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Prolate spheroidal wave functions (Slepian functions) are special functions that are most local-
ized in both spatial and frequency domain, simultaneously. They lead to the optimal solution
of the concentration problem once posed by Claude E. Shannon. This fact was unraveled by
David Slepian and his collaborators at Bell Lab in 1960s. Since then this system has shown
promise for many applications in engineering and some other areas. Unlike usual orthogo-
nal polynomials or trigonometric systems, Slepian functions possess peculiar properties, such
as, dual orthogonality, duality of time-frequency representation, and multiscale structure, to
name a few. This paper is devoted to the study of Slepian series for digitized functions in
the Paley-Wiener space and beyond. We shall give the convergence analysis of the expansion
coefficients and explore their properties by numerical experiments.. We conclude the paper
by discussing problems raised in such expansions used in the practice when only the discrete
data are available and contaminated by noise.

Keyword Slepian (PSWF) series, concentration problem, othorgonal expansion,

bandlimited signals, Paley-Wiener space, Gibbs phenomenon.
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1. Introduction

The theoretical aspects of using prolate spheroidal wave functions (PSWFs) as the

solution of energy concentration problem have been known for over forty years.

Extensive studies of PSWFs in the context of communication theory were done at

Bell Laboratory. Much of the research was performed by D. Slepian, H. J. Landau

and H. O. Pollak and their colleagues (See [11], [12], [23] and [22]). Consequently,

the PSWFs have come to be known as Slepian functions affectionately in engi-

neering community. Since then many applications have been developed in different

areas such as in telecommunication, signal/image processing to attack problems

raised in filter design (achieve minimal side lobes), minimizing inter symbol infer-

ence (ISI), prediction/extrapolation envelopes of wireless signals, and MRI medical

image processing [3], [18], [33], [34]. However, most of these applications are based

on the discrete prolate spheroidal wave functions (DPSWFs) [20] or finite prolate

spheroidal wave function (FPSWFs) [33], [34]. Their publicity has been promoted

by the program DPSS in the well known software MATLAB c°. This is because
the actual evaluation of specific PSWFs in closed form presents formidable diffi-

culties and their implementations were exceedingly expensive [6], unfortunately.

Many efforts have been made to compute these functions. Some classic methods to
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compute function values can be found in [2], [4] and [7]. In 1970s, Naval Research

Laboratory (Washington, DC) has made significant contributions to the numerical

computations of PSWFs by their projects [8], [5], [9], [27], and [28]. Most of the

applications related to PSWFs relay on the this data sources. Basically, numerical

methods used in these computations can be categorized as follows:

(1) Approximation by other special functions. These methods are usually using

the Legendre polynomial in a finite interval and the Bessel functions on outside of

the finite interval [37];

(2) Interpolation or sampling based method. These methods derive discrete val-

ues of PSWFs by solving a discrete optimization problem which is equivalent to

the original concentration problem (a continuous optimization problem); and

(3) Iterative method. A numerical method based on asymptotic expansion de-

veloped by D. Slepian in [21]. This method is not as well-known as others.

The barriers limited by the human computing powers to unravel the mystery of

the PSWFs are not as the same as before. Recently, the rapidly improved mod-

ern computational facilities and the advanced computational techniques such as

generalized Gaussian quadrature [1], [36], have made it possible to develop less

expensive applications in many areas, such as numerical solutions for partial differ-

ential equations (PDEs) or in medical image processing. Further, some multiscale

systems based on these original Slepian functions, such as Slepian semi wavelets,

periodic Slepian wavelets ([16], [17], [31], and [32]).

In this article, we report some numerical results from our investigation on the

orthogonal expansion series using continuous Slepian functions. Some of the results

are extracted from annual reports of grant ONR YIP N00014-00-1-0469. The paper

is organized as follows: background materials, such as definitions and terminology,

related to the discussion of PSWFs are introduced briefly in the next section. We

then are able to introduce Slepian series and discuss its properties for some function

classes in Section 3. In Section 4, we demonstrate the convergence properties for

functions in three difference categories:

C1. functions in Paley-Wiener space (see definition below);

C2. functions are essentially bandlimited, functions; and

C3. functions that are piecewise analytic with jump discontinuities.

