of the weightsq j ;
and (iv) the maximum allowable amount of earth is moved.

Once the optimal flowF∗ from P to Q is found, EMD is then defined as the total
cost normalized by the total flow:
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EMD(P,Q) :=
COST(P,Q,F∗)

∑m
i=1 ∑n

j=1 f ∗i j
=

∑m
i=1 ∑n

j=1c(x̂i , ŷ j) f ∗i j
∑m

i=1 ∑n
j=1 f ∗i j

. (23)

Notice that the normalization factor is the total weight of the smaller signature due
to the constraint (iv). This normalization ensures that smaller signatures are not
favored in the case when two signatures have different totalweights. Furthermore,
EMD is symmetric, i.e., EMD(P,Q) = EMD(Q,P) for any two distributionsP and
Q. Notice also that each signature may consists of different number of clusters or
“bins” in the reduced embedding space as indicated bym andn above. Since there
is no guarantee to have the same number of cluster centers in the signature for each
ensemble, EMD is more suitable for our classification problem compared to the
other metrics. Finally, notice that the EMD directly depends onP andQ, which are
not uniquely determined from the ensemblesX andY . In other words, the EMD
depends on the clustering algorithm to constructP andQ. Hence, it requires care to
construct the signatures, which we will discuss in detail inSec. 4.1.

4 An Algorithm for Signal Ensemble Classification using
Low-Dimensional Embeddings with Earth Mover’s Distance

In this section, we will describe our proposed algorithm to classify test signal en-
semblesY 1, . . . ,Y N given training signal ensemblesX 1, . . . ,X M using a low-
dimensional embedding and the EMD as the ensemble distance measure. Then, we
will describe how to construct appropriate signatures of ensembles in the embed-
ding space. Finally, we will discuss an important practicalissue, i.e., how to select
several key tuning parameters in our algorithm.

We summarize our proposed method for signal ensemble classification in the
following algorithm.

Algorithm 4.1 (Signal Ensemble Classification via a Low-Dimensional Embedding and EMD)
LetX =

⋃M
i=1X i , Y =

⋃N
j=1Y j be the training and test ensembles, respectively.

Step 1. Training Stage usingX :

i. Preset a large enough initial dimension1 < s0 < min(d,m⋆) of the embed-
ding space.

ii. ChooseΨ from {ΨPCA,Ψrw,Ψsym,Ψ1
DM}, construct a low-dimensional em-

bedding mapΨ : X ⊂ Rd→ Rs0, and embedX into the temporary reduced
space inRs0.

iii. For i = 1 : M, construct a signature Pi usingΨ(Xi) ∈ Rs0.
iv. Determine the appropriate reduced dimension1≤ s≤ s0.
v. For i = 1 : M, adjust the signature Pi in the final reduced spaceRs.

Step 2. Test Stage forY :

i. Extend the learned mapΨ in Step 1 to the test ensemblesY .
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ii. For j = 1 : N, construct the signature Qj of Y j .
iii. For j = 1 :N, compute{EMD(Pi ,Q j)}Mi=1 and find ij := argmin1≤i≤M EMD(Pi ,Q j).

Assign the test ensembleY j the label ofX i j . That is,assign a label by the
1-nearest neighbor classifier with EMD as its base distance measure.

We will now describe what are important for implementing andrunning the above
algorithm for given signal ensembles.

4.1 Signature construction and embedding dimension estimation

The above overall algorithm did not show the detailed differences between the case
when one choosesΨPCA and the cases of the nonlinear embedding maps, i.e.,Ψrw,
Ψsym, andΨ1

DM}. In this section, we will describe these differences in detail.
Let us first describe Step 1-iii, i.e., the signature construction step. If we use

PCA asΨ , then we use the standardK-means algorithm to construct the clusters
in the tops0 PCA coordinates ofX i . For theK-means algorithm, it is essential
to determine the number of clustersKi for each training ensembleX i . There are
many possibilities for determining the number of optimal clusters (see e.g., [17,
Sec. 14.3.11]), out of which we use a heuristic yet simple method called the “elbow”
criterion. This can be explained as follows. As we increase the number of clusters,
the fitness (or within-cluster dissimilarity) function, which is the sum of all point-to-
centroid distances, will decrease very rapidly at first thenslowly. This will result in
a “kink”or “elbow” in the plot of the fitness function versus the number of clusters.
Hence, we choose the number of clusters at the elbow as the natural candidate for
the number of clusters to form for the given data.

