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ABSTRACT

We propose a new approach to simultaneously segment, compress,
and denoise a given noisy signal by combining our compact signal
representation scheme calledpolyharmonic local sine transform
(PHLST) and the minimum description length (MDL) criterion.
PHLST first generates a redundant set of local pieces of an input
signal each of which is supported on a dyadic subinterval andis
approximated by a combination of an algebraic polynomial oflow
order (e.g., linear or cubic) and a trigonometric polynomial. This
combination of polynomials compensates their shortcomings and
yields a compact representation of the local piece. To select the
best nonredundant combination of the local pieces from thisre-
dundant set, we use the MDL criterion with and without actually
quantizing the relevant parameters. The resulting representation
gives rise to simultaneous segmentation, compression, anddenois-
ing of the original data. We shall demonstrate its superiority over
the best basis algorithm using the local cosine dictionary with the
sparsity criterion.

1. INTRODUCTION

For signal compression and feature extraction purposes, itis of
significant interest to segment the input data according to the lo-
cal smoothness and the geometry of the singularities. Thereis no
need to subdivide a smooth region into a set of many smaller seg-
ments, and in fact, that is wasteful because each segment requires
to store some information such as the endpoints of the segment.
This was also demonstrated by our earlier papers [1, 2] usingthe
so-calledpolyharmonic local sine transform(PHLST) for images.
However, the original PHLST assumes that the partition of anin-
put signal is given a priori, and does not automatically compute
the best possible partition of the signal. In this paper, we propose
an automatic method to do that for 1D signals and give some con-
vincing examples. Our approach is based on the “split-and-merge”
or “divide-and-conquer” strategy à la best basis of Coifman and
Wickerhauser [3]. We first split (or subdivide) the signal into a set
of local pieces brutally (i.e. by multiplying the characteristic func-
tions) supported on dyadic subintervals in the form of a binary tree.
Then, we “prune” this tree to come up with the “best” split or seg-
mentation of the original signal. Here, the “best” means in terms
of the Minimum Description Length(MDL) criterion. We shall
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discuss two different versions of our basic formulation forsimul-
taneous compression and denoising in Sections 4 and 5. Section 6
further develops our algorithm for signal segmentation, which will
be followed by our numerical experiments in Section 7. But first,
let us review briefly our PHLST scheme in Section 2 and set up
our noisy signal model in Section 3.

2. REVIEW OF PHLST

We shall review the one-dimensional and global (i.e., without sub-
dividing the domain) version of our PHLST scheme. For higher
dimensions and the details, see [1, 2]. Suppose our signalf(x) is
supported on the unit intervalI = [0, 1], and has some smooth-
ness, e.g.,f ∈ C2m(I) for somem ≥ 1. Now, we split the data
function into two pieces

f(x) = u(x) + v(x). (1)

Thepolyharmoniccomponentu in (1) satisfies the followingpoly-
harmonic differential equation.

u(2m)(x) = 0, x ∈ I, (2)

with the boundary condition

u(2ℓ)(0) = f (2ℓ)(0), u(2ℓ)(1) = f (2ℓ)(1), 0 ≤ ℓ < m. (3)

For the practical purposes, we only considerm = 1 in this paper.
Then we have

u(x) = α0 + α1x, (4)

where the coefficientsαk ’s are determined from the boundary con-
ditions.

Remark 2.1. Note that form = 2, we have a cubic polynomial:
u(x) = α0 + α1x + α2x

2 + α3x
3. To determineαk ’s, we need

to estimatef ′′(0) andf ′′(1) from the data. Although there are
several interesting algorithms to estimate them (e.g., [4,Sec. 19]),
which we are currently investigating, we shall not deal withthis
cubic case in this paper. We believe that the cases withm > 2 are
impractical due to the need of estimating even higher derivatives
from the data. Note also that for higher dimensions, the solution
of the polyharmonic equation is not an algebraic polynomialin
general.
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Once we compute theu component, then theresidual v =
f − u is computed and expanded into the Fouriersineseries

v(x) =
√

2
∞X

ℓ=1

βℓ sin(πℓx), βℓ =
√

2

Z 1

0

v(x) sin(πℓx) dx.

