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Abstract

We present a new approach to simultaneously segment, cesyped denoise an observed noisy
signal by combining our compact signal representation reehealled thePolyharmonic Local Sine
Transform(PHLST) and the Minimum Description Length (MDL) criteriomhe PHLST algorithm first
generates a redundant set of local pieces of an input sigihl & which is supported on a dyadic subin-
terval and is approximated by a combination of an algebraigrnmmial of low order and a trigonometric
polynomial. This combination of polynomials compensatesirt shortcomings and yields a compact
representation of the local piece. To select the best nandaht combination of the local pieces from
this redundant set, we use the MDL criterion with or withoctiually quantizing the relevant parameters.
The resulting representation gives rise to simultaneogsneatation, compression, and denoising of
the given data. We apply our algorithms to synthetic and degéhsets and compare their performance
against other competing methods for denoising and compressich as the wavelet transform using
the MDL criterion. We observe that our PHLST algorithms parf better (in compression rate, relative
£2-error, and visual quality) than the wavelet transform fecitiatory signals whereas their performance

is comparable to that of the wavelet transform for piecewis®oth signals.

Index Terms

Polyharmonic Local Sine Transform, Signal Compressiomdising, Quantization, MDL, Piecewise

Approximation
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I. INTRODUCTION

For signal compression and feature extraction purposespftsignificant interest to segment the input
data according to the local smoothness and the geometrg aitiqularities. There is no need to subdivide
a smooth region into a set of many smaller segments, and intfet is wasteful because each segment
requires to store some information such as the endpointseo$égment. This was also demonstrated by
our earlier papers [1], [2] using the so-callpdlyharmonic local sine transforidPHLST). The original
form of PHLST, however, assumes that the partition of an tirgignal is given a priori, and does not
automatically compute the best possible partition for tigeal. In this paper, we propose an automatic
method to do that for 1D signals and give several convincixeyrgles. Our approach is based on the
“split-and-merge” or “divide-and-conquer” strategyla best basis of Coifman and Wickerhauser [3]. We
first split (or subdivide) an input signal brutally into a sétlocal pieces by multiplying the characteristic
functions supported on dyadic subintervals in the form ofiraty tree. Then, we represent each local
piece using the PHLST and evaluate its cost in termMioimum Description LengtiMDL) criterion.
Finally, we “prune” this tree to come up with the “best” split segmentation of the original signal,
which results in the minimum overall MDL cost.

There are several published works closely related to oujegtoln [4] we showed how we used a
library of orthonormal bases and the MDL criterion to give thest compromise between the fidelity of
the estimation result to the data and the efficiency of theesgmtation of the estimated signal: it selects
the “best” basis and the “best” number of terms to be retamédof the various bases provided in the
library in an objective manner. The significant differenedvieen this paper and [4] is that we now select
the best representation from scratch while in [4] we simmgdithe MDL criterion to choose the best
number of terms to be retained in the pre-computed best Hasisvas selected by a different criterion,
e.g., the minimum entropy criterion [3].

Moulin [5] applied the idea of adapted tree structures in aehs packet library by viewing the
choice of a tree as a choice between competing models, arabiclgothe best model according to the
MDL principle. In fact, we adopt his idea of node selectiorstcm our algorithm as we will discuss in
Section VI. However, there are at least two differences betwhis approach and our approach. First, our
approach is not for wavelet packets. It is designed for ourt FPHrepresentation of a signal. Second, one
of our two proposed methods quantizes all the relevant patennto convert them into integers followed
by the MDL cost computation whereas Moulin’s approach dagsuse the quantization procedure.

To improve denoising performance, Hansen and Yu [6] foldedgrior distributional assumptions for
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natural images into a model selection framework for wavditoising via MDL. Another important
aspect of their work is their clear understanding on theediffice between the signal models with and
without quantizing the parameters (e.g., wavelet coefiisieused in the models. We also distinguish
these two models and propose the corresponding algoritising the PHLST representation of a given
signal. Hansen and Yu, however, strictly used a fixed wa\sstis selected by a user and their algorithm
is not designed to choose an optimal basis from a library tdfomormal bases.

The organization of this paper is the following. We will diss two different versions of our basic
formulation for simultaneous compression and denoisingSactions 1V and V. Section VI further
develops our algorithm for signal segmentation, which Wélfollowed by our numerical experiments in
Section VII. We will then conclude this paper in Section VBut first, let us review briefly our PHLST

scheme in Section Il and set up our noisy signal model in Sedti.

Il. REVIEW OF PHLST

We will review the one-dimensional and global version (iwithout subdividing the domain) of our
PHLST scheme. For higher dimensions and the details, sef2[1Buppose our signdl(z) is supported
on the unit intervall = [0, 1], and has some smoothness, efgg C*™(I) for somem € N. Now, we

separate the data function into two pieces

f(z) = u(z) +v(z). 1
The polyharmoniccomponent. in (1) satisfies the followingpolyharmonic differential equation
SZZ () = ™ (2) =0, wel, @)
with the boundary condition
ul9(0) = f#9(0), (1) = F29(1), 0<tL<m. (3)

The u component satisfying the above conditions i — 1 degree algebraic polynomial witkim
coefficients. We note that in higher dimensions, the polytwnic equation (2) become$™wu = 0 where
A is the Laplace operator and its solution is not an algebraignomial in general.