On the other hand, if we use the Laplacian eigenmaps or the diffusion map as
Ψ , then we use theelongated K-means (ekmeans) algorithm [39] to determine the
number of clusters in the signature for each training ensemble X i . The idea of
ekmeanswas adapted from the spectral clustering algorithm proposed in [30] by
replacing the Euclidean distance with an elongated distance in the computation of
point-to-center distances. In [39], the elongated distance (e-dist) between two points
x,c∈ Rs0 is defined as

e-dist(x,c) := (x−c)TMα(x−c), Mα :=
1
α

(I −Pc)+αPc, Pc :=
ccT

cTc
. (24)

As one can see from this definition, the e-dist considers two components of the vec-
tor x−c: 1) the radial componentPc(x−c), i.e., the orthogonal projection ofx−c
onto the directionc; and 2) the traversal component(I −Pc)(x−c), i.e., the comple-
mentary projection ofx−c with respect toc. The parameterα controls the balance
between these two components: the smallerα becomes, the more traversal direc-
tion is emphasized in the distance computation. In all of ournumerical experiments
below, we setα = 0.2, the value recommended by the authors in [39]. The use of
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the e-dist allows us to group points lying inside a thin elongated ellipsoid to form a
cluster, as opposed to inside a sphere.

Ekmeansexploits the geometric properties of the eigenvectors of the graph Lapla-
cian matrix or the adjacency matrix to cluster the data and automatically deter-
mine the number of intrinsic clusters. It starts the clustering process in the top
2 eigenspace with three initialized centers: two centers attwo different elongated
clusters and one at the origin of the eigenspace. If there aremore than two elon-
gated clusters, the center at the origin will be dragged to a cluster not yet accounted
for. Then the algorithm moves the clustering process to the top 3 eigenspace, cre-
ating three cluster centers and adds a fourth center at the origin. This process is
repeated until no additional cluster is found. This clustering process stops at the top
K eigenspace if there areK (intrinsic) clusters in the data.

Step 1-iv determines the appropriate dimensionsof the final reduced embedding
space. In the case ofΨ = ΨPCA, s is determined by the decay of the singular values
σk of the centered training data matrix̃X. In fact, using PCA, we can combine
Steps 1-iii, iv, and v into a single step by first estimating the effective dimension
s by the decay of the singular values, then construct a signature in Rs for each
X i using theK-means algorithm with the elbow criterion. By this way, we donot
need to readjust the signatures in Step 1-v. As for the Laplacian eigenmaps and
diffusion maps, suppose theekmeansalgorithm finds an intrinsic dimensionKi for
each training ensembleX i . This numberKi is also the intrinsic number of clusters
in that ensemble. This intrinsic number ofKi clusters does not change when the
ensembleX i is embedded into an eigenspace of dimension greater thanKi . This is
because no additional cluster other than theKi elongated clusters already accounted
for will be found even ifX i is embedded into such a larger eigenspace. Therefore,
it is natural to set the dimension of the reduced embedding space for the training
ensemblesX to be the maximum ofKi over alli = 1, . . . ,M, i.e.,s := max1≤i≤M Ki .

Step 1-v is necessary for both the Laplacian eigenmaps and the diffusion map
asΨ because of the following reason. The cluster centers for ensembleX i deter-
mined byekmeansin Step 1-iii are vectors in the topKi-dimensional subspace of
the temporary reduced spaceRs0. Step 1-iv determines the final dimensions of the
reduced space. In order for us to use EMD in Step 2, however, all the cluster cen-
ters must be inRs. Hence, to bring all cluster centers intoRs, we need to re-cluster
X i ’s embedded points inRs by running the standardK-means with the e-dist as its
base distance measure to reform theKi clusters. Here, we use the previous cluster
memberships as a starting condition for the standarK-means. At the end of this re-
clustering process, all cluster centers of the signature for each training ensemble are
in the final reduced spaceRs.