Thanks to the boundary condition (3), thev component satisfies

v(2ℓ)(0) = v(2ℓ)(1) = 0, 0 ≤ ℓ < m,

which makes the Fourier sine coefficients decay very quickly, i.e.,
|βℓ| ≈ O(ℓ−2m−1). One can compare this decay rate with the or-
dinary Fourier series expansion with the periodic condition giving
rise toO(ℓ−1) with the infamous Gibbs phenomenon [4, Sec. 10]
or the Fourier cosine series expansion with the Neumann bound-
ary condition giving rise toO(ℓ−2). See [2] for the proof of the
above fact and the details of the decay rates of these coefficients.
The main point of the use of PHLST for signal compression is this
fast decaying coefficients. This means that we can truncate the
coefficients with a smaller number of terms and still get a good ap-
proximation if the original signal has enough smoothness. More-
over, representing theu component only requires2m real-valued
numbers, i.e.,αk ’s in (4). Another advantage of the PHLST rep-
resentation is its usefulness for signal interpolation andderivative
computation at arbitrary points inI thanks to the use of both the
algebraic polynomial inu and the trigonometric polynomial inv.
This combination also compensates each other’s shortcomings. If
we were to use only the trigonometric polynomials to approximate
the data, we would encounter the Gibbs phenomenon. On the other
hand, if we were to use only the algebraic polynomial (of highde-
gree) to approximate the data, then we would encounter with the
so-called Runge phenomenon [4, Sec. 18] that results in totally
erroneous interpolation.

Of course, the story gets more complicated (and interesting)
in more realistic situations because those signals of our interest
contain noise, singularities, and transients, which will be discussed
below.

3. OUR SIGNAL MODEL

Let us now consider the case where the data contain white Gaus-
sian noise with unknown varianceσ2. Suppose the data are sam-
pled uniformly atxn = n/N , n = 0, 1, . . . , N . Thus, our signal
model can be written as

f(xn) = u(xn) + v(xn) + η(xn), η(xn)
i.i.d.∼ N(0, σ2). (5)

In the vector notation, (5) can be written as

f = u + v + η ∈ R
N+1, η ∼ N(0, σ2IN+1). (6)

We denote thekth entry off by f [k]. Thusf [0] = f(0) and
f [N ] = f(1). Theu component can be written as

u = Uα, U
∆
=

2
6664

1 0
1 ∆x
...

...
1 N∆x

3
7775 ∈ R

(N+1)×2, ∆x = 1/N,

(7)
whereα = (α0, α1)

T .

We assume that thev component consists ofM sinusoids (0 ≤
M ≤ N − 1) with frequencies1 ≤ ν1, . . . , νM ≤ N − 1 instead
of N − 1 sinusoids of frequencies1, . . . , N − 1:

v(xn) =

r
2

N

MX

ℓ=1

βνℓ
sin(πνℓxn),

where

βνℓ
=

r
2

N

N−1X

n=1

v(xn) sin(πνℓxn).

These are a subset of the Discrete Sine Transform (in fact theso-
called DST Type I) coefficients of thev component. The reason
why we model thev component byM sinusoids instead ofN − 1
sinusoids is the following. The column vectors ofU in (7) and
N − 1 DST basis vectors jointly span the whole spaceR

N+1, i.e.,
they can completely represent the given data including the noise
without error. Let us write thev component as

v = V β, V
∆
=

2
64
0 · · · 0
... VN−1

...
0 · · · 0

3
75 ∈ R

(N+1)×(N+1), (8)

whereVN−1 is the DST Type I basis matrix of size(N − 1) ×
(N − 1). The coefficient vectorβ is of lengthN + 1 but has
only M nonzero entries. Furthermore,v[0] = v[N ] = 0 and
β[0] = β[N ] = 0 since theu component removes the endpoints.
Therefore, our signal model (6) can be rewritten as

f = Uα + V β + η, η ∼ N(0, σ2IN+1), (9)

which can be further simplified as

f = Wγ + η, η ∼ N(0, σ2IN+1) (10)

by defining

W
∆
= [U(:, 1) | V (:, 2 : N) |U(:, 2)] ∈ R

(N+1)×(N+1), (11)

γ
∆
=

2
4

α0

β[1 : N − 1]
α1

3
5 ∈ R

N+1. (12)

Note that the matrixW is not orthogonal.

