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ABSTRACT

We propose a hew approach to simultaneously segment, cesypre
and denoise a given noisy signal by combining our compaogsig
representation scheme callpdlyharmonic local sine transform
(PHLST) and the minimum description length (MDL) criterion
PHLST first generates a redundant set of local pieces of art inp
signal each of which is supported on a dyadic subintervaliand
approximated by a combination of an algebraic polynomidbaf
order (e.g., linear or cubic) and a trigopnometric polyndmikhis
combination of polynomials compensates their shortcomnud
yields a compact representation of the local piece. To séhec
best nonredundant combination of the local pieces from ritis
dundant set, we use the MDL criterion with and without adjual
guantizing the relevant parameters. The resulting reptasen
gives rise to simultaneous segmentation, compressiorgemais-
ing of the original data. We shall demonstrate its supdgiaver
the best basis algorithm using the local cosine dictiondtly the
sparsity criterion.

1. INTRODUCTION

For signal compression and feature extraction purposes,at
significant interest to segment the input data accordingpedd-
cal smoothness and the geometry of the singularities. Tikere
need to subdivide a smooth region into a set of many smalier se
ments, and in fact, that is wasteful because each segmeritagq
to store some information such as the endpoints of the segmen
This was also demonstrated by our earlier papers [1, 2] ubiag
so-calledpolyharmonic local sine transforiiPHLST) for images.
However, the original PHLST assumes that the partition ohan
put signal is given a priori, and does not automatically cotap
the best possible partition of the signal. In this paper, vappse
an automatic method to do that for 1D signals and give some con
vincing examples. Our approach is based on the “split-aacyaf

or “divide-and-conquer” strategy a la best basis of Coifraad
Wickerhauser [3]. We first split (or subdivide) the signabia set

of local pieces brutally (i.e. by multiplying the charadséic func-
tions) supported on dyadic subintervals in the form of afyitaee.
Then, we “prune” this tree to come up with the “best” split egs
mentation of the original signal. Here, the “best” meanseimis

of the Minimum Description LengtfiMDL) criterion. We shall
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discuss two different versions of our basic formulationgonul-
taneous compression and denoising in Sections 4 and 508&cti
further develops our algorithm for signal segmentationciwhvill

be followed by our numerical experiments in Section 7. Bustfir
let us review briefly our PHLST scheme in Section 2 and set up
our noisy signal model in Section 3.

2. REVIEW OF PHLST

We shall review the one-dimensional and global (i.e., witrsub-
dividing the domain) version of our PHLST scheme. For higher
dimensions and the details, see [1, 2]. Suppose our sjfnglis
supported on the unit intervdl = [0, 1], and has some smooth-
ness, e.g.f € C*™(I) for somem > 1. Now, we split the data
function into two pieces

f(x) = u(z) +v(z). @
Thepolyharmoniccomponent: in (1) satisfies the followingoly-
harmonic differential equatian

u(?m)(x) =0, ze€l, 2)
with the boundary condition
u®9(0) = £290),u®(1) = f91), 0<t<m. (3)

For the practical purposes, we only consider= 1 in this paper.
Then we have

u(z) = a0 + o,

(4)

where the coefficients;’s are determined from the boundary con-
ditions.

Remark 2.1. Note that form = 2, we have a cubic polynomial:
u(z) = o + a1z + azz? + azz®. To determiney,’s, we need
to estimatef” (0) and f” (1) from the data. Although there are
several interesting algorithms to estimate them (e.gS$é¢, 19]),
which we are currently investigating, we shall not deal witls
cubic case in this paper. We believe that the caseswith 2 are
impractical due to the need of estimating even higher dives
from the data. Note also that for higher dimensions, thetgwziu
of the polyharmonic equation is not an algebraic polynormal
general.

This is a corrected version of the same paper publish&tan. 13th IEEE Workshop on Statistical Signal Processipg315-320, 2005.