Finally, we give some remarks on further study at the close of the article.

2. Background

To begin with, we recall the following background materials.

2.1. Paley-Wiener space

Definition 2.1: (Fourier transform) Let h(t)∈ 2() be an arbitrary function;

then the Fourier transform of h(t) is the function defined by the integral

F []() = b() = ∞Z
−∞

()− (1)
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for those values of f for which the integral exists. The inverse transform is given by

() =
1

2

∞Z
−∞

b()− (2)

Theorem 2.2 : (Paley-Wiener) Assume that  ∈ () is analytic. If there are

positive constants  and  so that for all  ∈ 

|()| ≤  exp(||) (3)

then b ∈ 2(− ) and

() =

Z 

−
b() exp(−2) (4)

(Paley-Wiener) Assume that h ∈ (), 0    ∞ is analytic. If there are

positive constants K and  such that for all z ∈ 

|()| ≤ || (5)

then b ∈ 2(− ) and

() =

Z
−

b()−2 (6)

A function satisfies (5) is said to be exponential type. A function satisfies (6) is

said to be  bandlimited.

The Paley-Wiener space belonging to (), denote by B

 is the space consists

of all functions which satisfy Paley-Wiener Theorem. We summarized some related

properties of Paley-Wiener spaces in the following proposition. Readers can find

references in [25], [38].

From now on, we work with the case  = 2

Definition 2.3: (Concentration index) Denote

2(  ) ≡
R 
− |()|2 R∞
−∞ |()|2 

(7)

and

2( ) ≡
R 
−
¯̄̄b()¯̄̄2 R∞

−∞
¯̄̄b()¯̄̄2  (8)

We refer  as time concentration index and  frequency concentration index of

signal . Notice that for all functions in 2, 0≤ 2(  ), 2( ) ≤ 1 All −
bandlimited functions satisfy 2( ) = 1  timelimited functions satisfy

2( ) = 1
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Definition 2.4: (− essential bandlimited functions) Let  ∈ 1()  is essential

− bandlimited if it satisfies the property: for   0∃   0 ( is dependent on

 and ) such that Z 

−

¯̄̄b()¯̄̄2   

It is worth mentioning that a function could be analytic but not of exponential

type, while it could also be of exponential type but not analytic. Some examples

are shown in Section 4.

2.2. Concentration problem and its solution

The Slepian functions (PSWFs)  () can be defined in number of different

ways, for example,

1. as the eigenfunctions of an integral operator :Z 

−
 ()

³

(− )

´
 =  () (9)

where () = sin


is the sinc function.

2. as the eigenfunctions of a differential operator:

(2 − 2)
2

2
− 2


− 22 =   (10)

or

3. as the maximum energy concentration of a − bandlimited function on the
interval [−   ]; that is 0 is the function of total energy 1 (= ||0 ||2) such
that 2(  0 ) is maximized, 1 is the function with the maximum energy

concentration among those functions orthogonal to 0 , etc.

Still another characterization in terms of multiplication operators is possible and

may be found in [29], while another integral eigenvalue problem also satisfied by

the  is [13], Z 

−
 ()

 =  () (11)

The parameter  comes from the interval of concentration and the parameter 

comes from the support of the Fourier transform . The time concentration indices

for  () is 
2(   ) =    = 0

Figure 1 shows several of the PSWFs on the concentration interval [−1 1] The
corresponding eigenvalues (concentration indices) are shown in Figure 2.