4. ANALYTICAL COMPRESSION AND DENOISING

The essence of MDL is the following. Suppose that we are given
datad ∈ R

n that were generated by some parametric statistical
modelP (d | θ) whereθ ∈ R

k. Suppose also that we want to have
a flexibility thatk is not fixed a priori and want to learn the “best”
k andθ from the data. Rissanen advocates (see e.g., [5]) that the
best model is the minimizer of the following cost functional(or
codelength):

L(d, θ) = L(d | θ) + L(θ) ≈ − log P (d | θ) +
k

2
log n. (13)

In this paper,log denotes the base 2 logarithm unless stated other-
wise. The first term quantifies how well this model can fit the data.
The second term is to penalize complicated models: the simpler
the model (i.e., the smallerk), the better. MDL balances these two
conflicting terms using the information theoretic justification.
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There are two possible ways to apply the MDL criterion in
our problem. One is called the “analytical” formulation, the other
is the “quantized” formulation (see [6] for more about such ter-
minology). In this section, we focus on the analytical formula-
tion, which essentially uses the MDL criterion as a way to select
the number of the model parameters and to compute their maxi-
mum likelihood estimates (MLEs). We also used this strategyin
our earlier paper [7] for signal compression and denoising using
the wavelet packets and local trigonometric dictionaries.On the
other hand, the quantized formulation, which we shall discuss in
Section 5, actually performs the quantization of all the parame-
ters, truly converts everything into “bits”, and seeks the model that
generates the shortest bitstream for given data.

Let θu andθv be the vectors of parameters that completely
specify theu andv components in (7) and (8), respectively. It is
clear thatθu is simply the pair(m, α) if we have a choice inm,
saym = 1 or 2. Since we only consider them = 1 case, we can
assume thatθu = α ∈ R

2. As for θv, it is a concatenation of
M nonzero real-valued DST coefficients(βν1

, . . . , βνM
)T ∈ R

M

and their indicator vector,(ν1, . . . , νM )T ∈ {1, . . . , N − 1}M .
Therefore, the codelength (13) of our data with our signal model
(6), (9), (10), can be written as

L(f , θu, θv, σ2) = L(σ2) + L(θu, θv |σ2) + L(f | θu, θv, σ2)
(14)

Note that we need to estimate all these parameters via the maxi-
mum likelihood method. Letbθ be the MLE of a parameterθ. By
the definition of MLE, we have

L(f , θu, θv, σ2) ≥ L(f , bθu, bθv, bσ2). (15)

Using the notation (10), (11), (12), the likelihood of the dataf can
be written as

P (f | θu, θv, σ2) = (2πσ2)−
N+1

2 exp
`
−‖f − Wγ‖2/(2σ2)

´
.

(16)
Differentiating (16) with respect toσ2 and setting the result to
zero, we can obtain the MLE ofσ2:

bσ2 =
1

N + 1
‖f − Wγ‖2. (17)

Then, from the optimality of the Shannon code, the codelength of
the dataf given those parameters is bounded from below by the
following negative log-likelihood of (16):

L(f | θu, θv, bσ2) ≥ − log P (f | θu, θv, bσ2) (18)

=
N + 1

2
log

„
2πe

N + 1
‖f − Wγ‖2

«
.

Hence, the MLEs ofθu andθv can be obtained by minimizing
(18), which is equivalent to

(bθu, bθv) = arg min
θu,θv

‖f−Wγ‖2 = arg min
θu,θv

‖f−Uα−V β‖2.