Finally, in Step 2-i, we extend the learned map to the test ensembles. IfΨ =ΨPCA,
then this extension can be computed simply byUT

s Ỹ If Ψ =Ψrw,Ψsym, orΨDM , then
we use the GHME Algorithm 2.1.
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4.2 On tuning parameters

Other than the dimensionalitys of the reduced embedding space, there are three
more tuning parameters to be determined in our proposed method: the scaleε for
the weightswε(xi ,x j) defined in Eq. (7); the error toleranceρ in approximating
the extension of the nonlinear embedding maps; and the cutoff bound η for the
condition number of the extension kernel. Clearly we have toselect each of these
parameters wisely. We describe now how to tune these parameters.

4.2.1 Determination ofε

The scaleε > 0 for Gaussian weightswε(x,y) should be chosen so that the cor-
responding weighted graph is numerically connected. Connectedness of the graph
guarantees the existence and uniqueness of the eigenvectorcorresponding to the
smallest eigenvalue 0 ofLrw in Eq. (10) and the largest eigenvalue 1 ofÃrw in
Eq. (14), and therefore of the stationary distribution of the Markov random walk
process on the graph. Thus, when computing diffusion maps, the value forε must
be large enough to ensure that every point in the graph is connected to at least one
other point. It is clear, however, that any affinity or dissimilarity between the data
points is obscured ifε is too large sincewε converges to 1 regardless of its argu-
ments (i.e., every data point is equally similar to any otherpoint) asε increases
to infinity. One suggestion given in [24] is to chooseε “in the order of the mean
distance of a point to its kth nearest neighbor”(wherek is proportional to the log-
arithm of the number of points in the graph). In our numericalexperiments below,
we selectε to be the mean of the Euclidean distances from each point to its k-
nearest neighbors. We determine thisk by running cross-validation experiments on
the training setX . We start withk = 1, run a cross-validation trial, and record the
results. Next, continue to incrementk by ∆k and run a cross-validation trial until the
classification results stop to improve. When this happens, the previous value fork,
sayk⋆, may already be optimal. To ensure that thisk⋆ is indeed optimal, however,
we decrease∆k to ⌊∆k/2⌋ and search for possibly better value fork aroundk⋆ if
we set∆k large. The initial size of∆k depends on the total number of the training
signalsm⋆. In our lip-reading example, we start with∆k = 5 since the training set
is large (990≤ m⋆ ≤ 1204). However, in the classification of underwater objects,
m⋆ is small (96≤m⋆ ≤ 120), so we start with∆k = 1. As an illustration, in our lip-
reading example below, the average value fork⋆ determined by this cross-validation
search method (over 100 experimental trials) turned out to be 16 when EMD was
used for the ensemble distance measure and 14 with HD. These are approximately
1.4% to 1.6% of the training signalsm⋆. For the underwater object classification,
any values ofk⋆ ∈ [2,30] with EMD andk⋆ ∈ [8,40] with HD produced the same
optimal classification results. Thesek⋆’s correspond to about 2% to 40% ofm⋆. We
note that whenk is, say, 5% of the number of the training signals, the corresponding
Gaussian-weighted graph has approximately 5% percent of its edges weighted by
a weight greater than or equal to 1/e, and the rest have smaller weights. In other
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Fig. 1 The largest 300 eigen-
values of the diffusion kernel
in one trial of the lip-reading
experiments(ε = 657).
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words, the graph is sparse but not too sparse. With this choice of ε, the spectrum of
the diffusion kernel decays relatively fast. In Fig. 1 we plot the largest 300 eigen-
values of the normalized diffusion matrix̃Arw defined in Eq. (13) of one trial of the
lip-reading experiments. The value ofε is 657 corresponding tok⋆ = 16. We see
that the eigenvalues decrease quickly. Fast decay of the spectrum implies that any
random walk initiated on the graph converges quickly to steady state and that the
diffusion distance can be approximated more accurately with a smaller number of
eigenfunctions. In other words, we should be able to detect clustering behaviors in
the data with a small number of time stepst for such a case. In the numerical ex-
periments in Sec. 5, we usedt = 1 in the diffusion maps defined in Eq. (15). Setting
t = 1 and optimizingε is certainly an easier strategy compared to the simultaneously
seeking the optimal combination oft > 1 andε although the latter may generate bet-
ter classification results. Also, there may be datasets on which some value oft > 1
results in better classification than settingt = 1. At least for those datasets in Sec. 5,
however, having found the valueε appropriate for the data while settingt = 1 was
enough for identifying grouping patterns.