The concentration problem is to determine functions in B2 with maximum time

concentration index  on interval [−   ], they can be derived from the eigenvalue

problem of the integral equation (9) Since the kernel is positive defined, its spec-

trum is discrete set and

1  0 ≥ 1 ≥  ≥  ≥   0

with lim→∞  = 0 The corresponding eigenfunctions, { ()}∞=0 can be
chosen to be real and orthogonal on [−   ]. By using the left hand side of (9),
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Figure 1. Slepian functions  . Left panel: ( ) = (1 )  = 0 1 2 Right panel: ( ) = (1 3)  =
0 1 2

Figure 2. Associated eigenvalues  . Left panel: ( ) = (1 )  = 0 1 2 9 Right panel: ( ) =
(1 3)  = 0 1 2 14

we could further extend the definition of  to outside of [−   ] (see [19] as
follows: Z 

−

³

(− )

´
 () =  () ||  1 (12)

Unfortunately, analytic solutions to (9) or (10) are not possible. However, several

approaches have been developed to evaluate PSWFs numerically.

2.3. Related properties of prolate spheroidal wave functions

Let { ()} be a set of eigenfunctions of (9), then we have the following prop-
erties:

(1) Double orthogonality.Z 

−
 () () =  (13)

Z ∞

−∞
 () () =  (14)

(2) Duality in time-frequency domain. The Fourier transform of  is
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given by

b () = (−1)
s

2


 (




)() (15)

Hence, we also have

 () = (−1)
s

2



1

2

Z 

−
 (




) (16)

Figure 3 shows a time and frequency pair of a Slepian function.

Figure 3. Slepian function 01() (left panel) and its Fourier transform
01() (right panel).

(1) Completeness. { ()} are complete in space 2(−  )
(2) Step function behavior. The sequence {} consists of approximately

2 eigenvalues that are close to 1, and about log  eigenvalues which

decay expotentially to zero, as →∞ (see Figure 2).

3. Slepian series

Let () ∈ 2(−1 1) We write formally,

() =

∞X
=0

 () =

−1X
=0

 () +

∞X
=

 () (17)

= P []() +E []()

whereP : 
2[−1 1]→ 0⊕1⊕⊕ , is the projection operator. E []() =P∞

=  () is the remainder. Notice that the expansion coefficient  are

dependent on parameters  and   However, for simplicity, we will omit the indices

  of the expansion coefficients.

To determine coefficients  we could use either the finite orthogonality (13)

or infinite orthogonality 14 of  . We will assume the availability of function
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values only within the interval [−   ] and use (13) to get,

 = (  ) =
1



Z 

−
() () (18)

Notice that, in such setting, the series (17) can be used for extrapolation purpose.

We first discuss the convergence rates of the expansion coefficients analytically, and

then devote all our effort to explore their properties numerical properties.

3.1. The convergence of the Slepian series

The differential equation (10) defining  can be rewritten as [2],

((1− 2)0 )
0 + ( − 22) = P +  = 0

where  =  and the Sturm-Liouville differential operator P is self adjoint. The

eigenvalues  = (2) as  → ∞. Using integration by parts, the expansion
coefficients of a function  ∈ 2[−1 1] can be written as

 =   = ()
−  P 

= ()
−  P  = ()

−

where  are the coefficients of the continuous function P
 Hence we have

 = (−2)

Another approach involves the integral operator satisfied by the  :

 () =

Z 

−
 ()

We now let  =  where  ∈ 2[−   ] and  is the integral operator

()() ≡
Z 

−
−()

Then the coefficients are given by

 =    =   

=   ()∗  =     (19)

where‘*’ means conjugate. The last equality in above equation shows the coefficient

converges to 0 very rapidly. These discussions lead to the following convergence

theorem:

Theorem 3.1 : Let  normalized by
°°2°°2(−) = 1  = 0 1  be the

 PSWF belonging the Paley-Wiener space B and concentrated on [−   ]. Let
 =

­
 

®
, i.e., the is the  expansion coefficient of  with respect to

the Slepian sequence. If  ∈ 2(), we have

(i)  = (exp(−( ))), if  ∈ B where  = ( ) is independent

of ;
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(ii)  = (−2), if  ∈ 2();

(iii)
P∞

=0  () convergence uniformly on [−   ] if  satisfies the Lip-
schitz condition.