Once we compute the component, then theesidual v
f — wis computed and expanded into the Fousigieseries

v(z) = \/52513 sin(mlx), B¢ = \/5/0 v(z) sin(rlx) dz.

=1

Thanks to the boundary condition (3), theomponent satisfies

v290) =0 (1) =0, 0<l<m,

which makes the Fourier sine coefficients decay very qujgldy;
|Be| = O(¢~2™1). One can compare this decay rate with the or-
dinary Fourier series expansion with the periodic condititving
rise toO (£~ 1) with the infamous Gibbs phenomenon [4, Sec. 10]
or the Fourier cosine series expansion with the Neumanndoun
ary condition giving rise ta)(¢/~2). See [2] for the proof of the
above fact and the details of the decay rates of these ceeffci
The main point of the use of PHLST for sighal compressionis th
fast decaying coefficients. This means that we can truntete t
coefficients with a smaller number of terms and still get acyap-
proximation if the original signal has enough smoothneserevi
over, representing the component only requirezm real-valued
numbers, i.e.q;’s in (4). Another advantage of the PHLST rep-
resentation is its usefulness for signal interpolation @mdvative
computation at arbitrary points ihthanks to the use of both the
algebraic polynomial in, and the trigonometric polynomial in.
This combination also compensates each other’s shortgmmih
we were to use only the trigonometric polynomials to apprate
the data, we would encounter the Gibbs phenomenon. On tke oth
hand, if we were to use only the algebraic polynomial (of high
gree) to approximate the data, then we would encounter Wwith t
so-called Runge phenomenon [4, Sec. 18] that results ifiytota
erroneous interpolation.

Of course, the story gets more complicated (and intergsting
in more realistic situations because those signals of derest
contain noise, singularities, and transients, which véltiscussed
below.

3. OUR SIGNAL MODEL

Let us now consider the case where the data contain white-Gaus

sian noise with unknown varianeg. Suppose the data are sam-
pled uniformly atz, = n/N,n = 0,1,...,N. Thus, our signal
model can be written as
i.%.d.
fan) = ul@n) + v(zn) +0(2n), n(wa) "= N(0,0%). (5)
In the vector notation, (5) can be written as
n~N(0,0°In1).  (6)

We denote thekth entry of f by f[k]. Thus f[0] = f(0) and
fIN] = f(1). Theu component can be written as

f=u+v+neR"

1 0
N Ax
u=Ua, = . . GR(NH)XQ, Az =1/N,
1 NAz

7

wherea = (aw, a1)”.

We assume that thecomponent consists @ff sinusoids( <
M < N — 1) with frequencied < v4,..., v < N — 1instead
of N — 1 sinusoids of frequencies ..., N — 1:

7 M
v(Tn) =4/ N ;Bw sin(mvexn),
where

5 N-1
Bu, = \/; ; v(zy) sin(mvezy).

These are a subset of the Discrete Sine Transform (in fagdhe
called DST Type 1) coefficients of the component. The reason
why we model they component by sinusoids instead oV — 1
sinusoids is the following. The column vectors @fin (7) and
N — 1 DST basis vectors jointly span the whole sp&2&™, i.e.,
they can completely represent the given data including thigen
without error. Let us write the@ component as

0 .- 0

v=VB, V| e RIVFDX(NHD - (g)

0o - 0

whereVx_, is the DST Type | basis matrix of sizgV — 1) x
(N —1). The coefficient vectog is of length NV + 1 but has
only M nonzero entries. Furthermore[0] = v[N] = 0 and
B[0] = B[N] = 0 since theu component removes the endpoints.
Therefore, our signal model (6) can be rewritten as
n ~N(0,0%In11),

F=Ua+VB+n, ©)

which can be further simplified as

fF=W~y+mn, n~N0O,0°Ixi1) (10)
by defining
WE2[UGL)|V(,2: N)|U(,2)] € REFDXNFD (g7
Qg
v 2 |B[1:N—1]| e RNTL. (12)
aq

