Simultaneous Noise Suppression and Signal Compression
using a Library of Orthonormal Bases
and the Minimum Description Length Criterion

Naoki Saito

Abstract. We describe an algorithm to estimate a discrete signal from its noisy
observation, using a library of orthonormal bases (consisting of various wavelets,
wavelet packets, and local trigonometric bases) and the information-theoretic cri-
terion called minimum description length (MDL). The key to effective random
noise suppression is that the signal component in the data may be represented
efficiently by one or more of the bases in the library, whereas the noise component
cannot be represented efficiently by any basis in the library. The MDL criterion
gives the best compromise between the fidelity of the estimation result to the data
(noise suppression) and the efficiency of the representation of the estimated signal
(signal compression): it selects the “best” basis and the “best” number of terms
to be retained out of various bases in the library in an objective manner. Because
of the use of the MDL criterion, our algorithm is free from any parameter setting
or subjective judgments.

This method has been applied usefully to various geophysical datasets con-

taining many transient features.

§1. Introduction

Wavelet transforms and their relatives such as wavelet packet trans-
forms and local trigonometric transforms are becoming increasingly popular
in many fields of applied sciences. So far their most successful application
area seems to be data compression; see e.g., [14], [6], [35], [30]. Meanwhile,
several researchers claimed that wavelets and these transforms are also use-
ful for reducing noise in (or denoising) signals/images [16], [7], [10], [21].
In this paper, we take advantage of both sides: we propose an algorithm
for simultaneously suppressing random noise in data and compressing the
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signal, 1.e., we try to “kill two birds with one stone.”

Throughout this paper, we consider a simple degradation model: ob-
served data consists of a signal component and additive white Gaussian
noise. Our algorithm estimates the signal component from the data using
a library of orthonormal bases (including various wavelets, wavelet pack-
ets, and local trigonometric bases) and the information-theoretic criterion
called the Minimum Description Length (MDL) criterion for discriminating
signal from noise.

The key motivation here is that the signal component in the data can
often be efficiently represented by one or more of the bases in the library
whereas the noise component cannot be represented efficiently by any basis
in the library.

The use of the MDL criterion frees us from any subjective parameter
setting such as threshold selection. This is particularly important for real
field data where the noise level is difficult to obtain or estimate a prior:.

The organization of this paper is as follows. In Section 2, we re-
view some of the important properties of wavelets, wavelet packets, lo-
cal trigonometric transforms which constitute the “library of orthonormal
bases” which will be used for efficiently representing nonstationary signals.
In Section 3, we formulate our problem. We view the problem of simultane-
ous noise suppression and signal compression as a model selection problem
out of models generated by the library of orthonormal bases. In Section 4,
we review the MDL principle which plays a critical role in this paper. We
also give some simple examples to help understand its concept. In Sec-
tion 5, we develop an actual algorithm of simultaneous noise suppression
and signal compression. We also give the computational complexity of our
algorithm. Then, we extend our algorithm for higher dimensional signals
(images) in Section 6. In Section 7, we apply our algorithm to several geo-
physical datasets, both synthetic and real, and compare the results with
other competing methods. We discuss the connection of our algorithm with
other approaches in Section 8, and finally, we conclude in Section 9.

§2. A Library of Orthonormal Bases

For our purpose we need to represent signals containing many transient
features and edges in an efficient manner. Wavelets and their relatives, i.e.,
wavelet packets and local trigonometric transforms, have been found very
useful for this purpose; see e.g., [14], [6], [35], [30]. As shown below, each
of these transforms (or basis functions) has different characteristics. In
other words, the best transform to compress a particular signal may not be
good for another signal. Therefore, instead of restricting our attention to a
particular basis, we consider a library of bases. The most suitable basis for
a particular signal is selected from this collection of bases. This approach
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leads to a vastly more efficient representation for the signal, compared with
confining ourselves to a single basis.

In this section, we briefly describe the most important properties of
these transforms. Throughout this paper, we only consider real-valued
discrete signals (or vectors) with finite length N (= 27). Also we limit our
discussions to orthonormal transforms. Hence it suffices here to consider
discrete orthonormal transforms, i.e., the orthonormal bases of £?(N), the
N-dimensional space of vectors of finite energy.

More detailed properties of these bases can be found in the literature,

most notably, in [2], [9], [13], [23], [22], [26], [33].

2.1. Wavelet Bases

The wavelet transform (e.g., [13], [23]) can be considered as a smooth
partition of the frequency axis. The signal is first decomposed into low
and high frequency components by the convolution-subsampling operations
with the pair consisting of a “lowpass” filter {h;} and a “highpass” filter
{g1} directly on the discrete time domain. Let H and G be the convolution-
subsampling operators using these filters and H* and G* be their adjoint
(i.e., upsampling-anticonvolution) operations. It turns out that we can
choose finite-length (L) filters and satisfy the following orthogonality (or
perfect reconstruction) conditions:

HG*=GH* =0, and H*H4+G'G=1,

where T is the identity operator of £2(N). Also we have the relation g =
(=1)*hr_1_4. The pair of filters {hy}r=3 and {gx}LZ satisfying these
conditions are called quadrature mirror filters (QMFSs).

This decomposition (or expansion, or analysis) process is iterated on
the low frequency components and each time the high frequency coefficients
are retained intact and at the last iteration, both low and high frequency
coefficients are kept. In other words, let f = {f;}0_; € £(N) be a vector
to be expanded. Then, the convolution-subsampling operations transform
the vector f into two subsequences H f and G f of lengths N/2. Next, the
same operations are applied to the vector Hf to obtain H?f and GH f
of lengths N/4. If the process is iterated J (< n) times, we have the dis-
crete wavelet coefficients (Gf, GHf GH2f,...,.GH? f, H/T1 ) of length
N. As a result, the wavelet transform analyzes the data by partitioning
its frequency content dyadically finer and finer toward the low frequency
region (i.e., coarser and coarser in the original time or space domains).