We note that the value ofε or k found to be optimal for the diffusion maps may
not be optimal for the Laplacian eigenmaps, and vice versa. Thus, we need to deter-
mine the optimalk separately for each case. We could start atk = 1 and increment
by ∆k as described above. However, if we have already found the optimal valuek⋆

for the diffusion map (or the Laplacian eigenmap) and if we want to save the compu-
tational time to find the optimal valuek for the Laplacian eigenmap (or the diffusion
map), then we could proceed as follows. We start the search with k = k⋆; then we
increasek by e.g.,∆k = 5 and proceed as described above. If the classification is
not improving, we also need to search in the opposite direction, i.e., decreasek by
∆k = 5 and proceed (in decreasing direction) as described above.In our numerical
experiments below, we computed the diffusion map first. Therefore, when search-
ing for the optimalk for the Laplacian eigenmap, we took the approach described in
this paragraph. The optimal valuek found when computing the Laplacian eigenmaps
(the random walk version) is 60 (EMD) and 67 (HD) for the lip-reading experiments
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(averaging over 100 experimental trials) while in the underwater object classifica-
tion any values ofk ∈ [12,40] (EMD) andk = 7 or 13 (HD) generated the optimal
classification results. For the symmetric version of the Laplacian eigenmaps, the av-
erage optimalk was 57 (EMD) and 62 (HD) for the lip-reading experiments while
any values ofk∈ [3,8] (EMD) andk∈ [1,8] (HD) were optimal for the underwater
object classification.

4.2.2 Determination ofρ

When choosing a value for the error toleranceρ for the approximation of the out-
of-sample extension of the nonlinear embedding maps in Algorithm 2.1 that is used
in Step 2-i of our Algorithm 4.1, we should keep in mind that a small error bound
ρ corresponds directly to a small extension scaleσ as we discussed in Sec. 2.4.
Suppose we know a priori that the function we want to extend isfairly smooth
on our training ensemblesX . Then we can expect the extension to have a large
extension range. In this case, we can be greedy and setρ small, i.e., we want the
extensionΨ to be very close toΨ onX . A heuristic value to set forρ is 1% of the
number of the training signalsm⋆. This gives an average of 0.01 bound on the error
at each point where the approximation is being computed.

4.2.3 Determination ofη

To determine a cutoff thresholdη for the condition number of the Gaussian exten-
sion kernel matrixWσ (X) in Eq. (16), we have to keep in mind the approximation
error toleranceρ . If ρ is small, thenη has to be large. In addition, asσ increases, the
condition number of the kernel matrix also increases. To predict how largeη might
get, we can take advantage of Step 1 of our Algorithm 4.1. Letκ be the condition
number ofÃrw, Ãsym, Lrw, or Lsym with the parameterε optimally chosen in Step 1.
It is easy to show that the condition number ofWσ (X) is proportional toκ if σ = ε.
Furthermore, since we usually set the initialσ0 > ε in Algorithm 2.1, the condition
number of the initial Gaussian kernel is larger thanκ . Hence we can consider setting
η larger thanκ and inversely proportional toρ . In our numerical experiments, we
setη = min(κ,105)/ρ .

5 Numerical Experiments and Results

We now illustrate how our proposed algorithm can be applied to signal ensemble
classification problems where the data characterizing eachobject consist of ensem-
bles of signals instead of a single signal. We will show two examples of application.
The first example is classification of underwater objects viaanalyzing Synthetic
Aperture Sonar (SAS) waveforms reflected from the objects. The second example
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is a lip-reading application in which we identify the spokenword from a sequence
of video frames extracted from a silent video segment. As we mentioned earlier,
we use PCA, Laplacian eigenmaps (two different normalizationsLrw andLsym), and
diffusion map. We will also compare the performance of EMD with that of the
Hausdorff distance (HD) defined in Eq. (22) in our classification problems.