Note that the matri¥V is not orthogonal

4. ANALYTICAL COMPRESSION AND DENOISING

The essence of MDL is the following. Suppose that we are given
datad € R" that were generated by some parametric statistical
model P(d | @) wheref € R*. Suppose also that we want to have

a flexibility that is not fixed a priori and want to learn the “best”

k and@ from the data. Rissanen advocates (see e.g., [5]) that the
best model is the minimizer of the following cost functiorfar
codelength):

L(d,0) = L(d|6) + L(0) ~ ~ log P(d|0) + & logn. (19)

In this paperlog denotes the base 2 logarithm unless stated other-
wise. The first term quantifies how well this model can fit theada
The second term is to penalize complicated models: the simpl
the model (i.e., the smallés), the better. MDL balances these two
conflicting terms using the information theoretic justifioa.



There are two possible ways to apply the MDL criterion in wherew,, € R ! is thev,th column vector o/’ in (8). Elim-
our problem. One is called the “analytical” formulatione thther inating Bw, in (20) using (21) with a bit of algebra, we obtain the
is the “quantized” formulation (see [6] for more about suehrt  following equation fora:
minology). In this section, we focus on the analytical fotaau
tion, which essentially uses the MDL criterion as a way t@scel G = UTJN+1.]\/[Uj| -t |:UTJN+1.]\/[j| . (22)
the number of the model parameters and to compute their maxi- ' '
mum likelihood estimates (MLEs). We also used this straiagy  \here

our earlier paper [7] for signal compression and denoisisiggl A M

the wavelet packets and local trigonometric dictionari@s the Ivti,m = It — vavff (23)
other hand, the quantized formulation, which we shall disdn =1

Section 5, actually performs the quantization of all theapae- In practice, however, computing (22) and (23) gets comf#ita
ters, truly converts everything into “bits”, and seeks texdel that since we do not know a priori which/ sinusoids out ofV — 1
generates the shortest bitstream for given data. sinusoids should be used to represent and approximatampo-

Let 6., and @, be the vectors of parameters that completely nent. If we were to truly minimize the functional (19) and ob-
specify theu andv components in (7) and (8), respectively. Itis tain the MLEsH, and#@., then we would need to evaluate (22)

clear thatf., is simply the pair(m, ) if we have a choice im, and consequently (21) and (19) for each possible combimatio
saym = 1 or 2. Since we only consider the. = 1 case, we can )/ sinusoids{v,,,...,v,,,} overM = 0,...,N — 1 and find
assume thaf, = o € R?. As for6,, it is a concatenation of  the best one. Unfortunately, there @8~ possible combina-
M nonzero real-valued DST coefficierts, , ..., 3,,,)" € RM tions. There are two possible approaches to circumvenptbis-
and their indicator vector(vy, ..., var)" € {1,...,N — 1}, lem although both of them are suboptimal. One is to resthiet t
Therefore, the codelength (13) of our data with our signatieho 7 sinusoids to those of tHewestM frequencies, i.e; = ¢,
(6), (9), (10), can be written as ¢ =1,...,M. This approach still requires to compute (22) and

9 9 9 9 (23), but we can certainly avoid the combinatorial explosi®he
L(f,0u,0v,07) = L(07) + L(0u, 80 |07) + L(f | 0“’0”"1 ) other approach is to forog = (f[0], f[N] — £[0])", as if there

Note that dt timate all th t i thi is no noise on the boundary points and the noise exists only on
ote that we need fo estimate all these parameters via the Max ,q jnternal samples. We are currently experimenting anesin

mum likelihood method. Le be the MLE of a parametét. By tigating the first approach and shall report our findings ater!
the definition of MLE, we have date. In this paper, we shall focus on the second approach. Th

2 ~ ~ endpointsf [0] and f[N] are now deterministic, so is the com-
L(f,0u,6v,07) 2 L(f,0u,6,,57). 15) ponent. Therefore there is no difference betweerf,,, v and