3.2. Computation of expansion coefficients

In the past, the numerical properties of the coefficients of Slepian series were rarely

found in the literature. This may be due to the difficulties in numerically computing

Slepian functions themselves. Clearly, to compute expansion coefficients (18), we

have to adopt numerical methods. These involve methods used to compute the

eigensystem
©
  

ª
and numerical integration technique.

We will employ the Generalized Gaussian quadrature developed in [36] to com-

pute the eigen system. After that, we use the same quadrature to calculate the

expansion coefficients. We recall,

Definition 3.2: A quadrature formula will be referred as a (generalized)

Gaussian quadrature with respect to a set of 2 polynomials:

1  2 : [ ] 7−→ R

and a weight function (non negative integrable):

 : [ ] 7−→ R+

if it consists of  weights and nodes and integrates the function  exactly with

the weight function  for all  = 1  2 The weights and nodes of a Gaussian

quadrature will be referred as Gaussian weights and nodes, respectively..

Notice that if functions  are polynomials, the quadrature is a Gaussian quadra-

ture. We will use the generalized Gaussian quadratures based on Slepian functions©


ª
with weight function  = 1 [36]. A generalized Gaussian quadrature has

the format:

[ ;] =

X
=1

()

and satisfies

[;] =

Z 



 ()()  = 1  2 (20)

To emphasize the bandwidth  and the PSWFs in using, we denote such a

−  quadrature by

[ ; ] =

X
=1

()

Notice that weight coefficients {} and notes {} are dependent on  =  , we

suppress it for simplicity. The error analysis of this generalized Gaussian Quadra-

ture is summarized as in the following:

([36], [35]). Suppose that the n-point quadrature with nodes x1, x2, ..., x ∈ (-1,1)
and weights w1 2 w integrate exactly each of the functions 


0 


1...,


−1,
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so that

X
=1



() =

Z 1

−1

()  = 1 − 1

Then, for all a ∈(-1,1) and real positive c,

|
X

=1


 −

Z 



| ≤ 

Theorem 3.3 : ([35]) For a bandlimited function  : [−1 1] → C given by the

formula

() =

Z 1

−1
()

with function  : [−1 1] → C the error of using generalized Gaussian quadrature

is bounded by the formula¯̄̄̄
¯
X

=1

()−
Z 1

−1
()

¯̄̄̄
¯ ≤ ||||2[−11] (21)

where  is as in the Lemma 3.

Now we take a close look of the inner products in the orthogonal expansion. We

first observe that () () ∈ B2 if  ∈ B. This can been seen from the

Fourier transform of () () which is given byZ ∞

−∞
() ()

−

=

Z ∞

−∞
() ()

 =

Z ∞

−∞
b()F [ ()

]()

=

Z 

−
b()b ( − )

Here we have used the Parseval equality. Since b () is bandlimited of band-

width  = 2, we have

| − | ≤  or || ≤ ||+  ≤ 2

Thus, () () ∈ B2
Now we have




= (  ) ≈
1



X
=1

() () (22)

In the rest of the article, we are particularly interested in representation of a

digitized signals, that is, signals are given by their discrete samples (usually pro-

vided by electronic devices). We further assume that discrete function values are

available on [−   ], that is, function samples {(− + 
21−1 )}2

1

=0 are given.
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4. Numerical Examples

For any real understanding of the theory, it is necessary to appreciate its numerical

aspects. This is true particularly when the available information is given by a dis-

crete set. In this section, we explore properties of Slepian series numerically. These

numerical examples are grouped by regularity as we mentioned in the introduc-

tion: bandlimited functions, essentially bandlimited functions, analytic functions

and functions with jump discontinuity. For simplicity, we take  = 1 The parame-

ter  is related to the bandwidth of the Slepian functions used to construct the

quadrature by  = 2, that is, we have the following equality,

X
=1

1() =

Z 1

−1
1()  = 1  2 (23)

We choose  = 10 The dominate eigenvalue 0101 =1.000000e+000, or ||0101||
= 1.000000e+000. It is very interesting to note here, the distribution of these

quadrature nodes and weights are very well modeled by using cubic spline re-

gression. Figure 4 shows the quadrature nodes, weights and the relation between

parameter c and number of nodes. Now we are ready to see numerical examples.