(19)
Differentiating this functional byαk andβνℓ

, the MLE bα andbβνℓ

must satisfy

UT U bα = UT

 
f −

MX

ℓ=1

bβνℓ
vνℓ

!
, (20)

bβνℓ
= v

T
νℓ

(f − V////U bα), (21)

wherevνℓ
∈ R

N+1 is theνℓth column vector ofV in (8). Elim-
inating bβνℓ

in (20) using (21) with a bit of algebra, we obtain the
following equation forbα:

bα =
h
UT JN+1,MU

i−1 h
UT JN+1,M

i
f , (22)

where

JN+1,M
∆
= IN+1 −

MX

ℓ=1

vνℓ
v

T
νℓ

. (23)

In practice, however, computing (22) and (23) gets complicated
since we do not know a priori whichM sinusoids out ofN − 1
sinusoids should be used to represent and approximatev compo-
nent. If we were to truly minimize the functional (19) and ob-
tain the MLEsbθu and bθv, then we would need to evaluate (22)
and consequently (21) and (19) for each possible combination of
M sinusoids{vν1

, . . . , vνM
} overM = 0, . . . , N − 1 and find

the best one. Unfortunately, there are2N−1 possible combina-
tions. There are two possible approaches to circumvent thisprob-
lem although both of them are suboptimal. One is to restrict the
M sinusoids to those of thelowestM frequencies, i.e.,νℓ = ℓ,
ℓ = 1, . . . , M . This approach still requires to compute (22) and
(23), but we can certainly avoid the combinatorial explosion. The
other approach is to forcebα = (f [0], f [N ] − f [0])T , as if there
is no noise on the boundary points and the noise exists only on
the internal samples. We are currently experimenting and inves-
tigating the first approach and shall report our findings at a later
date. In this paper, we shall focus on the second approach. The
endpointsf [0] andf [N ] are now deterministic, so is theu com-
ponent. Therefore there is no difference betweenα, θu, u and
bα, bθu, bu, respectively. Note that we also reach to the same con-
clusion withM = N − 1 even if we do not explicitly assume

this no noise scenario at the endpoints. Letef ∆
= (f − u)[1 :

N − 1] = (f [1] − u[1], · · · , f [N − 1] − u[N − 1])T ∈ R
N−1,

whereu = Uα as (7). Letev = v[1 : N − 1] ∈ R
N−1. Our

simplified model thus has the following form instead of (6):

ef = ev+eη = VN−1
eβ+eη ∈ R

N−1, eη ∼ N(0, σ2IN−1), (24)

where eβ ∆
= β[1 : N − 1], which hasM nonzero entries. The

description length (14) now becomes

L(f , θu, θv, σ2) = L(θu) + L(θev, σ2) + L(ef | θev, σ2)

≥ L(θu) + L(bθev, bσ2) + L(ef | bθev, bσ2)

∆
= AMDL(M), (25)

whereθev is exactly the same asθv. In (25), we call the resulting
description length as “analytical MDL” (AMDL), and denote by
AMDL(M) to signify its dependence onM . This AMDL of
course depends also onef , bθev, bσ, but we omit them in our notation.
We now modify (16) accordingly as

P (ef | θev, σ2) = (2πσ2)−
N−1

2 exp
“
−‖ef − VN−1

eβ‖2/(2σ2)
”

.

(26)
From this, (19), (17), (18) become

beβ = arg min
‖ eβ‖0=M

‖ef − VN−1
eβ‖2, (27)

bσ2 =
1

N − 1
‖ef − VN−1

beβ‖2. (28)
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L(ef | θev, bσ2) =
N − 1

2
log

„
2πe

N − 1//////////
bσ2

«
. (29)

respectively, and we proceed our computation in this order.Note
that‖eβ‖0 = M in (27) means that a set of vectors of lengthN −1
containing onlyM nonzero entries are searched for the minimum.
Because‖ef − VN−1

eβ‖ = ‖V T
N−1

ef − eβ‖ thanks to the orthonor-
mality of VN−1, searching the minimum is now very easy: we
can simply choose the sinusoids corresponding to the largest M

coefficients ofV T
N−1

ef .
Finally let us determine precisely each term ofAMDL(M)

in (25). The first termL(θu) represents the description length (in
bits) of theu component. Sinceθu = (α0, α1)

T , i.e., two real-
valued parameters, we have

L(θu) = log(N + 1). (30)

Note that for each real-valued parameter we assign the cost(1/2)
· log(# data samples), which is(1/2) log(N + 1) in this case, and
whose asymptotic optimality was shown by Rissanen (see e.g., [5,
Chap. 3]. The second term of (25) counts the description length
of bθev and the variance estimatebσ2 = bσ2(M), which amounts
to one integer parameterM that ranges between0 and N − 1,
M + 1 real-valued parameters consisting of theM nonzero coef-

ficients in beβ andbσ2, andM + 1 integer parameters, i.e., the in-
dices(ν1, . . . , νM )T , each of which ranges between1 andN − 1.
Therefore, we have