If we were to partition the frequency axis sharply using the charac-
teristic functions (or box-car functions), then we would have ended up the
so-called Shannon (or Littlewood-Paley) wavelets, i.e., the difference of two
sinc functions. Clearly, however, we cannot have a finite-length filter in the
time domain in this case. The other extreme is the Haar basis which par-
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titions the frequency axis quite badly but gives the shortest filter length
(L = 2) in the time domain.

The reconstruction (or synthesis) process is also very simple: start-
ing from the lowest frequency components (or coarsest scale coefficients)
H7*'f and the second lowest frequency components GH? f, the adjoint
operations are applied and added to obtain H/ f = H*H'*'f + G*GH’ f.
This process is iterated to reconstruct the original vector f. The compu-
tational complexity of the decomposition and reconstruction process is in
both cases O(N) as easily seen.

We can construct the basis vector w; 1 at scale j and position k simply
by putting (GH? f); = &, where &1 denotes the Kronecker delta, and
synthesizing f = w; by the reconstruction algorithm. Using these basis
vectors, we can express the wavelet transform in a vector-matrix form as

a=W"f,

where a € RY contains the wavelet coefficients and W € RV*Y is an
orthogonal matrix consisting of column vectors w; ;. This basis vector has
the following important properties:

e vanishing moments: f\;gl mw; y(1)=0form=0,1,...,M — 1.
The higher the degrees of vanishing moments the basis has, the better
it compresses the smooth part of the signal. In the original construction
of Daubechies [12], it turns out that L = 2M. There are several other
possibilities. One of them is a family of the so-called “coiflets” with L = 3M
which are less asymmetric than the original wavelets of Daubechies [13].

o regularity: |w; x(I+1) —w; x ()| < e 2772,

where ¢ > 0 is a constant and a > 0 is called the regularity of the wavelets.
The larger the value of « is, the smoother the basis vector becomes. This
property may be important if one requires high compression rate since the
shapes of the basis vectors become “visible” in those cases and one might
want to avoid fractal-like shapes in the compressed signals/images [25].

e compact support: wjp(1) =0 for I ¢ [27k, 27k + (29 — 1)(L —1)].

The compact support property is important for efficient and exact numer-
ical implementation.

2.2. Wavelet Packet Best-Bases

For oscillating signals such as acoustic signals, the analysis by the
wavelet transform is sometimes inefficient because i1t only partitions the
frequency axis finely toward the low frequency. The wavelet packet trans-
form (e.g., [9], [22], [33]) decomposes even the high frequency bands which
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are kept intact in the wavelet transform. The first level decomposition
is Hf and Gf just like in the wavelet transform. The second level is
H?f GHf HGf, G?>f. If we repeat this process for J times, we end
up having JN expansion coefficients. Clearly, we have a redundant set
K . . a9(I—1) .
of expansion coefficients, in fact, there are more than 2° possible or-
thonormal bases. One way of selecting an efficient basis for representing
the signal or vector is to use the entropy criterion [9], [33]. We can think
of the wavelet packet bases as a set of different coordinate systems of RY.
Then a signal of length N is a point in RY, and we try to select the most
efficient coordinate system out of the given set of coordinate systems to
represent this signal. The signal in an efficient coordinate system should
have large magnitudes along a few axes and small magnitudes along most
axes. In particular, the wavelet packet basis function becomes a unit vec-
tor along an axis of the coordinate systems. Then, it is very natural to
use the entropy as a measure of efficiency of the coordinate system. The
best-basis is the basis or coordinate system giving the minimum entropy for
its coordinate distribution. The computational complexity of computing
the best-basis is O(N log, N) as is the reconstruction of the original vector
from the best-basis coefficients.

Remark. We would like to note that given a set of signals, the Karhunen-
Loéve basis gives the global minimum entropy. However, it is very expensive
to compute; the cost is O(N?3) since it involves solving an eigenvalue prob-
lem. On the other hand, the wavelet packet best-basis can be computed
cheaply and is defined even for a single signal; see [34] for a comparison of
these two bases using images of human faces.

2.3. Local Trigonometric Best-Bases

Local trigonometric transforms ([9], [22], [33], [2]) can be considered as
conjugates of wavelet packet transforms: they partition the time (or space)
axis smoothly. In fact, Coifman and Meyer [8] showed that it is possible to
partition the real-line into any disjoint intervals smoothly and construct or-
thonormal bases on each interval. In the actual numerical implementation,
the data is first partitioned into disjoint intervals by the smooth window
function, and then on each interval the data is transformed by the discrete
cosine or sine transforms (DCT/DST). Since it partitions the axis smoothly,
these transforms, i.e., local cosine or sine transforms (LCT/LST), have less
edge (or blocking) effects than the conventional DCT/DST. Wickerhauser
[33] proposed the method of dyadically partitioning the time axis and com-
puting the best-basis using the entropy criterion similarly to the wavelet
packet best-basis construction. The computational complexity in this case
is about O(N[log, N]?). Local trigonometric transforms are clearly efficient



6 Naok: Saito

for the signals with localized oscillating features such as musical notes.

§3. Problem Formulation

Let us consider a discrete degradation model
d=f+mn,

where d, f,n € RY and N = 2*. The vector d represents the noisy
observed data and f is the unknown true signal to be estimated. The
vector m is white Gaussian noise (WGN), i.e., n ~ N(0,0?I). Let us
assume that ¢? is unknown.

