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1. INTRODUCTION

Acoustic measurements have long been used in geophys-
ical well logging to infer petrophysical properties or the
lithology of subsurface formations [12]. In sonic logging,
an acoustic pulse is generated at the transmitter of a mea-
surement tool lowered into a borehole. Then, this pulse
propagates through the surrounding formations. Finally,
the pressure field is recorded at the receiver located in
the upper portion of the same tool (about 9 feet above
the transmitter). This process is repeated until the tool is
raised to a certain depth. A typical recorded waveform
(digital signal), as shown in Figure 1, consists of three
types of localized wave components: P wave (a refracted
compressional wave), S wave (a refracted shear wave),
and the Stoneley wave (a guided surface wave). The P
and S waves follow paths that minimize the traveltimes
between the transmitter and the receiver. The Stoneley
wave, which is guided by the fluid-rock interface, trav-
els more slowly than the P and S waves and is the dom-
inant event at later times in the waveform. Traditionally,
velocities of these three wave components (with or with-
out their amplitudes) have been used to infer petrophys-
ical/lithologic properties of the surrounding formations
such as porosity, mineralogy, grain contacts, fluid satura-
tion, volume percentages of various rocks such as sand-
stone, shale, and limestone, etc. See [12], [13] and refer-
ences therein for the detailed physics behind these rela-
tionships.

Extracting velocity information of each wave compo-
nent, however, is not necessarily an easy task. There
are two popular approaches for estimating velocities of
wave components: one is a semi-automatic tracking of
the first zero-crossing of the wave component; the other
is based on the semblance and coherency of the wave
components which is similar to the localized version of
the Radon transform [7]. Both have drawbacks: the for-
mer method often requires manual editing since the po-
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Figure 1: A typical acoustic waveform recorded down-
hole. The surrounding subsurface formation consists of
shale in this case. The Stoneley wave component nor-
mally has a dominant energy.

sitions of these zero-crossings vary (sometimes wildly)
from trace to trace; the latter method is computationally
expensive.

The velocity and amplitude information of a particu-
lar wave component, are just part of the information con-
tained in the entire waveform shape. Thus, it is expected
that the entire waveform shape contains more informa-
tion about the lithology of the formation. In fact, the em-
pirical relationship between the shapes of the waveforms
and the lithology has been long recognized. There have
been several attempts to infer this information using the
entire waveform shape [5], [6]. Most of these attempts
have been based on statistical pattern recognition tech-
niques because building an exact mathematical or physi-
cal model is complicated and difficult.

In this paper, we view the problem of inferring litho-
logic information from the entire waveforms as a classi-
fication problem, i.e., classification of the rock types us-
ing waveform shape information. In particular, we ap-
ply recently developed method, the so-called local dis-
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criminant basis (LDB) [3], [9, Chap. 4], [10] to this infer-
ence problem. This is a supervised learning method with
automatic feature extraction capability: Given a training
dataset (i.e., waveforms and their associated rock type in-
formation at specific depth levels), the LDB method auto-
matically extracts features (the so-called time-frequency
atoms) that are well localized in both time and frequency
and that are useful for this classification task. This local
nature of the time-frequency atoms makes interpretation
of the classification results easier and more intuitive com-
pared with the conventional methods (such as linear dis-
criminant analysis or classification trees) directly applied
to the original waveforms.

The organization of the paper is as follows. In Sec-
tion 2, we review the time-frequency atoms and the LDB
method. In Section 3, we give some background infor-
mation of the field dataset on which we test our meth-
ods. Then we present the results and their interpretation
in Section 4. Finally we present our conclusions in Sec-
tion 5.

2. REVIEW OF TIME-FREQUENCY ATOMS,
DICTIONARY, AND LOCAL DISCRIMINANT

BASES

2.1. Time-frequency atoms and dictionaries

Most geophysical signals of interest consist of transients,
edges, and/or local oscillations. To use them efficiently
and have easily interpretable results for various tasks, one
should have tools which can not only analyze the sig-
nals but can also synthesize the signal components and
features useful for those tasks. The traditional Fourier
transform is not efficient to handle such local phenom-
ena: it uses global oscillations to analyze local ones.
Time-frequency atoms are mathematical building blocks
(basis vectors) well localized both in time and in fre-
quency; they permit one to decompose the signals into
such atoms in a computationally efficient manner, to an-
alyze them, and then to extract and synthesize useful fea-
tures. Wavelets, wavelet packets, and local trigonometric
functions are examples of such atoms and recently have
drawn considerable attention from such diverse fields
as signal and image processing, numerical analysis, and
statistics (see e.g., [14], [9]).