L(bθev, bσ2) = log N+
M + 1

2
log(N+1)+M log(N−1). (31)

The last term in (31) can be further shortened as1+min(M, N −
1 − M) · log(N − 1), by recognizing that it is shorter to describe
the indices ofN − 1−M zeroentries ifM ≥ N/2, provided that
we add the1 bit flag to indicate whether the indices are those of
zero entries or nonzero entries. Summarizing all these terms, we
have

AMDL(M) =
M + 3

2
log(N + 1)

+ min(M, N − 1 − M) log(N − 1)

+
N − 1

2
log
`
2πe · bσ2(M)

´
+ log N + 1.

(32)

We now seekM over0 ≤ M ≤ N−1 that minimizes (32). Once
we find the minimizerM∗, we can approximate the dataf as

f ≈ Uα + V bβ,

which can be viewed as a denoised version off whereas(α, bβ)
can be viewed as its compressed representation.

5. SIMULTANEOUS COMPRESSION AND DENOISING
WITH QUANTIZATION

A possibly better way to approach our simultaneous compression
and denoising problem is to use ascalar quantizationprocedure
to truly convert all the real-valued coefficients and parameters to
integers by truncating them with some precisionδ (which is to be
optimized). In other words, we seek the shortest bitstream that can
be stored as an actualfile and from which we can recover a good
approximation of the true signal without noise. Let us assume our

simplified model (24) for the given data is still true except one dif-
ference: we do not explicitly assume that the DST coefficientvec-
tor eβ in (24) consists ofM nonzero entries andN − 1−M zeros.
In our new formulation, the number of nonzero entries and that of
zero entries are completely controlled byδ. Therefore, instead of
(25), the total description length with quantization becomes

L(f , θu, θv, σ2, δ) = L(δ) + L(θu | δ) + L(θev, σ2 | δ)
+ L(ef | θev, σ2, δ)

≥ L(δ) + L(θu | δ) + L(bθev, bσ2 | δ)
+ L(ef | bθev, bσ2, δ)

∆
= QMDL(δ),

(33)

where QMDL stands for “quantized MDL”, and we signify its de-
pendence onδ in our notation.

Let us analyze each term of (33). First, the precisionδ, which
is the key parameter to be optimized to obtain the minimum of
(33), needs to be recorded and stored. In general, encodingδ re-
quiresL(δ) = log(1/δ) bits. Note that we often use the precision
of the formδ = 2−q, q ∈ N, so in this case,L(δ) = q bits.

In the second term of (33), the parameter vectorα must now
be truncated with precisionδ. For example, the parameterα0 is
approximated by[α0/δ] · δ, where[·] is the nearest integer of its
argument. Sinceδ is already recorded in the first term, we only
need to store the integer[α0/δ] for α0. Thus, we have

L(θu | δ) = L∗ ([α0/δ]) + L∗ ([α1/δ]) , (34)

whereL∗(·) is the codelength derived from the so-calleduniver-
sal prior for integers(see e.g., [5, Chap. 3]), which assigns the
codelength for any integerj ∈ Z as follows:

L∗(j) =

(
1 if j = 0,

log∗ |j| + log 4c0 otherwise,
(35)

wherelog∗ |j| is the sum of iterated logarithms with only positive
terms:

log∗ |j| = log |j| + log log |j| + · · · =
X

k>0

max
“
log(k) |j|, 0

”
,

where log(k)(·) is the k-times iterated logarithm. The constant
c0 ≈ 2.865064 in (35) was derived so that equality holds in the
Kraft inequality:

P∞
j=−∞ 2−L∗(j) ≤ 1. Note that these truncated

version ofα should be used to computeu.
Now, in the third term of (33), the entries ofθev = eβ ∈