We now consider an algorithm to estimate f from the noisy observation
d. First, we prepare the library of orthonormal bases mentioned in the
previous section. This library consists of the standard Euclidean basis
of RY, the Haar-Walsh bases, various wavelet bases and wavelet packet
best-bases generated by Daubechies’s QMF's, their less asymmetric versions
(i.e., coiflets), and local trigonometric best-bases. This collection of bases
is highly adaptable and versatile for representing various transient signals
[7]. For example, if the signal consists of blocky functions such as acoustic
impedance profiles of subsurface structure, the Haar-Walsh bases capture
those discontinuous features both accurately and efficiently. If the signal
consists of piecewise polynomial functions of order p, then the Daubechies
wavelets/wavelet packets with filter length L > 2(p 4+ 1) or the coiflets
with filter length L > 3(p 4+ 1) would be efficient because of the vanishing
moment property. If the signal has a sinusoidal shape or highly oscillating
characteristics, the local trigonometric bases would do the job. Moreover,
computational efficiency of this library is also attractive; the most expensive
expansion in this library, i.e., the local trigonometric expansion, costs about
O(Nlog, N1?) as explained in the previous section.

Let us denote this library by £ = {B1,Bs, ..., By}, where B, repre-
sents one of the orthonormal bases in the library, and M (typically 5 to
20) is the number of bases in this library. If we want, we can add other
orthonormal bases in this library such as the Karhunen-Loéve basis [1] or
the prolate spheroidal wave functions [13], [36]. However, normally, the
above-mentioned multiresolution bases are more than enough, considering
their versatility and computational efficiency [7].

Since the bases in the library £ compress signals/images very well, we
make a strong assumption here: we suppose the unknown signal f can be
completely represented by k (< N) elements of a basis B, i.e.,

f=wWy,alb (1)

where W, € RV*¥ is an orthogonal matrix whose column vectors are the

(k)

basis elements of By,, and aly’ € RY is the vector of expansion coefficients
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of f with only k non-zero coefficients. At this point, we do not know the
actual value of k£ and the basis B,,. We would like to emphasize that in
reality the signal f might not be strictly represented by (1). We regard (1)
as a model at hand rather than a rigid physical model exactly ezplaining f
and we will try our best under this assumption. (This is often the case if we
want to fit polynomials to some data.) Now the problem of simultaneous
noise suppression and signal compression can be stated as follows: find
the “best” k and m giwen the library L. In other words, we translate the
estimation problem into a model selection problem where models are the
bases B,, and the number of terms k& under the additive WGN assumption.

For the purpose of data compression, we want to have k as small as
possible. At the same time, we want to minimize the distortion between
the estimate and the true signal by choosing the most suitable basis B,,,
keeping in mind that the larger £ normally gives smaller value of error.
How can we satisfy these seemingly conflicting demands?

§4. The Minimum Description Length Principle

To satisfy the above mentioned conflicting demands, we need a model
selection criterion. One of the most suitable criteria for our purpose is the
so-called Minimum Description Length (MDL) criterion proposed by Ris-
sanen [27], [28], [29]. The MDL principle suggests that the “best” model
among the given collection of models is the one giving the shortest descrip-
tion of the data and the model itself. For each model in the collection, the
length of description of the data is counted as the codelength of encoding
the data using that model in binary digits (bits). The length of description
of a model is the codelength of specifying that model, e.g., the number of
parameters and their values if it is a parametric model.

To help understand what “code” or “encoding” means, we give some
simple examples. We assume that we want to transmit data by first en-
coding (mapping) them into a bitstream by an encoder, then receive the
bitstream by a decoder, and finally try to reconstruct the data. Let L(x)
denote the codelength (in bits) of a vector @ of deterministic or probabilis-
tic parameters which are either real-valued, integer-valued, or taking values
in a finite alphabet.

Example 4.1. Codelength of symbols drawn from a finite alphabet.

Let ® = (21,22,...,zN) be a string of symbols drawn from a finite al-
phabet X', which are independently and identically distributed (i.i.d.) with
probability mass function p(z), # € X'. In this case, clearly the frequently
occurring symbols should have shorter codelengths than rarely occurring
symbols for efficient communication. This leads to the so-called Shannon
code [11] whose codelength (if we ignore the integer requirement for the
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codelength) can be written as
L(z) = —log p(z) forz e X.

(From now on, we denote the logarithm of base 2 by “log”, and the nat-
ural logarithm, i.e., base ¢ by “In”.) The Shannon code has the shortest
codelength on the average, and satisfies the so-called Kraft inequality [11]:

St <, 2)

reX

which is necessary and sufficient for the existence of an instantaneously
decodable code, 1.e., a code such that there is no codeword which is the
prefix of any other codeword in the coding system. The shortest codelength
on the average for the whole sequence @ becomes

L) =) L(w:) == _logp(x:).

Example 4.2. Codelength of deterministic integers.

For a deterministic parameter j € Zy = (0,1,..., N — 1) (i.e., both the
encoder and decoder know N), the codelength of describing j is written as
L(j) = log N since log N bits are required to index N integers. This can
also be interpreted as a codelength using Shannon code for a sample drawn
from the uniform distribution over (0,1,..., N —1).