Let � �
	�� be an input signal and let ���� ��� 	�� rep-
resent the input signal space and ����� ����������� �!�!�"�#� �%$
be the standard (or canonical) basis of 	 � . Then wavelet
packets and local trigonometric transforms split this
original space into two mutually orthogonal subspaces

smoothly and recursively, i.e.,

'&�� ()�*'& +,�-� .-(0/1'& +,�-� .-( +,� �
for 23� 45� 67� �!�!�"�98"�;:<� 4"�!�!� �"�-= &?> 6 , and 8'�A@BDCFE0G $ is the maximum level of recursions specified by the
user. (Unless otherwise mentioned,

BDCFE
is taken as that

of base 2 throughout this paper.) Here, we have
G &IH�JLKDM '&��ONP� GRQ = & . The wavelet packet transforms recur-

sively split the frequency domain via the so-called con-
jugate quadrature filters [14, Chap. 5]. The local trigono-
metric transforms recursively split the time axis and then
analyze each time segment by the discrete trigonometric
transforms [14, Chap. 4]. These splits naturally gener-
ate a set of subspaces with the binary tree structure. LetS �T�U2F�#: $ be an index to specify a node (i.e., a subspace
with its basis set) of this binary tree. The index 2 specifies
the depth of the binary tree; this is an index of the width
of frequency bands for wavelet packets and that of time
windows for local trigonometric bases. The index : spec-
ifies the location of the frequency bands for wavelet pack-
ets and that of the time windows for local trigonometric
bases. Let VW�YXZ�[�\ be such a collection of subspaces
and let ]^�_X���[`\ be the corresponding set of basis vec-
tors where �a[
�b�dce[5� �!� �!���Ac
[ �Ff9$ is a set of basis vec-
tors that spans  [ . Each basis vector in ] is called a
time-frequency atom, and the whole set ] is referred to as
a time-frequency dictionary or a dictionary of orthonor-
mal bases [14], [9]. Expanding a signal of length

G
into

such a dictionary is fast; it costs g�� GaBDCFE0G $ for a wavelet
packet dictionary and g�� G'h BiC7EjG5k . $ for a local trigono-
metric dictionary. These dictionaries contain many or-
thonormal bases; if the depth of the tree is 8 , each dic-
tionary contains more than = .�limonqpUr different bases [14].

One of the key questions is, then, how to pick a basis
which performs “best” for one’s task from a large number
of bases in the dictionary. In order to compare the perfor-
mance or quality of each basis, we need a measure of ef-
ficiency or usefulness of a basis for that particular task. If
one’s task were to compress a given signal, an informa-
tion cost such as entropy [4] may be appropriate since en-
tropy measures the flatness of the distribution of the sig-
nal’s energy among the coordinates. Therefore, a basis
which minimizes entropy is very efficient for compres-
sion; most of the signal energy is concentrated in a few
coordinates. Classification problems, however, are quite
different from the compression problems. Important co-
ordinates for compression, which try to capture the main
features of signals, may be completely irrelevant for the
classification problems where we need coordinates to see
the “differences” among classes.
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2.2. Local Discriminant Bases

The LDB method was developed to see these “differ-
ences” [3], [9, Chap. 4], [10]. It selects a complete and
useful orthonormal basis from a time-frequency dictio-
nary for the classification task. In order to select such a
basis from ] , we need to “prune” the binary tree: evalu-
ate the nodes (i.e., the subspaces and their bases) and get
rid of useless ones for discrimination tasks and only re-
tain the useful ones whose union still spans the input sig-
nal space. This basis evaluation is the key in the LDB al-
gorithm. The original LDB method uses “distance” mea-
sures among the time-frequency energy distributions of
signal classes for basis evaluation [3], [9, Chap. 4], [10].
More precisely, let sPtDu!v[xw be a normalized total energy of
class y signals along the direction c
[xw :

s tDu v[ �{z $ H� |~}j���� �j� c
[�w0�!�'tDu v� � .|*} ��U� ��� �'tDu!v� � . � (1)

where XZ�'tDu!v� \ }j��U� � is a set of all class y signals in the train-

ing dataset and c [xw �q� tDu v� is the standard inner product
in 	 � . We refer to the tree-structured set of such nor-
malized energies as the normalized time-frequency en-
ergy map of class y . The time-frequency energy dis-
tribution of class y signals at the node S is defined as� tDu v[ H� �9s tDu!v[ �#6 $ � �!�!���-s tDu!v[ � G & $�� . The original LDB

method measures the “distances” among vectors
� t � v[ and� t . v[ at each node S . For the LDB method using the dis-

tances among probability density functions of expansion
coefficients, see [11]. In this paper, we examine the fol-
lowing distance measures based on the time-frequency
energy distributions (there are many more choices for
such a measure; see e.g., [1]):� Relative entropy (or Kullback-Leibler divergence):� � � t � v[ � � t . v[ $ H� �7f�w � � s t � v[ �{z $ BDCFE s t � v[ �Uz $s t . v[ �Uz $ � (2)

with the convention,
BDC7E 4�� >�� ,

BDCFE ��� Q 4 $ �� � for ����4 , 4;�!��� � $ �b4 .� Symmetric relative entropy (or J-divergence):8'� � t � v[ � � t . v[ $ H� � � � t � v[ � � t . v[ $ � � � � t . v[ � � t � v[ $ �
(3)� Hellinger distance:� � � t � v[ � � t . v[ $ H� � f� w � �

�,� s t � v[ �{z $ > � s t . v[ �{z $�� . �
(4)

� z . distance:� � � t � v[ � � t . v[ $ H� � � t � v[ > � t . v[ � . � (5)

Once specified the distance measure, the LDB algorithm
compares the discriminant power of each parent node
with that of the union of the two corresponding children
nodes. If the parent node carries more discriminant infor-
mation, we retain it and prune the children nodes and vice
versa. (Here, the “discriminant power” of a node means a
value evaluated by the specified distance measure at that
node.) To describe the LDB algorithm more precisely, let� [ be the LDB over  [ which we are after. This “good”
basis set

� [ may be just � [ (i.e., the basis set of  [ in
the dictionary ] ) or a concatenation of the basis vectors
of the subspaces descended from  [ . we use the follow-
ing divide-and-conquer (also known as split-and-merge)
algorithm to prune the binary tree ] :

Step 0: Specify a time-frequency dictionary ] and the
distance measure � .

Step 1: Expand each training signal in the training
dataset and construct two binary trees of the time-
frequency energy distributions X � t � v&9� ( \ and X � t . v&9� ( \ .

Step 2: At the bottom level 8 of the tree, set
�)� � ( �� � � ( for :��b4"�!� �!���#= � > 6 .

Step 3: For  &9� ( , 2 �¡8 > 67� �!�!�"�#4 , :¢�£45� �!�!�"�#= &�> 6 ,
apply the following rule:

If �¤� � t � v&9� ( � � t . v&9� ( $j¥�¤�AX � t � v& +,�-� .-(L¦ � t � v& +,�-� .-( +,� \L�9X � t . v& +,�-� .-(F¦ � t . v&!+,�#� .-(!+,� \ $ �
Then

� &�� ( �£� &9� ( .

Else
� &�� (�� � &!+,�#� .-(§/ � & +,�-� .-( +,� .

Here, the measure � is chosen from (2)-(5). Once a com-
plete basis (LDB) is selected, we further choose ¨©�Aª G $
atoms from the LDB. We do “feature compression” for
classification here. The simplest way to choose ¨ atoms
from

G
atoms is to sort them in the order of decreasing

discriminant power and to retain the first ¨ atoms. This
is what we followed in our experiments in Section 4. Fi-
nally, classifiers based on these features are constructed.
We use traditional classifiers here such as linear discrim-
inant analysis (LDA) [8, Chap. 11] and classification tree
(CT) [2]. The performance of each classifier is assessed
by supplying test waveforms which have not been used
for constructing the LDB. This test procedure is neces-
sary to determine whether the feature extractor and clas-
sifier have learned a “rule” or “law” of this classifica-
tion problem. Thanks to the extracted local features, our
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Figure 2: The dataset used in this study. The acoustic
waveforms (recorded at different depth levels) are shown
as a gray scale image (dark to light shades correspond to
negative to positive amplitudes). The bottom 201 wave-
forms are “shale waveforms” whereas the top 201 wave-
forms are “sand waveforms.” The Stoneley wave com-
ponents have been smoothly eliminated.

approach enables one to classify the lithologic informa-
tion or rock types quickly without picking the velocities
or amplitudes of the wave components manually, and to
make physically-intuitive interpretations of the predic-
tion results.

3. DATA DESCRIPTION

In this study, we use 402 acoustic waveforms recorded
in a certain well at various depth levels. Each waveform
consists of 512 time samples with a sampling rate of 6 4%«¬
second. Because of the sensitivity to the borehole condi-
tions, we smoothly taper the Stoneley wave component
from each waveform and consider only the earlier part of
the waveforms (i.e., the number of time samples is 256
for each waveform). Along with the waveforms, we also
have lithologic information or rock types obtained from
other geophysical measurements. The region where the
well is located consists mainly of a sequence of sandstone
layers and shale layers. Figure 2 shows the dataset un-
der study. Let us call the waveforms propagated through
sandstone layers “sand waveforms” and those propagated
through shale layers “shale waveforms.” We observe by
visual inspection the following waveform features from
Figure 2:

� The S-wave components in the sand waveforms
have much stronger energy and faster speed than
those in the shale waveforms.� Velocities of the P-wave components in the sand
waveforms are higher than those in the shale wave-
forms. On the other hand, their amplitudes are
slightly weaker than those in the shale waveforms.