5.1 Classification of underwater objects

The data in this example were provided by the Naval Surface Warfare Center,
Panama City (NSWC-PC), FL. They were collected from three different controlled
experiments in a fresh water test pond at NSWC-PC. For detailsof the experiments,
see [29]. In each of the three experiments, two objects were placed — either buried
in the sand or proud — at the bottom of the pond. In each experiment, one object
was a sphere made of an iron casing filled with a different material, and the other
object was a solid aluminum cylinder of different length. A sinusoidal pulse was
transmitted across the floor of the pond and the reflected signals were recorded over
a period of time sampled at uniform rate. The data obtained contain waveforms re-
flected from the entire area of the pond floor. Waveforms corresponding to objects
are extracted and preprocessed using the algorithms described in [26, Chap’s. 3, 4],
which is an improved version of the algorithm presented in [27]. This yields ensem-
bles of waveforms per object, and each ensemble consists of rectangular blocks of
waveforms.

Our goal is to identify objects according to their material compositions regardless
of their shapes. We name the sphere and the cylinder in Experiment j asS j andC j,
for j = 1,2,3. SphereS1 was filled with air, so we categorize it as one class with
label IA for iron-air. SpheresS2 andS3 were filled with silicone oil so we group
them into another class with labelIS for iron-silicone. All three cylinders were of
the same diameter and of the same material, so we grouped theminto one class with
labelAl for aluminum. We note, however, that the physical length ofC1 and that of
C2 were the same while that ofC3 was slighly shorter than the half ofC1 andC2.

These waveform data are of extremely high dimension: each data pointxi is a
rectangular block of waveforms (i.e., 2D array) of size 17 (cross-range samples)
by 600 (time samples), i.e.,d = 17×600; see Fig. 4 for some examples. As for the
number of ensembles, we have six ensembles corresponding tothese six objects,S j,
C j, j = 1,2,3. The number of data points (blocks of waveforms) containedin each
ensemble was 8, 8, 16 forS1, S2, S3, respectively while that of the three cylinders
was 32 each. We set aside one ensemble of waveforms (corresponding to one object)
as a test ensemble and trained our algorithm on the remainingfive sets. For example,
when we use theS1 ensemble as a test ensemble, we have, using our notation,X =⋃5

i=1X i , Y = Y 1, i.e.,M = 5 andN = 1 while the number of data points (each of
which is of size 17×600) in each ensemble is,m1 = 8,m2 = 16,m3 = m4 = m5 = 32,
andn1 = 8. Then we applied the steps in Algorithm 4.1 to classify the test object.
We cycled through all six objects, that is, we repeated the classification process six
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Table 1 Identification of Underwater Objects

Object C1 C2 C3 S1 S2 S3

True Label Al Al Al IA IS IS

EMD Al Al Al IS IS IA
PCA

HD Al Al Al IS IS IA

EMD Al Al Al Al IS IS
LErw HD Al Al Al Al Al IS

EMD Al Al Al Al IS IS
LEsym HD Al Al Al Al IS IS

EMD Al Al Al Al IS IS
DM

HD Al Al Al Al IS IS

times. The classification results for all six runs are shown in Table 1. Using EMD
coupled with nonlinear dimensionality reduction methods (DM, LErw, LEsym), we
consistently and correctly classify all three cylinders asobjects of classAl and the
spheresS2 andS3 as objects of classIS. Moreover, the mistake of labeling the
sphereS1 asAl is also consistent. Note that this error is expected since the class
IA contains only one member ensembleS1. We have no training data for this class
when the sphereS1 is left out as test data. Furthermore, note that havingS1 as part of
the training data does not confuse the classification of the spheresS2 andS3 when
one of the nonlinear dimensionality reduction methods is applied. This is not the
case when PCA is used for dimensionality reduction. We will discuss more on this
phenomenon in Sec. 6 below.