Example 4.3. Codelength of an integer (universal prior for an integer).
Suppose we do not know how large a natural number j is. Rissanen [27]
proposed that the code of such j should be the binary representation of
Jj, preceded by the code describing its length log 7, preceded by the code
describing the length of the code for logyj, and so forth. This recursive
strategy leads to

L*(j) = log™ j + logco = log j + loglogj + - - - + log g,

where the sum involves only the non-negative terms and the constant
cop & 2.865064 which was computed so that equality holds in (2), i.e.,
Z})’;l 2=L7() = 1. This can be generalized for an integer j by defining

w1 ifj =0, .
L*(j) = { log* |j] + logdcy otherwise. (3)

(We can easily see that (3) satisfies Z}i_oo 2-L70) = 1))

Example 4.4. Codelength of a truncated real-valued parameter.
For a deterministic real-valued parameter v € R, the exact code generally
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requires infinite length of bits. Thus, in practice, some truncation must
be done for transmission. Let é be the precision and vs be the truncated
value, i.e., [v — vs| < 8. Then, the number of bits required for vs is the
sum of the codelength of its integer part [v] and the number of fractional
binary digits of the truncation precision §, i.e.,

L(vs) = L* ([o]) + log(1/8). (4)

Having gone through the above examples, now we can state the MDL
principle more clearly. Let M = {6, : m = 1,2, ...} be a class or collection
of models at hand. The integer m is simply an index of a model in the list.
Let ® be a sequence of observed data. Assume that we do not know the
true model @ generating the data @. As in [29], [24], given the index m, we
can write the codelength for the whole process as

L(®,0,,m)=L(m)+ L(0p | m)+ L(x | 6, m). (5)

This equation says that the codelength to rewrite the data is the sum of the
codelengths to describe: (i) the index m, (ii) the model 8,, given m, and
(iii) the data @ using the model 6,,. The MDL criterion suggests picking
the model 6,,« which gives the minimum of the total description length

(3).
The last term of the right-hand side (RHS) of (5) is the length of the

Shannon code of the data assuming the model 8, is the true model, i.e.,

L(x | 0, m) = —logp(x | Om, m), (6)
and the maximum likelihood (ML) estimate 6,, minimizes (6) by the defi-
nition:

L(@ | 0, m) = —logp( | B, m) < —logp(x | B, m). (7)
However, we should consider a further truncation of @m as shown in Ex-
ample 4.4 above to check that additional savings in the description length
is possible. The finer truncation precision we use, the smaller the term
(7), but the larger the term L(6,, | m) becomes. Suppose that the model
0., has k,, real-valued parameters, i.e., 0, = (0m,1,...,0m 1, ). Rissanen

showed in [27], [29] that the optimized truncation precision (§*) is of order

1/\/ﬁ and

méin L(x,0,5,m,6)

= L(m)+ L(Bm s | m)+ L@ | Op.se,m) + Ok

X

km
Dm) + 3 1 ([ 1)+ 2108 N + L | G, m) + Olkm), (9
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where gm is the optimal non-truncated value given m, /émyé* is its opti-
mally truncated version, and L*(-) is defined in (4). We note that the last
term O(ky,) in the approximation in (8) includes the penalty codelength
necessary to describe the data # using the truncated ML estimate /émyé*
instead of the true ML estimate gm In practice, we rarely need to obtain
the optimally truncated value 6,, s« and we should compute 6, up to the
machine precision, say, 107'%, and use that value as the true ML estimate
in (8). For sufficiently large N, the last term may be omitted, and instead
of minimizing the ideal codelength (5), Rissanen proposed to minimize

k
. m k., .
MDL(x,8m,m) = L(m) + Y L*([m ;1) + 5 log N + L(w | 8, m). (9)
ji=1
The minimum of (9) gives the best compromise between the low complexity
in the model and high likelihood on the data.
The first term of the RHS of (9) can be written as

L(m) = —logp(m), (10)

where p(m) is the probability of selecting m. If there is prior information
about m as to which m is more likely, we should reflect this in p(m).
Otherwise, we assume each m is equally likely, i.e., p(m) is a uniform
distribution.

Remark. Even though the list of models M does not include the true
model, the MDL method achieves the best result among the available mod-
els. See Barron and Cover [4] for detailed information on the error between
the MDL estimate and the true model.

We also would like to note that the MDL principle does not attempt
to find the absolutely minimum description of the data. The MDL always
requires an available collection of models and simply suggests picking the
best model from that collection. In other words, the MDL can be considered
as an “oracle” for model selection [24]. This contrasts with the algorithmic
complexities such as the Kolmogorov complexity which gives the absolutely
minimum description of the data, however, in general, is impossible to

obtain [27].

Before deriving our simultaneous noise suppression and signal compres-
sion algorithm in the context of the MDL criterion, let us give a closely
related example:

Example 4.5. A curve fitting problem using polynomials.
Given N points of data (z;,y;) € R?, consider the problem of fitting a
polynomial through these points. The model class we consider is a set of
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polynomials of orders 0,1,..., N — 1. In this case, 8, = (ag,a1,...,am)
represents the m+1 coefficients of a polynomial of order m. We also assume
that the data is contaminated by the additive WGN with known variance
o2, ie.,
yi = f@i) + e,

where f(-) is an unknown function to be estimated by the polynomial mod-
els, and e; ~ N'(0,0?). To invoke the MDL formalism, we pose this ques-
tion in the information transmission setting. First we prepare an encoder
which computes the ML estimate of the coefficients of the polynomial,
(do, ..., am), of the given degree m from the data. (In the additive WGN
assumption the ML estimate coincides with the least squares estimate.)
This encoder transmits these m coefficients as well as the estimation errors.
We also prepare a decoder which receives the coefficients of the polynomial
and residual errors and reconstruct the data. (We assume that the abscis-
sas {z;}V 2

i are known to both the encoder and

1 and the noise variance o
the decoder.) Then we ask how many bits of information should be trans-
mitted to reconstruct the data. If we used polynomials of degree N — 1,
we could find a polynomial passing through all N points. In this case, we
could describe the data extremely well. In fact, there is no error between
the observed data and those reconstructed by the decoder. However, we
do not gain anything in terms of data compression/transmission since we
also have to encode the model which requires N coefficients of the polyno-
mial. In some sense, we did not “learn” anything in this case. If we used
the polynomial of degree 0, i.e., a constant, then it would be an extremely
efficient model, but we would need many bits to describe the deviations
from that constant. (Of course, if the underlying data is really a constant,
then the deviation would be 0.)