It is worth mentioning that the choice of  is crucial and tricky. The number of

the terms used in the quadrature depends on the choice of  As usual, larger 
will offer better approximation with higher computing complexity. Figure 6 demon-

strates the relation between  and the number of terms used in the quadrature.

There are 14 pairs of nodes and weights for the generalized Gaussian quadrature

when  = 10 (see Table 1).

4.1. Bandlimited case

Example 4.1 Shannon sampling (sinc) function. The sinc function is given

by

() =
sin


(24)

with Fourier transform b() = [−1212]

Table 1. Quadrature nodes and weights,  = 10

     
1 -9.853939e-001 3.734410e-002 8 1.048325e-001 2.089824e-001

2 -9.242401e-001 8.425565e-002 9 3.103933e-001 2.007597e-001

3 -8.188036e-001 1.254634e-001 10 5.035613e-001 1.841642e-001

4 -6.758728e-001 1.590306e-001 11 6.758728e-001 1.590306e-001

5 -5.035613e-001 1.841642e-001 12 8.188036e-001 1.254634e-001

6 -3.103933e-001 2.007597e-001 13 9.242401e-001 8.425565e-002

7 -1.048325e-001 2.089824e-001 14 9.853939e-001 3.734410e-002

To compute the expansion coefficients (18), we write,

 = (  ) =
1



Z 1

−1
() () w

14X
=1

() ()
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Figure 4. Quadrature nodes (left), weights (meddle) and relation between parameter c and number of
nodes,  = 10

Notice that the function values {()} may be not available. In such cases, we
used values of the linear interpolating polynomial at nodes

©
(−1 + 

21−1 )
ª21

=0
to

approximate them. For all examples in this section, we take1 = 7 That is, there

are totally 128+1 = 129 equally distributed nodes with stepsize  = 221 = 2−6on
interval [−1 1]. These coefficients are then used in the Slepian series expansion (17):

() =

∞X
=0

 ()

which has to be truncated as

( ) w
X
=0

21()

The truncation parameter  (number of terms in the truncated Slepian series)

is dependent on the bandwidth parameter  = 2 of the basis 21 In

Figure 5, we demonstrate the computational result, graphically. Slepian functions

with bandwidth  (top) 3(bottom) are used in the expansion, respectively. The

expansion using larger bandwidth has better result.

4.2. Essentially bandlimited case

Example 4.2 Gaussian kernel. Gaussian kernel is defined as, () = 1√
2
−

2

2

with Fourier transform given by, b() = −2
22

 Notice that the Gaussian kernel

is analytic but not exponential type. It is an essentially bandlimited function.

Example 4.3 Bilateral kernel. The bilateral kernel is defined as, () = −||
while its Fourier transform is given by, b() = 1

1+2 Bilateral kernel is not analytic

but exponential type with a corner point at  = 0 We observe that its Slepian

series has trouble there. See Figure 7 for numerical results.
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Figure 5. Orthogonal expansion of sinc function (the solid line is the original function). Right: recovered
signal. Left: the expansion coefficients.

Figure 6. Orthogonal expansion of Gaussian function(solid line is the original function). Right: recovered
signal. Left: the expansion coefficients.

4.3. Function with jump discontinuity

Example 4.4 (Function with jump discontinuity). In this example, we consider

two functions. The characteristic function of [−1 0], defined as

[−10]() =
½
1  ∈ [−1 0]
0 else where.

And the function made up by bilateral kernel (), defined by

() =

½
()  ≤ 0
−()   0

Both of these two functions have jump discontinuity at  = 0 The expansion

coefficients and their associated Slepian series are demonstrated in Figures 9 and
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Figure 7. Orthogonal expansion of Bilateral kernel. Right: recovered signal. Left: the expansion coeffi-
cients.

10. We observe the slow decay of the coefficients compared to the functions in the

previous example. We also notice that the partial sums of their Slepian series are

oscillating around the jump discontinuity  = 0 The phenomenon is very similar

to the Gibbs phenomenon in Fourier series.