Classification of the objects using HD is less consistent among the different di-
mensionality reduction/embedding methods. The main reason for this is that HD
is highly sensitive to outliers. For a closer look, let us examine the distribution of
the points embedded by the Laplacian eigenmap (the random walk version) into the
lower-dimensional space. Fig. 2 shows three sets of points embedded into the first
three coordinates of LErw computed from the training data consisting of all three
cylinders and the spheresS1 andS3. The sphereS2 is first left out as test data then
embedded into the same reduced embedding space via the GHME scheme. In this
figure, blue crosses correspond to cylinderC3 (classAl ), green triangles correspond
to sphereS3 (classIS), and red circles correspond to the unlabeled test objectS2
(true label isIS). Black stars are the cluster centers, i.e., the representatives, in the
signature of each object. We see that the circles (corresponding to objectS2) are on
average close to the triangles (corresponding to objectS3), but because of the points
along the long tail ofS3, the HD betweenS2 andS3 turns out to be larger than that
betweenS2 andC3. The actual EMD and HD values are shown in Table 2. Note that
the dimensions of the reduced embedding space is actually 12 not 3 in this case.
We can see from Table 2 that the smallest EMD value is 0.0053 corresponding to
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Fig. 2 Three underwater objects in the first three LErw coordinates.C3 (crosses), S3 (triangles),
unlabeled test objectS2 (circles). Stars indicate the cluster centers. The Laplacian eigenmap in this
case was computed from the training data consisting of all three cylinders and the spheresS1 and
S3.

Table 2 EMD and HD values in the LErw coordinates between sphere objectS2 and all other
objects. (k = 13 for this example)

Object C1 C2 C3 S1 S3

EMD 0.0070 0.0064 0.0057 0.0085 0.0053
HD 0.1917 0.2374 0.1237 0.1500 0.1684

S3 and the smallest HD value is 0.1237 corresponding toC3. Thus, EMD correctly
labels objectS2 asIS, but HD mislabelsS2 asAl .

5.2 Lip reading experiment

In this section, we present our results on a simplified version of the lip-reading
problem to illustrate how our proposed algorithm can be applied in practice. The
objective of lip reading is to train a machine to automatically recognize the spoken
words from the movements of the lips captured on silent videosegments (no sound
is involved). Much research effort has been devoted to this area. Many published
algorithms involve sophisticated feature selection. In this example, we simply per-
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Fig. 3 Examples of the preprocessed video frames used in our lip-readingexperiments. Both the
top row and the bottom row are the subsets of the video frames speaking the digit ’one’. Note that
the bottom row corresponds to the situation when the subject spoke ’one’ while smiling.

Table 3 Lip-Reading total recognition errors (averaged over 100 experimental trials)

PCA PCA LErw LErw LEsym LEsym DM DM
EMD HD EMD HD EMD HD EMD HD

5.3% 9.4% 36.1% 36.1% 26.0% 27.6% 24.1% 25.2%

form dimensionality reduction on the sequences of images (i.e., video frames). We
do not extract any particular lip features from the images unlike those in [31, 40] and
many other publications. Furthermore, the lips data we use were collected from one
speaker. It may be necessary to extract and use more sophisticated features when
more speakers, i.e., more variations in the lips, are involved.

We recorded a subject speaking the first five digits (‘one’,...,‘five’) ten times using
a Nikon Coolpix digital camera sampling at a rate of 60 framesper second. We
then extracted the video frames from each movie clip and did the following simple
preprocessing. First, we convert the images from color to gray scales ranging from
0 to 255. Then we cropped each image to a 55×70 pixels window around the lips to
compensate for translations. (The speaker’s nose was marked with a color marker to
facilitate automatic cropping of the video frames). Figure3 shows subsets of video
frames of two such movie clips. For each spoken digit, we randomly selected five
video sequences from the available ten such sequences in ourcollection as training
ensembles. This gave us a total of 25 video sequences as the training ensembles and
another 25 for test ensembles. Hence, using our notation, our experimental setting
for each run is:X =

⋃25
i=1X i , Y =

⋃25
j=1Y j , i.e.,M = N = 25, while 30≤mi ,ni ≤

63 (i.e., the number of video frames in each sequence varies between 30 and 63),
and the dimension of each data point (i.e., a video frame) isd = 55×70.