Using the notation (10), (11), (12), the likelihood of théalfican @ 6., u, respectively. Note that we also reach to the same con-

be written as clusion withM = N — 1 even if we do not explicitly assume

N1 this no noise scenario at the endpoints. _lfeé (f —w)1 :
2y 2\ N+ 2 2 T N-1
P(f0u,00,0°) = (2n07)" 2 exp (=|f = W~[*/(207)) . N—1]=(fll]—ul],---, fF[N —=1] —u[N —1))T e RV,
16 whereu = Ua as (7). Letv = v[1 : N — 1] € R¥~. Our

Differentiating (16) with respect to> and setting the result to  simplified model thus has the following form instead of (6):
zero, we can obtain the MLE ef*:

) f=ot0 =Vt e RV 5~ N(0,0°Ina), (24)
7" = = IF = WAl (17 . _ _
+ whereg@ = B[1 : N — 1], which hasM nonzero entries. The
Then, from the optimality of the Shannon code, the codetengt ~ description length (14) now becomes
the dataf given those parameters is bounded from below by the 5 5 ~ 5
following negative log-likelihood of (16): L(f,0u,0v,07) L(6u) + L(63,07) + L(f | 65,07)

> L(0.) + L(05,5°) + L(f | 05,5
L(f164,0,,5%) > —log P(f|64,0,,5°) (18) A (0u) % L0, 07) - LT :
N S AMDL(M), (25)
= Mg (551 - W)
2 N+1 ’ where@; is exactly the same a,. In (25), we call the resulting

iption length as “analytical MDL” (AMDL t
Hence, the MLEs o, and 8, can be obtained by minimizing %&%Tg&ﬁggﬂg;ﬁy ziatgad)épl)%zdence (oM Tz"isazcj\jggog b

18), which i ivalent t . . .
(18). chis equivaient to course depends also ¢h 6, &, but we omit them in our notation.

(§u,§v) _ argem%l Hf_W,YHQ _ argemigl Hf—Ua—VﬂHQ. We now modify (16) accordingly as
' (19 P(F|65,0%) = (210%) T exp (—Hf - vN_1§|\2/(202))
Differentiating this functional by, andg,,, the MLE & andg,, (26)
must satisfy From this, (19), (17), (18) become
M = ~ ~
vTva =" (f-3 B0, 20 B=arg min | f —V_1B|*, @7
a (f ;B eV ,,) ’ (20) IBllo=M
B = wL,(f ~WIUG), (21) 7=yl - Vsl @9



N

—1 log (29)

2me ~2

2 <m//#/n/“ ) '
respectively, and we proceed our computation in this orete
that||3]lo = M in (27) means that a set of vectors of length- 1
containing onlyM nonzero entries are searched for the minimum.
Becausd|f — Va_13|| = ||[V&_, f — B]| thanks to the orthonor-
mality of Vx_1, searching the minimum is now very easy: we
can simply choose the sinusoids corresponding to the larfges
coefficients of ;7 _, f.

Finally let us determine precisely each termAf# DL(M)
in (25). The first term(6,,) represents the description length (in
bits) of theuw component. Sincé., = (ao, a1)7, i.e., two real-
valued parameters, we have

L(f|05762) =

L(6.) =log(N +1). (30)
Note that for each real-valued parameter we assign the(t#3}

- log(# data sampléswhich is(1/2) log(N + 1) in this case, and
whose asymptotic optimality was shown by Rissanen (seg[8,g.
Chap. 3]. The second term of (25) counts the descriptiontfeng
of 8 and the variance estimat® = (M), which amounts
to one integer parameté¥/ that ranges betweehand N — 1,
M + 1 real-valued parameters consisting of thlenonzero coef-

ficients inﬁ ands?, and M + 1 integer parameters, i.e., the in-

dices(v1, ..., var)T, each of which ranges betwegmnd N — 1.
Therefore, we have

M+1

L(65,5%) = log N+ 5

log(N+1)+ M log(N—1). (31)