R
N−1 must be quantized with precisionδ. For simplicity, we

adopt the so-called uniform quantization with “deadzone”.The
entire range of the coefficient values is divided into a set ofregions
(−∞,−T )∪ [−T, T )∪ [T,∞) whereT > 0 and the regions ex-
cept the “deadzone”[−T, T ) are further divided into a set of bins
of the equal widthδ. The coefficients falling into a specific bin
are replaced by the representative value of that bin called the re-
construction level. Again for simplicity, we use the value of the
midpoint of that bin so that we do not have to explicitly record the
reconstruction levels. Thus, note that the coefficients whose values
are in the deadzone are truncated to0, and this clearly serves as a
threshold operation in denoising. Thanks to these simplification,
we can recover the reconstruction level of any bin from itsbin in-
dex. As for the choice ofT , it would be the best to use the optimal
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theoretical threshold value by considering the nature of the signal,
the DST coefficientseβ, and the statistics of the noise as was done
by Chang et al., [8] for wavelets, if such theoretical value is avail-
able. For the ease of implementation, however, we shall adopt a
very simple strategy at this point and defer the theoreticalquestion
for the future study: we setT = δ, i.e., the deadzone is twice as
wide as the other bins. Now, the entire coefficients can be mapped
into 2K + 1 bins for someK ∈ N that depends onδ and the coef-
ficient range. Thus, our quantization process convertseβ ∈ R

N−1

to an integer-valued vectorn ∈ {−K, . . . , K}N−1 of the bin in-
dices. Any lossless entropy coding technique, e.g., the Huffman
or arithmetic coder, should be used to store this integer vector n

efficiently. In this paper, we use the Huffman coder that can fur-
ther convertn into a bitstream ofat most(N − 1)(H(p)+1) bits
[9, Chap. 3], whereH(·) computes the Shannon entropy of the
probability mass function (pmf), andp = (p−K , . . . , pK) is the
pmf of n, i.e.,pk = #{i ∈ {1, . . . , N − 1} |ni = k}/(N − 1).
Note that if we directly encoden without using any entropy coder,
then(N −1) log(2K +1) bits is required, which is the worst case
scenario. To encodebσ2, which must be computed by (28) with the
quantized DST coefficients,we again need to approximate it with
precisionδ, which costsL∗([bσ2/δ]) bits. Therefore, we have

L(bθev, bσ2 | δ) ≈ L∗(K)+(N−1)(H(p)+1)+L∗([bσ2/δ]). (36)

Therefore, using (29), (34), and (36), together withL(δ) = log(1/δ),
the total codelengthQMDL of (33) can be written as

QMDL(δ) = log(1/δ) + L∗([α0/δ]) + L∗([α1/δ])

+ L∗(K) + (N − 1)(H(p) + 1)

+ L∗([bσ2/δ]) +
N − 1

2
log
`
2πe · bσ2

´
,

(37)

wherep, bσ2, andK all depend onδ. We then searchδ = δ∗

that minimizes (37) over a finite set of possible values. Finally,
with all the model parameters quantized with precisionδ∗ and en-
coded by the Huffman coder, we obtain the compressed bitstream
representation of the denoised signal, which can be decodedand
reconstructed at our disposal.

6. ADAPTIVE HIERARCHICAL SEGMENTATION,
COMPRESSION, AND DENOISING

Based on our analysis of the global case above, we now con-
sider the hierarchical split of the input data and how to prune
the tree-structured subintervals to obtain the best segmentation,
which in turn should improve the compression and denoising per-
formance as we discussed in Introduction. Let us now assume that
N = 2J for someJ ∈ N, and let us define a collection of the
standard dyadic subintervals on[0, 1], IJ

∆
= {Ij,k = [k/2j , (k +

1)/2j ] | j = 0, 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1}. Let Nj
∆
=