We applied Algorithm 4.1 to classify the test video sequences. We repeated the
whole process 100 times. The total misclassification rates (averaging over 100 ex-
perimental trials) are shown in Table 3. Again, we see that using EMD gives smaller
recognition errors than using HD except the LErw case where the results tied. Table 3
shows high classification errors for the Laplacian eigenmaps, in particularly, LErw
while those of DM are at least more than 10% better. Compared to these nonlinear
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Fig. 4 Selected waveforms corresponding to the sphereS1 (top row) and sphereS3 (bottom row) in
the underwater object experiment. The horizontal axis represents time (600 time samples) whereas
the vertical axis indicates the 17 cross-range coordinates.

dimensionality reduction methods, however, PCA, i.e., thelinear method, worked
much better for this dataset, i.e., 5.3% with EMD and 9.4% with HD.

6 Discussion and Conclusion

We have seen that PCA performed better than the local nonlinear methods in the
lip-reading experiment whereas the situation was oppositein the underwater objects
classification experiment. The reason is because the characterizing patterns in the
lip-reading problem are ‘global’ whereas those in the underwater-objects problem
are ‘local’. To explain this in more details, suppose we viewa video sequence by
eyes. In order for us to determine what the spoken word actually is, we need to see
how the lips move throughout the entire video sequence. We donot care so much
that the shape of the lips in each individual video frame is slightly different from
what we have seen in the past. As long as the dynamics (or totalmovements) of the
lips in this video sequence are similar to what we remember, we would be able to
recognize the spoken word. In other words, thetrajectoryof the video frames in the
embedded space is decisive. Recognizing and discrimininating such trajectories is a
‘global’ pattern recognition problem. We believe that is the reason why PCA in the
lip-reading experiment outperformed the diffusion maps and Laplacian eigenmaps.

On the other hand, the sonar waveform blocks of the same classare quite homo-
geneous. To illustrate this, we display in Fig. 4 some selected samples of waveforms
reflected from the spheresS1 andS3 in the underwater-objects experiment. Recall
that each rectangular block is viewed as one data point. We can see clearly that the
blocks belonging to sphereS1 are quite different from those from sphereS3 while
our eyes can barely discern the differences between the blocks within the same class.
Local nonlinear methods can map each class to the tighter ‘localized’ clusters and
enhance the between-class differences compared to PCA. This is the reason why
these local nonlinear methods outperformed PCA for this example.
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In conclusion, we have proposed an algorithm for classifying objects that are
characterized or described by ensembles of signals using a low-dimensional embed-
ding and the Earth Mover’s Distance (EMD). Our algorithm sets up the framework
for application of EMD to such classification problems. We have shown that EMD
is more robust to noise and hence more appropriate for discrimination of ensembles
than the Hausdorff distance.

We have provided two examples of practical applications forour proposed algo-
rithm. The lip-reading application is of global-pattern nature, therefore dimension-
ality reduction by PCA proved successful. On the other hand,the classification of
underwater objects is of local-pattern nature, thus dimensionality reduction by non-
linear local methods such as diffusion maps and Laplacian eigenmaps gave better
results than PCA.

We did not incorporate the discriminant information duringthe training stage
explicitly in this article. For example, we have not compared the performance of
our proposed method with the other typical classification strategy, i.e., extracting
discriminant features via e.g., Local Discriminant Basis [36, 37] followed by set-
ting up a classifier, e.g., Linear Discriminant Analysis [17, Chap. 4], Support Vector
Machines [17, Chap. 12], etc., on the extracted feature vectors. We plan to investi-
gate the embedding techniques explicitly incorporating the discriminant information
during the training stage. Some of our attempts along this direction can be found in
[26].
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of human faces. IEEE Trans. Pattern Anal. Machine Intell.12(1), 103–108 (1990)

19. K.V.Mardia, J.T.Kent, J.M.Bibby: Multivariate Analysis. Academic Press, San Diego, CA
(1979)

20. Lafon, S., Keller, Y., Coifman, R.R.: Data fusion and multicue data matching by diffusion
maps. IEEE Trans. Pattern Anal. Machine Intell.28(11), 1784–1797 (2006)