Let us assume there is no prior preference on the order m. Then we
can easily see that the total codelength (9) in this case becomes

~ s N 1
MDL(y Bp,m) = log N+ 3 L([&5]) + "~ log
j=0
N 2
N_ 5 loge S
+ ElogZWc’ + 957 ; yi—;ajxiﬂ

The MDL criterion suggests to pick the “best” polynomial of order m* by
minimizing this approximate codelength.

The MDL criterion has been successfully used in various fields such
as signal detection [32], image segmentation [19], and cluster analysis [31]
where the optimal number of signals, regions, and clusters, respectively,
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should be determined. If one knows a prior: the physical model to explain
the observed data, that model should definitely be used, e.g., the complex
sinusoids in [32]. However, in general, as a descriptor of real-life signals
which are full of transients or edges, the library of wavelets, wavelet packets,
and local trigonometric transforms is more flexible and efficient than the
set of polynomials or sinusoids.

§5. A Simultaneous Noise Suppression and Signal Compression
Algorithm

We carry on our development of the algorithm based on the information
transmission setting as the polynomial curve fitting problem described in
the previous section. We consider again an encoder and a decoder for our
problem. Given (k,m) in (1), the encoder expands the data d in the basis
B, then transmits the number of terms k, the specification of the basis
m, and k expansion coefficients, the variance of the WGN model ¢2, and
finally the estimation errors. The decoder receives this information in bits
and tries to reconstruct the data d.

In this case, the total codelength to be minimized may be expressed
as the sum of the codelengths of: (i) two natural numbers (k, m), (ii) (k +

(k)

1) real-valued parameters (au,’,0?) given (k,m), and (iii) the deviations

of the observed data d from the (estimated) signal f = Wmag,f) given

(k,m, ag,f), 0?). The approximate total description length (9) now becomes
MDL(d,a'™) 5%k, m)
= L(k,m)+ L@, | k,m) + L(d | &,5% k,m),  (11)
A~ (k) (k)

where a,,’ and % are the ML estimates of au,’ and o2, respectively.

Let us now derive these ML estimates. Since we assumed the noise
component i1s additive WGN, the probability of observing the data given
all model parameters is

d—W,,al))?
P(d | ag,f), o2k, m) = (271'02)_N/2 exp (—Hz—n;m” , (12)
o

where || - || is the standard Euclidean norm on R". For the ML estimate
of o2, first consider the log-likelihood of (12)

, ld— Waab|?

202 (13)

N
Inp(d | agj), o k,m) = -5 In27o
Taking the derivative with respect to o2 and setting it to zero, we easily
obtain

57 = %Hd— W a2, (14)
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Insert this equation back to (13) to get

N 2 N
Inp(d | afi),5% k,m) = - 1n <§||d_ Wma,g’;)”?) -5 (1)

Let dp, = W d denote the vector of the expansion coefficients of d in the
basis B,,. Since this basis is orthonormal, i.e., W, is orthogonal, and we
use the 2 norm, we have

ld = Wnall|* = [Wa(Wid—al)|l* = ldn -l (16)

From (15), (16), and the monotonicity of the In function, we find that
maximizing (15) is equivalent to minimizing

I — oI (17)
(k)

Considering that the vector a;,” only contains £ nonzero elements, we can
easily conclude that the minimum of (17) is achieved by taking the largest

k coefficients in magnitudes of gm as the ML estimate of agf), le.,
&) = 0Wd, = oW (WLa), (1)

where @ %) is a thresholding operation which keeps the k largest elements in

absolute value intact and sets all other elements to zero. Finally, inserting
(18) into (14), we obtain

1 1
6 = CIWhd- 0wl d|? = (- e )wid|?  (19)

where I represents the N dimensional identity operator (matrix).

Let us further analyze (11) term by term. If we do not have any prior
information on (k, m), then the cost L(k,m) is the same for all cases, i.e.,
we can drop the first term of (11) for minimization purpose. However, if
one has some prior preference about the choice of basis, knowing some prior
information about the signal f, L(k, m) should reflect this information. For
instance, if we happen to know that the original function f consists of a
linear combination of dyadic blocks, then we clearly should use the Haar
basis. In this case, we may use the Dirac distribution, i.e., p(m) = 6 mo,
where myg is the index for the Haar basis in the library £. By (10), this
leads to L) i

if m = myg,
L(k,m) = { 400 otherwise.
On the other hand, if we either happen to know a prior: or want to force
the number of terms retained (k) to satisfy k1 < k < ks, then we may want
to assume the uniform distribution for this range of k, i.e.,

_ L(m) + log(kg — ]{71 + 1) if ]{71 S k S ]CQ, P
L(k,m) = { +oo otherwise. (20)
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As for the second term of (11), which is critical for our algorithm, we

have to encode k expansion coefficients aﬁ,’j) and 02, i.e., (k+1) real-valued
parameters. However, in this case, by normalizing the whole sequence by
(k)
is strictly less than one; in other words, the integer part of each coefficient
is simply zero. Hence we do not need to encode the integer part as in (9)
if we transmit the real-valued parameter ||d||. Now the description length

[|d||, we can safely assume that the magnitude of each coefficient in &

of (aﬁ,’§>,32) given (k, m) becomes approximately %ﬁlogN + L*([¢?]) +
L*([||d|l]) bits since there are k + 2 real-valued parameters: k nonzero
coefficients, o2, and ||d||. After normalizing by ||d||, we clearly have 5% < 1
(see (19)), so that L*([6?]) = 1 (see (3)). For each expansion coefficient,
however, we still need to specify the index of the coefficient, 1.e., where the
k non-zero elements are in the vector aﬁ,’j). This requires klog N bits. As
a result, we have

L(@®) 52 | k,m) = %klogN—}— c, (21)

where ¢ is a constant independent of (k, m).
Since the probability of observing d given all model parameters is given
by (12), we have for the last term in (11)

~ ~ N
L(d | &™) 5% k,m) = 7 log I(T ~ OMNWTId|? + ¢, (22)

where ¢’ is a constant independent of (k, m).