The last term in (31) can be further shortened asmin(M, N —

1— M) -log(N — 1), by recognizing that it is shorter to describe
the indices ofV — 1 — M zeroentries ifM > N/2, provided that
we add thel bit flag to indicate whether the indices are those of
zero entries or nonzero entries. Summarizing all thesestewa
have

AMDL(M) = @ log(N + 1)

+min(M, N — 1 — M)log(N —1)

log (2me - EQ(M)) +log N + 1.
(32)

+

We now seeklf over0 < M < N —1 that minimizes (32). Once
we find the minimizeM ™, we can approximate the dafaas

f~Ua+Vp,

which can be viewed as a denoised versiory ofhereas «, E)
can be viewed as its compressed representation.

5. SIMULTANEOUS COMPRESSION AND DENOISING
WITH QUANTIZATION

A possibly better way to approach our simultaneous comjmess
and denoising problem is to usesaalar quantizatiorprocedure
to truly convert all the real-valued coefficients and parerseto
integers by truncating them with some precisiofwhich is to be
optimized). In other words, we seek the shortest bitstréendan
be stored as an actufile and from which we can recover a good
approximation of the true signal without noise. Let us assoor

simplified model (24) for the given data is still true excepedlif-
ference: we do not explicitly assume that the DST coefficient

tor 3 in (24) consists of\ nonzero entries anty — 1 — M zeros.
In our new formulation, the number of nonzero entries antldha
zero entries are completely controlled &y Therefore, instead of
(25), the total description length with quantization beesm

L(f,04,0,,0°,0) = L(8) + L(0.]6) + L(85,0° | §)
+ L(f | 03,02,6)
> L(6) + L(6. | 5) + L(05,5%|5) (33)
+ L(f | 65,5%,06)
2 QMDL(9),

)
(

where QMDL stands for “quantized MDL", and we signify its de-
pendence o4 in our notation.

Let us analyze each term of (33). First, the precigipwhich
is the key parameter to be optimized to obtain the minimum of
(33), needs to be recorded and stored. In general, encédieg
quiresL(d) = log(1/6) bits. Note that we often use the precision
of the formd = 27%, ¢ € N, so in this case[.(d) = g bits.

In the second term of (33), the parameter veetamust now
be truncated with precisiof. For example, the parametay is
approximated byao /4] - §, where[-] is the nearest integer of its
argument. Sincé is already recorded in the first term, we only
need to store the integgto /0] for ag. Thus, we have

L(6.[6) = L” ([ao/0]) + L ([e1/0]) , (34)

whereL*(-) is the codelength derived from the so-calledver-
sal prior for integers(see e.qg., [5, Chap. 3]), which assigns the
codelength for any integere Z as follows:

if j =0,

35
otherwise (35)

LGy =42
1= log™ |7] + log 4co

wherelog™ |7 is the sum of iterated logarithms with only positive
terms:

log" |j| = log j| +loglog |j| +- -+ = > max (log™® |j],0) ,

k>0

wherelog®)(.) is the k-times iterated logarithm. The constant
co =~ 2.865064 in (35) was derived so that equality holds in the
Kraftinequality: 322 ___ 272" < 1. Note that these truncated
version ofa should be used to compute