21. Lafon, S., Lee, A.B.: Diffusion maps and coarse-graining: Aunified framework for dimen-
sionality reduction, graph partitioning and data set parameterization. IEEE Trans. Pattern
Anal. Machine Intell.28(9), 1393–1403 (2006)

22. Lafon, S.S.: Diffusion maps and geometric harmonics. Ph.D. thesis, Dept. Math., Yale Univ.
(2004). Downloadable fromhttp://www.math.yale.edu/˜sl349

23. Lieu, L., Saito, N.: Automated discrimination of shapes in high dimensions. In: D. Van De
Ville, V.K. Goyal, M. Papadakis (eds.) Wavelets XII, Proc. SPIE 6701 (2007). Paper # 67011V

24. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput.17(4), 395–416 (2007)
25. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A com-

parative review. Technical Report TiCC-TR 2009-005, Tilburg Centre for Creative Computing,
Tilburg Univ. (2009)

26. Marchand, B.: Local signal analysis for classification. Ph.D. thesis, Dept. Math., Univ. Cali-
fornia, Davis (2010)

27. Marchand, B., Saito, N., Xiao, H.: Classification of objects in synthetic aperture sonar images.
In: Proc. 14th IEEE Workshop on Statistical Signal Processing, pp. 433–437. IEEE (2007)



30 Linh Lieu and Naoki Saito

28. Murase, H., Nayar, S.K.: Visual learning and recognition of 3d objects from appearance. In-
tern. J. Comput. Vision14(1), 5–24 (1995)

29. Nesbitt, C.L., Lopes, J.L.: Subcritical detection of an elongated target buried under a rippled
interface. In: Oceans ’04, MTS/IEEE Techno-Ocean ’04, vol.4, pp. 1945–1952 (2004)

30. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In:
T. Dietterich, S. Becker, Z. Ghahramani (eds.) Advances in Neural Information Processing
Systems, vol. 14, pp. 849–856. The MIT Press, Cambridge, MA (2002)

31. Patterson, E.K., Gurbuz, S., Tufekci, Z., Gowdy, J.N.: Moving-talker, speaker-independent
feature study, and baseline results using the CUAVE multimodal speech corpus. EURASIP J.
Appl. Signal Process.11, 1189–1201 (2002)

32. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
Science290(5500), 2323–2326 (2000)

33. Rubner, Y., Tomasi, C.: Perceptual Metrics for Image Database Navigation. Kluwer Academic
Publishers, Boston, MA (1999)

34. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a metric for image re-
trieval. Intern. J. Comput. Vision40(2), 99–121 (2000)

35. Saito, N.: Image approximation and modeling via least statistically dependent bases. Pattern
Recognition34, 1765–1784 (2001)

36. Saito, N., Coifman, R.R.: Local discriminant bases and theirapplications. J. Math. Imaging
Vis. 5(4), 337–358 (1995). Invited paper

37. Saito, N., Coifman, R.R., Geshwind, F.B., Warner, F.: Discriminant feature extraction using
empirical probability density estimation and a local basis library. Pattern Recognition35(12),
2841–2852 (2002)

38. Saito, N., Woei, E.: Analysis of neuronal dendrite patterns using eigenvalues of graph Lapla-
cians. JSIAM Letters1, 13–16 (2009). Invited paper

39. Sanguinetti, G., Laidler, J., Lawrence, N.D.: Automatic determination of the number of clus-
ters using spectral algorithms. In: Proc. 15th IEEE Workshop on Machine Learning for Signal
Processing, pp. 55–60 (2005)

40. Zhang, X., Mersereau, R.M.: Lip feature extraction towards an automatic speechreading sys-
tem. In: Proc. 2000 International Conference on Image Processing, vol. 3, pp. 226–229. IEEE
(2000)

41. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent
space alignment. SIAM J. Sci. Comput.26(1), 313–338 (2005)

42. Zhou, S.K., Chellappa, R.: From sample similarity to ensemble similarity — Probabilistic
distance measures in reproducing kernel Hilbert space. IEEE Trans. Pattern Anal. Machine
Intell. 28(6), 917–929 (2006)