Finally we can state our simultaneous noise suppression and signal
compression algorithm. Let us assume that we do not have any prior infor-
mation on (k, m) for now. Then, from (11), (21), and (22) with ignoring
the constant terms ¢ and ¢/, our algorithm can be stated as:

Pick the indez (k*, m*) such that

: N
AMDL(k*,m*) = min (ﬁklogNJr510g||(1_@<’“>)wf1d||2).

0<k<nN \2
1<m<M
(23)
Then reconstruct the signal estimate
F=wo.alt) (24)

Let us call the objective function to be minimized in (23), the approx-
imate MDL (AMDL) since we ignored the constant terms. Let us now
show a typical behavior of the AMDL value as a function of the number
of terms retained (k) in Figure 1. (In fact, this curve is generated using
Example 7.1 below.) We see that the log(residual energy) always decreases
as k increases. By adding the penalty term of retaining the expansion coef-
ficients, i.e., (3/2)klog N (which is just a straight line), we have the AMDL
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Figure 1. Graphsof AMDL versus k: AMDL [solid line] which is the sum
of the (3/2)k log N term [dotted line] and the (N/2) log(residual energy)
term [dashed line].

curve which typically decreases for the small k, then starts increasing be-
cause of the penalty term, then finally decreases again at some large k£ near
from k = N because the residual error becomes very small. Now what we
really want is the value of k£ achieving the minimum at the beginning of
the k-axis, and we want to avoid searching for £ beyond the maximum oc-
curring for k near N. So, we can safely assume that k1 = 0 and ky = N/2
in (20) to avoid searching more than necessary. (In fact, setting k2 > N/2
does not make much sense in terms of data compression either.)

We briefly examine below the computational complexity of our algo-
rithm. To obtain (k*, m*), we proceed as follows:
Step 1: Expand the data d into bases By, ..., Bar. Each expansion (includ-
ing the best-basis selection procedure) costs O(N) for wavelets, O(N log N)
for wavelet packet best-bases, and O(N[log N]?) for local trigonometric
best-bases.
Step2: Let K(= kg — k1 + 1) denote the length of the search range for k.
For k1 <k < ks, 1 <m < M, compute the expression in the parenthesis of
the RHS in (23). This costs approximately O(N + 3M K) multiplications
and M K calls to the log function.
Step 3: Search the minimum entry in this table, which costs M K compar-
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isons.

Step 4: Reconstruct the signal estimate (24), which costs O(N) for wavelets,
O(N log N) for wavelet packet best-bases, and O( N [log N]?) for local trigono-
metric best-bases.

§6. Extension to Images

For images or multidimensional signals, we can easily extend our al-
gorithm by using the multidimensional version of the wavelets, wavelet
packets, and local trigonometric transforms. In this section, we briefly
summarize the two-dimensional (2D) versions of these transforms. For the
2D wavelets, there are several different approaches. The first one, which
we call the sequential method, is the tensor product of the one-dimensional
(1D) wavelets, i.e., applying the wavelet expansion algorithm separately
along two axes #; and t5 corresponding to column (vertical) and row (hor-
izontal) directions respectively. Let f € RY >Nz and H;, G; be the 1D
convolution-subsampling operations along axis ¢;,2 = 1,2. Then this ver-
sion of the 2D wavelet transform first applies the convolution-subsampling
operations along the ¢; axis to obtain f; = (G1f,G1H1 f, .. .,GlHIJlf),
then applies the convolution-subsampling operations along the ¢, axis to get
the final 2D wavelet coefficients (Gaf,, GaHa2f4, .. ., G2H2J2f1) of length
N1 x Ni, where J; (< log N7) and Jy (< log N3) are maximum levels of
decomposition along t; and t; axes respectively. We note that one can
choose different 1D wavelet bases for ¢; and 5 axes independently. Given
M different QMF pairs, there exist M? possible 2D wavelets using this
approach.

The second approach is the basis generated from the tensor product
of the multiresolution analysis. This decomposes an image f into four
different sets of coefficients, H1Hof, G1Hsf, H1Gsf, and G1Gsf, cor-
responding to “low-low”, “high-low”, “low-high”, “high-high” frequency
parts of the two variables, respectively. The decomposition is iterated on
the “low-low” frequency part and this ends up in a “pyramid” structure of
coefficients. Transforming the digital images by these wavelets to obtain
the 2D wavelet coefficients are described in e.g., [20], [13].

There are also 2D wavelet bases which do not have a tensor-product
structure, such as wavelets on the hexagonal grids and wavelets with matrix
dilations. See e.g., [18], [17] for details.

There has been some argument as to which version of the 2D wavelet
bases should be used for various applications [5], [13]. Our strategy toward
this problem is this: we can put as many versions of these bases in the
library as we can afford it in terms of computational time. Then minimiz-
ing the AMDL values automatically selects the most suitable one for our
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purpose.

As for the 2D version of the wavelet packet best-basis, the sequen-
tial method may be generalized, but it is not easily interpreted; the 1D
best-bases may be different from column to column so that the resultant
coefficients viewing along the row direction may not share the same fre-
quency bands and scales unlike the 2D wavelet bases. This also makes the
reconstruction algorithm complicated. Therefore, we should use the other
tensor-product 2D wavelet approach for the construction of the 2D wavelet
packet best-basis: we recursively decompose not only the “low-low” com-
ponents but also the other three components. This process produces the
“quad-tree” structure of wavelet packet coefficients instead of the “binary-
tree” structure for 1D wavelet packets. Finally the 2D wavelet packet
best-basis coefficients are selected using the entropy criterion [33].