Now, in the third term of (33), the entries & = 5 S
RM~! must be quantized with precisiah For simplicity, we
adopt the so-called uniform quantization with “deadzon&he
entire range of the coefficient values is divided into a seegions
(=00, =T)U[-T,T)UI[T, o) whereT > 0 and the regions ex-
cept the “deadzone[-T', T') are further divided into a set of bins
of the equal widthy. The coefficients falling into a specific bin
are replaced by the representative value of that bin callede-
construction level. Again for simplicity, we use the valuettoe
midpoint of that bin so that we do not have to explicitly rettie
reconstruction levels. Thus, note that the coefficientssehalues
are in the deadzone are truncated@nd this clearly serves as a
threshold operation in denoising. Thanks to these simatifiq,
we can recover the reconstruction level of any bin fronbitsin-
dex As for the choice of", it would be the best to use the optimal



theoretical threshold value by considering the nature @ignal,
the DST coefficientg, and the statistics of the noise as was done
by Chang et al., [8] for wavelets, if such theoretical valsi@vail-
able. For the ease of implementation, however, we shallta@lop
very simple strategy at this point and defer the theoretjoaktion
for the future study: we séf' = ¢, i.e., the deadzone is twice as
wide as the other bins. Now, the entire coefficients can bepethp
into 2K + 1 bins for someK € N that depends ofi and the coef-
ficient range. Thus, our quantization process conv@ris RY !

to an integer-valued vectet € {—K, ..., K} =1 of the bin in-
dices. Any lossless entropy coding technique, e.g., thénkuf
or arithmetic coder, should be used to store this integetovec
efficiently. In this paper, we use the Huffman coder that aan f
ther convertn into a bitstream ofit most(N — 1)(H (p) + 1) bits

[9, Chap. 3], whereH (-) computes the Shannon entropy of the
probability mass function (pmf), and = (p—k,...,pk) is the
pmfofn,ie,pr =#{i €{1,...,N —1}|n; = k}/(N —1).
Note that if we directly encode without using any entropy coder,
then(N — 1) log(2K + 1) bits is required, which is the worst case
scenario. To encod&?, which must be computed by (28) with the
quantized DST coefficients,we again need to approximatéttit w
precisiond, which costsL* ([52/5]) bits. Therefore, we have

L(63,5° | 8) ~ L™ (K)+(N—1)(H (p)+1)+L"([3°/3)). (36)

Therefore, using (29), (34), and (36), together witld) = log(1/9),
the total codelengtl® M D L of (33) can be written as

QMDL(8) =log(1/8) + L (Jaw/8]) + L™ ([e1 /4])
LK) + (N — 1)(H(p) + 1)

+ L (320 + Y2

(37)

log (2me - 32) ,

wherep, 52, and K all depend ors. We then search = §*
that minimizes (37) over a finite set of possible values. Rina
with all the model parameters quantized with precisidrmand en-
coded by the Huffman coder, we obtain the compressed lztstre
representation of the denoised signal, which can be decaded
reconstructed at our disposal.

6. ADAPTIVE HIERARCHICAL SEGMENTATION,
COMPRESSION, AND DENOISING

of the whole intervall. Then we start the “merge” procedure by
examining the bottom (finest) level nodes (ije= J — 1) whether
they should be merged or not and continue this check fronobott
to up until we reach to the root node. To determine whether two
adjacent subintervals should be merged or not, we compare th
MDL cost of theunion of these two nodes with that of their par-
ent node. If the cost of the union is smaller, we keep the child
nodes; otherwise they are eliminated and we keep the pavdet n
However, our MDL cost functional isot additive we cannot sim-

ply add the MDL values of the children nodes already computed
in the “split” stage. We need to pay attention to the follogvin

e The midpoint of the parent node corresponds to the right
endpoint (i.e., tail) of the left child node and the left end-
point (i.e., head) of the right child node. Consequently,
when we compute the cost of the union of the children
nodes, the MDL cost of this midpoint must be added to the
cost of the union.

e Additional 2 bits must be added to the cost of the union
that should be used as an indicator for the use of the union
instead of the parent.

e For the quantization version, the precisibshould be level
dependent, i.ed = 4;. Itis clear that the shorter the subin-
terval is, the lower the precision should be. Thus, we must
recomputeQMDL of the union of the two children with the
same precision as the parent to be a fair comparison.