The physics of wave propagation suggests that the veloc-
ities of P and S waves are sensitive to the fluid content
and the mineralogy [13].

4. RESULTS

Since the velocity information is important in this study,
a natural choice of the time-frequency dictionary is the
local trigonometric dictionary rather than the wavelet
packet dictionary: it is easier to manipulate the time (con-
sequently velocity) information in the local trigonometric
transforms than in the wavelet packets. Hence, we use the
local sine transform (LST) in this study.

Given these 402 waveforms, we decided to use 10-fold
cross-validation. We first split 402 waveforms randomly
into 10 groups (nine of them have 40 waveforms and the
last one has 42), and then repeated the training and test
procedure 10 times by using each group as a test dataset
and the remaining waveforms as a training dataset. Fi-
nally, the average misclassification rates were computed.

In this study, we only used the linear discriminant anal-
ysis (LDA) and the classification tree (CT) as the clas-
sifiers. We computed four LDBs with different distance
measures (2)–(5) to examine the dependency of the mis-
classification rates on these distance measures. For the
number of features to be fed into the classifiers, we ex-
amined the top 5 to 100 LDB coordinates in steps of 5 to
see the effect of the feature dimensions on the misclas-
sification rates. We also constructed the classifiers from
the original signals represented in the standard coordinate
system for comparison.

The average misclassification rates using LDA as a
classifier are summarized in Figure 3 and those using CT
are summarized in 4.

From these figures, we observe several interesting
points:� Using more than top 35 LDB features, LDA per-

forms very well regardless of the choice of the dis-
tance measures (2)-(5). Although the differences
among these measures are small, the best result
(0.24%) was obtained by the top 35 LDB vectors
chosen by the Hellinger distance criterion (4).

4



D
D

D
D

D D
D D D D D D D D D D D D D D

J

J
J J

J

J J J J J J J J J J J J J J J

W

W

W

W

W

W
W W W W W W W W W W W W W W

H

H
H

H

H

H

H H H H H H H H H H H H H H

20
�

40
�

60
®

80
¯

100
�0

10
20

30
M

is
cl

as
si

fic
at

io
n 

R
at

e 
(%

)

Number of LDB Features
°

Figure 3: Misclassification rates using LDA as a classi-
fier versus the number of the top LDB features retained.
The plots with symbols D, J, H, and W correspond to
the results using the distance measures (2), (3), (4), and
(5), respectively. The constant level line about 4% indi-
cates the performance of the LDA directly applied to the
signals represented in the standard coordinate system (of
256 time samples).
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Figure 4: Misclassification rates using CT as a classifier
versus the number of the top LDB features retained. The
constant level line about 2% indicates the performance of
the CT directly applied to the signals represented in the
standard coordinate system (with 256 time samples).
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Figure 5: Top 35 LDB vectors which performed best in
our experiments (i.e., LDA on the top 35 LDB features
with the Hellinger distance criterion). The P and S wave
components are analyzed by separate sets of the LDB
vectors here.

� The LDA misclassification rates slightly increase as
the number of LDB features is increased more than
50. On the other hand, less than 35 LDB features
are clearly not enough to capture the truly discrimi-
nant information between these two classes, e.g., in
particular, the results with less than 20 LDB features
are worse than the one with the standard coordinate
system.

� In general, the results of classification trees are
much worse than those of LDA. This implies that the
LDB features must be “oblique” and must be com-
bined linearly to improve the classification perfor-
mance. In fact, the CT result on the standard coordi-
nate system is better than those on the LDB features.

� The P and S wave components were split naturally
by the LDB vectors as shown in Figure 5. Therefore
it is clear that their amplitudes and frequencies were
analyzed separately in the different time windows.
This is the main reason for good classification per-
formance compared with the ones using the standard
coordinate system whose time resolution is too fine
and whose frequency resolution is too coarse.

Figure 5 shows the top 35 LDB vectors using the
Hellinger distance criterion.
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5. CONCLUSION

In this paper, we applied the LDB methods developed
in [9], [3], [10] to classify the lithology or rock types of
subsurface layers from acoustic well-logging waveforms
propagated through them. Using the LDB methods, we
could successfully extract the features useful for predict-
ing such information in an automatic manner. Our meth-
ods also allowed us to make interpretation in an intuitive
manner by the use of local time-frequency information.

As we saw in our experiments, the choice of the num-
ber of features ¨ and the choice of the classification
methods (LDA or CT) made significant difference in per-
formance, but the choice of distance measures we exam-
ined were relatively insensitive to their performance.
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