Figure 8. The Slepian series expansion of the characteristic function of [−1 0] (solid line is the original
function) Left: recovered signal. Right: the expansion coefficients.

5. Conclusion

In this article, we demonstrate some numerical results for Slepian series expansion

for functions selected from different categories according to their regularity and

bandlimits. We observe the following:

1. The convergence rate of the Slepian series is dependent on the regularity

and bandlimit of a given signal. It converges rapidly for function in the Paley-
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Figure 9. Orthogonal expansion of two pieces of bilateral kernel(solid line is the original function). Left:
recovered signal. Right: the expansion coefficients.

Wiener space B while slower for functions with discontinuity (just like other

series expansion).

2. Since Slepian series in this article are derived by using function samples on

[−1 1], their approximation quality degrades outside of the interval [−1 1] natu-
rally. However, they have relatively good extrapolation properties for functions in

B.

3. Gibbs-like phenomenon is observed for Slepian series when the signals carry

jump singularity (see the last two examples).

Other numerical experiments (they will be reported separately) also show that

the Slepian series can tolerant noise and work (relatively well with sparsely given

function data. Motivated by these observations, we are working on developing a

hierarchical system based on Slepian functions and a best-basis type algorithm.

It is our hope such a system and an algorithm can be used to represent smooth

signals as well as signals with jump discontinuities more effectively.
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Figure 1. Slepian functions , ,n σ τψ . Top panel: (τ ,σ ) =(1,π ),  

        n =0, 1, 2.  Bottom panel: (τ ,σ ) =(1, 3π ), n=0, 1, 2.  

 

 

 

 

      Figure 2. Associated eigenvalues , ,n σ τλ . Left panel: (τ ,σ ) =(1,π ), 

                     n=0,1, 2, ...,9. Right panel: (τ ,σ ) =(1, 3π ), n=0,1, 2, ..., 14.  
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Figure 3. Slepian function 0, ,1( )xπψ  (top panel) and its Fourier  

                            transform 0, ,1( )πψ ω
⌢

 (bottom panel). 

 

 
 

Figure 4. Quadrature nodes (left), weights (meddle), 10
q
c =  and relation  

                   between parameter c and number of nodes (right), 10
q
c = . 
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Figure 5. Orthogonal expansion of sinc function (the solid line is the original 

                 function). Right: recovered signal. Left: the expansion coefficients. 

 

 

 

 
 

Figure 6. Orthogonal expansion of Gaussian function (solid line is the original  

                function). Right: recovered signal. Left: the expansion coefficients. 
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Figure 7. Orthogonal expansion of Bilateral kernel (solid line is the original  

                 function). Right: recovered signal. Left: the expansion coefficients. 

 
Figure 8. The Slepian series expansion of the characteristic function of [-1, 0]  

(solid line is the original function).  Left: recovered signal. Right: the expansion 

coefficients. 

Page 19 of 20

URL: http://mc.manuscriptcentral.com/gapa

Applicable Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 5 

 
Figure 9. Orthogonal expansion of two pieces of bilateral kernel. Left: recovered signal  

       (solid line is the original function). Right: the expansion coefficients. 

 

 

 

 

Table 1. Quadrature nodes and weights, 10
q
c =  

 

k      x_{k}      ω_{k} k       x_{k}    ω_{k} 
 

1 -9.853939e-001 3.734410e-002 8 1.048325e-001 2.089824e-001 

2 -9.242401e-001 8.425565e-002 9 3.103933e-001 2.007597e-001 

3 -8.188036e-001 1.254634e-001 10 5.035613e-001 1.841642e-001 

4 -6.758728e-001 1.590306e-001 11 6.758728e-001 1.590306e-001 

5 -5.035613e-001 1.841642e-001 12 8.188036e-001 1.254634e-001 

6 -3.103933e-001 2.007597e-001 13 9.242401e-001 8.425565e-002 

7 -1.048325e-001 2.089824e-001 14 9.853939e-001 3.734410e-002   
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