7. NUMERICAL RESULTS

We now demonstrate our algorithms discussed in the pregiecs
tions. Figure 1 shows the result of our “analytical” MDL segym
tation, compression, and denoising algorithm. The orig#ig:
nal consists of piecewise smooth components with sevengbsu
in the signal values and the derivatives, and a textureamneig-
ward the end. It also contains weak white Gaussian noisg (i.e
0% = 107, which is of course unknown to our algorithms).
Our result in Figure 1 features: almost perfect reconstyoobf
the smooth regions; progressively narrower subdivisiaosirad
the singularities (i.e., similar to the so-called Whitn@cdmposi-
tion); and visually-pleasing least squares fitting witlgdrnomet-
ric polynomials with linear functions over the texturedirets. In
this figure, our algorithm segmented this input signal irbes2g-

Based on our analysis of the global case above, we now con-meniq'(i e, 26 endpoints), and retained 55 DST coefficigftise

sider the hierarchical split of the input data and how to prun
the tree-structured subintervals to obtain the best setatiem,
which in turn should improve the compression and denoiserg p
formance as we discussed in Introduction. Let us now asshate t
N = 27 for someJ € N, and let us define a collection of the
standard dyadic subintervals @ 1], Z; 2 {Lir = [k/27, (k +
1)/2]1j=0,1,...,J =1,k =0,1,...,2 —1}. LetN; 2
2774 The number of available samples Byy, including the two
endpoints isV; + 1, which is common foralk = 0,...,27 — 1
for a given levelj. Thus each of the shortest subintervajs. i i
contains three samples.

We adopt the “split-and-merge” or “divide-and-conquer* ap
proach a la the best basis algorithm of Coifman and Wickesba
[3]. In other words, we first split the input data into a cotlen
of the data segments supported®n and at each node (or subin-
terval) I, € Z; we compute its MDL value by adjusting the
formula (32) (or (33) for the quantized approach) fgy. instead

residual components in total, which resulted in 81 floafiogat
values. Since the original data consists of 257 floatingvpeal-
ues, the compression rate is not really high in this case,just
about3.17. The relative/? error is0.0922. Figure 2 shows the
result of our quantized MDL algorithm. It generated a corspes
representation of only 110 bytes whereas the original datais
2056 bytes & 257 x 8 bytes), i.e., the compression ratio is about
19, which is quite significantl(/19th of the original file size). Yet
the reconstruction is quite faithful to the original. Théatwe ¢>
error is0.0114. Thus in terms of the quantitative performance,
the quantized approach is superior to the analytical one/caex-
pected. One drawback of the quantized approach, howevie is
difficulty of the search of the optimal;. We used a very simple
search around = 1/+/N + 1 in our experiments, which resulted
in less perfect split around the block discontinuities ia garlier
part of the signal compared to the analytical approach. We ar
currently investigating a better search strategysfor



2.5F q

BT IR |

0 8524824048 64

96l0ag2 12824@1 160 192 224 240 256

25

15

0.5

0 81262282 48 64 808896 112 I1UHRA®! 160

i \....,./

192 256

Fig. 1. The reconstructed signal using our analytical PHLST-MDL Fig. 2. The reconstructed signal using our quantized MDL algo-
rithm (blue curve) vs the original data (red).

algorithm. The partitions obtained by our algorithm arevahas
the vertical lines. The original data points are shown aseoted
xS, and the recovered signal is overlayed as a blue curve.

The superiority of both of our approaches to the more conven-
tional method is apparent if we compare the above figures with
Figure 3, which is obtained by the best sparsifying basisBBS
[10] using ther®-! sparsity norm and the local cosine dictionary.
The partition pattern obtained by LCT-BSB is not too inietand
the reconstructed signal from its top 81 largest coeffisishbwn
in the figure reveals spurious Gibbs oscillations aroundsthgu-
larities. The relative?® error is0.0459. We are currently conduct-
ing our comparative study with the other MDL approachesgaisin
the conventional wavelets (e.g., [6, 8]), which we shalloret
another opportunity.
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