2J−j . The number of available samples onIj,k including the two
endpoints isNj + 1, which is common for allk = 0, . . . , 2j − 1
for a given levelj. Thus each of the shortest subintervalsIJ−1,k

contains three samples.
We adopt the “split-and-merge” or “divide-and-conquer” ap-

proach à la the best basis algorithm of Coifman and Wickerhauser
[3]. In other words, we first split the input data into a collection
of the data segments supported onIJ , and at each node (or subin-
terval) Ij,k ∈ IJ we compute its MDL value by adjusting the
formula (32) (or (33) for the quantized approach) forIj,k instead

of the whole intervalI . Then we start the “merge” procedure by
examining the bottom (finest) level nodes (i.e.,j = J−1) whether
they should be merged or not and continue this check from bottom
to up until we reach to the root node. To determine whether two
adjacent subintervals should be merged or not, we compare the
MDL cost of theunion of these two nodes with that of their par-
ent node. If the cost of the union is smaller, we keep the children
nodes; otherwise they are eliminated and we keep the parent node.
However, our MDL cost functional isnot additive: we cannot sim-
ply add the MDL values of the children nodes already computed
in the “split” stage. We need to pay attention to the following:

• The midpoint of the parent node corresponds to the right
endpoint (i.e., tail) of the left child node and the left end-
point (i.e., head) of the right child node. Consequently,
when we compute the cost of the union of the children
nodes, the MDL cost of this midpoint must be added to the
cost of the union.

• Additional 2 bits must be added to the cost of the union
that should be used as an indicator for the use of the union
instead of the parent.

• For the quantization version, the precisionδ should be level
dependent, i.e.,δ = δj . It is clear that the shorter the subin-
terval is, the lower the precision should be. Thus, we must
recomputeQMDL of the union of the two children with the
same precision as the parent to be a fair comparison.

7. NUMERICAL RESULTS

We now demonstrate our algorithms discussed in the previoussec-
tions. Figure 1 shows the result of our “analytical” MDL segmen-
tation, compression, and denoising algorithm. The original sig-
nal consists of piecewise smooth components with several jumps
in the signal values and the derivatives, and a textured region to-
ward the end. It also contains weak white Gaussian noise (i.e.,
σ2 = 10−14, which is of course unknown to our algorithms).
Our result in Figure 1 features: almost perfect reconstruction of
the smooth regions; progressively narrower subdivisions around
the singularities (i.e., similar to the so-called Whitney decomposi-
tion); and visually-pleasing least squares fitting with trigonomet-
ric polynomials with linear functions over the textured regions. In
this figure, our algorithm segmented this input signal into 25 seg-
ments (i.e., 26 endpoints), and retained 55 DST coefficientsof the
residual components in total, which resulted in 81 floating-point
values. Since the original data consists of 257 floating-point val-
ues, the compression rate is not really high in this case, i.e., just
about3.17. The relativeℓ2 error is0.0922. Figure 2 shows the
result of our quantized MDL algorithm. It generated a compressed
representation of only 110 bytes whereas the original data size is
2056 bytes (= 257 × 8 bytes), i.e., the compression ratio is about
19, which is quite significant (1/19th of the original file size). Yet
the reconstruction is quite faithful to the original. The relative ℓ2

error is0.0114. Thus in terms of the quantitative performance,
the quantized approach is superior to the analytical one, aswe ex-
pected. One drawback of the quantized approach, however, isthe
difficulty of the search of the optimalδ∗j . We used a very simple
search aroundδ = 1/

√
N + 1 in our experiments, which resulted

in less perfect split around the block discontinuities in the earlier
part of the signal compared to the analytical approach. We are
currently investigating a better search strategy forδ∗j .

5



0 8121416242628324048 64 96104108112 128132136140142144 160 192 224 240 256

0

0.5

1

1.5

2

2.5

Fig. 1. The reconstructed signal using our analytical PHLST-MDL
algorithm. The partitions obtained by our algorithm are shown as
the vertical lines. The original data points are shown as connected
∗s, and the recovered signal is overlayed as a blue curve.

The superiority of both of our approaches to the more conven-
tional method is apparent if we compare the above figures with
Figure 3, which is obtained by the best sparsifying basis (BSB)
[10] using theℓ0.1 sparsity norm and the local cosine dictionary.
The partition pattern obtained by LCT-BSB is not too intuitive and
the reconstructed signal from its top 81 largest coefficients shown
in the figure reveals spurious Gibbs oscillations around thesingu-
larities. The relativeℓ2 error is0.0459. We are currently conduct-
ing our comparative study with the other MDL approaches using
the conventional wavelets (e.g., [6, 8]), which we shall report at
another opportunity.
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