The 2D version of the local trigonometric transforms can be con-
structed using the quad-tree structure again: the original image is smoothly
folded and segmented into 4 subimages, 16 subimages, ..., and in each
subimage the separable DCT/DST is applied, and then the quad-tree struc-
ture of the coefficients is constructed. Finally, the local trigonometric best-
basis is selected using the entropy criterion [33].

For an image of N = N; x N; pixels, the computational costs are
approximately O(N), O(N log, N), O(N[log, N]?) for a 2D wavelet, a 2D
wavelet packet best-basis, a 2D local trigonometric best-basis, respectively.

§7. Examples

In this section, we give several examples to show the usefulness of our
algorithm.

Example 7.1. The Synthetic Piecewise Constant Function of Donoho-
Johnstone.

We compared the performance of our algorithm in terms of the visual qual-
ity of the estimation and the relative ¢ error with Donoho-Johnstone’s
method using the piecewise constant function used in their experiments
[16]. The results are shown in Figure 2. The true signal is the piecewise
constant function with N = 2048, and its noisy observation was created
by adding the WGN sequence with ||f]|/||n|| = 7. The library £ for this
example consisted of 18 different bases: the standard Euclidean basis of
R", the wavelet packet best-bases created with D02, D04, ..., D20, C06,
C12, ..., C30, and the local cosine and sine best-bases (Dn represents the
n-tap QMF of Daubechies and Cn represents the n-tap coiflet filter). In
the Donoho-Johnstone method, we used the CO06, i.e., 6-tap coiflet with
2 vanishing moments. We also specified the scale parameter J = 7, and
supplied the ezact value of 0. Next, we forced the Haar basis (D02) to
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Figure 2. Results for the synthetic piecewise constant function: (a)
Original piecewise constant function. (b) Noisy observation with (signal
energy)/(noise energy) = 72. (c) Estimation by the Donoho-Johnstone
method using coiflets C06. (d) Estimation by the Donoho-Johnstone
method using Haar basis. (¢) Estimation by the proposed method.

be used in their method. Finally, we applied our algorithm without spec-
ifying anything. In this case, the Haar-Walsh best-basis with £* = 63
was automatically selected. The relative £ errors are 0.116, 0.089, 0.051,
respectively. Although the visual quality of our result is not too differ-
ent from Donoho and Johnstone’s (if we choose the appropriate basis for
their method), our method generated the estimate with the smallest rela-
tive £ error and slightly sharper edges. (See Section 8 for more about the
Donoho-Johnstone method and its relation to our method.)

Example 7.2. A Pure White Gaussian Noise.

We generated a synthetic sequence of WGN with 02 = 1.0 and N = 4096.
The same library as in Example 7.1 (with the best-bases adapted to this
pure WGN sequence) was used. We also set the upper limit of search range
ks = N/2 = 2048. Figure 3 shows the AMDL curves versus k for all bases
in the library. As we can see, there is no single minimum in the graphs,
and our algorithm satisfactorily decided k* = 0, i.e., there is nothing to
“learn” in this dataset.
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Figure 3. The AMDL curves of the White Gaussian Noise data for all
bases. For each basis, & = 0 is the minimum value. The vertical dotted
line indicates the upper limit of the search range for k.

Example 7.3. A Natural Radioactivity Profile of Subsurface Formation.
We tested our algorithm on the actual field data which are measurement of
natural radioactivity of subsurface formation obtained at an oil-producing
well. The length of the data is N = 1024. Again, the same library was used
as in the previous examples. The results are shown in Figure 4. In this case,
our algorithm selected the D12 wavelet packet best-basis (Daubechies’s 12-
tap filter with 6 vanishing moments) with &* = 77. The residual error is
shown in Figure 4 (¢) which consists mostly of a WGN-like high frequency
component. The compression ratio is 1024/77 = 13.3. However, to be able
to reconstruct the signal from the surviving coefficients, we still need to
record the indices of those coefficients.

Suppose we can store each index by b; bytes of memory and the preci-
sion of the original data is by bytes per sample. Then the storage reduction
ratio Ry can be computed by

_N/rx(bf+bi)_1 b;

Ry= LT (14

Nocb; - r0TE) (29)

where r is a compression ratio. The original data precision was b; = 8
(bytes) in this case. Since it is enough to use b; = 2 (bytes) for indices and
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Figure 4. The estimate of the natural radioactivity profile of subsurface
formation: (a) Original data which was measured in the borehole of an
oil-producing well. (b) Estimation by the proposed method. (c) Residual
error between (a) and (b).

r = 13.3%, we have R; ~ 9.40%, i.e., 90.60% of the original data can be
discarded.

Example 7.4. A Migrated Seismic Section.

In this example, the data 1s a migrated seismic section as shown in Fig-
ure 5 (a). The data consist of 128 traces of 256 time samples. We selected
six 2D wavelet packet best-bases (D02, C06, C12, C18, C24, C30) as the
library. Figure 5 (b) shows the estimate by our algorithm. Tt automatically
selected the filter C30 and the number of terms retained as £* = 1611. If
we were to choose a good threshold in this example, it would be fairly dif-
ficult since we do not know the accurate estimate of ¢2. The compression
rate, in this case, is (128 x 256)/1611 & 20.34. The original data precision
was by = 8 as in the previous example. In this case we have to use b; = 3
(1 byte for row index, 1 byte for column index, and 1 byte for scale level).
If we put these and r = 20.34% into (25), we have R, = 6.76%, i.e., 93.24%
of the original data can be discarded. Figure 5 (c¢) shows the residual er-
ror between the original and the estimate. We can clearly see the random
noise and some strange high frequency patterns (which are considered to
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Figure 5. Results for the migrated seismic section: (a) Original seismic
section with 128 traces and 256 time samples. (b) Estimation by the pro-
posed method. (¢) Residual error between (a) and (b). (Dynamic range of
display (c) is different from those of (a) and (b).)

be numerical artifacts from the migration algorithm applied).

§8. Discussions

Our algorithm is intimately connected to the “denoising” algorithm
of Coifman and Majid [7], [10]. Their algorithm first picks the best-basis
from the collection of bases and sorts the best-basis coefficients in order of
decreasing magnitude. Then they use the “theoretical compression rate” of
the sorted best-basis coefficients {a;}Y, as a key criterion for separating
a signal component from noise. The theoretical compression rate of a unit
vector u is defined as c(u) = 27(%) /N (u), where H(u) is the £?>-entropy of
u,ie, Hu) = — Zf\i(lu) u?logu?, and N(u) is the length of u. We note
that 0 < c¢(u) < 1 for any real unit vector u, and c(u) = 0 implies v =
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{6i,io} for some iy (the best possible compression), and c¢(u) = 1 implies
u={(1,...,1)/\/N(u) (the worst compression). Then to decide how many
coefficients to keep as a signal component, they compare c({ai}f\;k_l_l), the
theoretical compression rate of the noise component (defined as the smallest
(N — k) coefficients), to the predetermined threshold 7. They search k =
0,1,...which gives an unacceptably bad compression rate: c({ai}f\;k_l_l) >
7. Their algorithm critically depends on the choice of the threshold 7
whereas our algorithm needs no threshold selection. On the other hand,
their algorithm does not assume the WGN model we used in this paper;
rather, they defined the noise component as a vector reconstructed from
the best-basis coefficients of small magnitude.

Our algorithm can also be viewed as a simple yet flexible and effi-
cient realization of the “complexity regularization” method for estimation
of functions proposed by Barron [3]. He considered a general regression
function estimation problem: given the data (z;,y;)),, where {z; € R’}
is a sequence of the (p-dimensional) sampling coordinates (or explanatory
variables) and {y; € R} is the observed data (or response variables), se-
lect a “best” regression function fN out of a list (library) Lx of candidate
functions (models). He did not impose any assumption on the noise distri-
bution, but assumed that the number of models in the list £ depends on
the number of observations N. Now the complexity regularization method
of Barron is to find fn such that

- (1 E A
R(fn) = min (N ;d(yz, fzi) + NL(f)) :
where d(-, -) is a measure of distortion (such as the squared error), A > 0 is
a regularization constant, and L(f) is a complexity of a function f (such
as the L(m) + L(0,, | m) term in (5)). He showed that various asymptotic
properties of the estimator _}?N as N — oo, such as bounds on the estimation
error, the rate of convergence, etc. If we restrict our attention to the finite
dimensional vector space, use the library of orthonormal bases described in
Section 2, adopt the length of the Shannon code (6) as a distortion measure,
assume the WGN model, and finally set A = 1, then Barron’s complexity
regularization method reduces to our algorithm. Our approach, although
restricted in the sense of Barron, provides a computationally efficient and
yet flexible realization of the complexity regularization method, especially
compared to the library consisting of polynomials, splines, trigonometric
series discussed in [3].

Our algorithm also has a close relationship with the denoising algorithm
via “wavelet shrinkage” developed by Donoho and Johnstone [16]. (A well-
written summary on the wavelet shrinkage and its applications can be found
in [15].) Their algorithm first transforms the observed discrete data into a



Nowse Suppression and Signal Compression 23

wavelet basis (specified by the user), then applies a “soft threshold” 7 =
oVIn N to the coefficients, i.e., shrinks magnitudes of all the coefficients
by the amount 7 toward zero. Finally the denoised data is obtained by
the inverse wavelet transform. Donoho claimed informally in [15] that the
reason why their method works is the ability of wavelets to compress the
signal energy into a few coefficients. The main differences between our
algorithm and that of Donoho and Johnstone are:

e Our method automatically selects the most suitable basis from a
collection of bases whereas their method uses only a fized basis
specified by the user.

e Our method includes adaptive expansion by means of wavelet pack-
ets and local trigonometric bases whereas their method only uses a
wavelet transform.

e Their method requires the user to set the coarsest scale parameter
J < n and a good estimate of ¢2, and the resulting quality depends
on these parameters. On the other hand, our method does not
require any such parameter setting.

e Their approach is based on the minimax decision theory in statistics
and addresses the risk of the estimation whereas our approach uses
the information-theoretic idea and combines denoising and the data
compression capability of wavelets explicitly.

e Their method thresholds the coefficients softly whereas our method
can be said to threshold sharply. This might cause some Gibbs-like
effects in the reconstruction using our method.

Future extensions of this research are to: incorporate noise models
other than Gaussian noise, extend the algorithm for highly nonstationary
signals by segmenting them smoothly and adaptively, investigate the effect
of sharp thresholding, and study more about the relation with the com-
plexity regularization method of Barron as well as the wavelet shrinkage of
Donoho-Johnstone.

§9. Conclusions

We have described an algorithm for simultaneously suppressing the ad-
ditive WGN component and compressing the signal component in a dataset.
One or more of the bases in the library, consisting of wavelets, wavelet pack-
ets, and local trigonometric bases, compress the signal component quite
well, whereas the WGN component cannot be compressed efficiently by any
basis in the library. Based on this observation, we have tried to estimate
the “best” basis and the “best” number of terms to retain for estimating the
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signal component in the data using the MDL criterion. Both synthetic and
real field data examples have shown the wide applicability and usefulness
of this algorithm.
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