Once we compute the component, then theesidualv = f — u is computed and expanded into the

Fourier sine series

o0 1
v(z) = \/iz& sin(mlx), B¢ = \/5/ v(x) sin(mlx) dx.
=1 0
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Thanks to the boundary condition (3), thecomponent satisfies
v290) =v®)(1) =0, 0<l<m,

which makes the Fourier sine coefficients decay very quidldy, |3,| ~ O(¢~2m~1). One can compare
this decay rate with that of the ordinary Fourier series agpma with the periodic boundary condition,
which gives rise toO(¢~1) with the infamous Gibbs phenomenon [7, Sec. 10], or that efRburier
cosine series expansion with the Neumann boundary congditibich gives rise ta)(¢~2). See [2] for
the proof of the above fact and the details of the decay rdtésese coefficients. The main point of the
use of PHLST for signal compression is this speed of decaph@fekpansion coefficients. This means
that we can truncate the coefficients with a smaller numbeemiis and still get a good approximation
if the original signal has enough smoothness. Moreoveressmting the: component only requiream
real-valued numbers since it is an algebraic polynomial ejrde2m — 1. Another advantage of the
PHLST representation is its usefulness for signal intepmh and derivative computation at arbitrary
points in I thanks to the use of both the algebraic polynomial.iand the trigonometric polynomial in
v. This combination also compensates each other's shomgmnif we were to use only a trigonometric
polynomial to approximate the data, we would encounter thdb&phenomenon. On the other hand, if
we were to use only an algebraic polynomial (of high degreedpproximate the data, then we would
encounter the so-called Runge phenomenon [7, Sec. 18]dhalts in totally erroneous interpolation.
Of course, the story gets more complicated (and interéstmgnore realistic situations because those
signals of our interest contain noise, singularities, aaddients, which will be discussed below.

For the practical purposes, we only consider= 1 in this paper. Then we have
u(r) = ap + azz, 4)

where the coefficients;’s are determined from the boundary conditions.

Remark I1.1. Note that form = 2, we have a cubic polynomiali(z) = ag + a1z + aer? + asz3. To
determineny,’s, we need to estimatg’(0) and /(1) from the data. Although there are several interesting
algorithms to estimate them (e.g., [7, Sec. 19]), which we @amrently investigating, we will not deal
with this cubic case in this paper. We believe that the cas#smw > 2 are impractical due to the need

of estimating even higher derivatives from the data.

I1l. OUR SIGNAL MODEL

Let us now consider the case where the data contain additinte Wsaussian noise (AWGN) with

unknown variancer?. Suppose the data are sampled uniformlyrat= n/N, n = 0,1,..., N. Thus,
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our signal model can be written as
J(@n) = w(@n) + v(wn) +nen),  nlea) = N(O,0%). 5)
In the vector notation, (5) can be written as
f=u+v+necR¥ 5~ N0, 0% In). (6)

We denote thesth entry of f by f[k]. Thus f[0] = f(0) and f[N] = f(1). The w component can be

written as ) )
1 0
1 Ax
w=Ra, RE| | eRNTD2 Ap— 1N, )
1 NAz

wherea = (ag, a1)?.
We assume that the component consists of/ sinusoids § < M < N — 1) with frequencies

1<uq,...,vyy < N —1instead of N — 1 sinusoids of frequencies ..., N — 1:

5 M
v(wn) =\ 7 D_ B sin(mvpzn), ®)
(=1
where N1
[ 2 )
By, = N Z v(xy) sin(mypxy,). 9)
n=1

These are a subset of the Discrete Sine Transform (in facdkmalled DST Type | or DST-I for short)
coefficients of thev component. The reason why we model eomponent byM sinusoids instead
of N — 1 sinusoids is the following. The column vectors @fin (7) and theN — 1 DST basis vectors
jointly span the whole spade@¥+*!, i.e., they can completely represent the given data inctuthie noise
without error. Hence, we could not reduce noise if we wered® all N — 1 sinusoids. Let us write the

v component as

v=258, S A DSy € R(N+1)><(N+1)’ (10)

0O --- 0
where Sy _; is the DST-I basis matrix of siz&€V — 1) x (N — 1). The coefficient vectop is of length
N + 1 but has at mosfi/ nonzero entries. Furthermore[0] = v[N] = 0 and 8[0] = B[N] = 0 since

the w component removes the endpoints. Therefore, our signakh(6y can be rewritten as
f :Ra+516+777 nNN(O7JQIN+1)7 (11)
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which can be further simplified as

fF=Wry+mn, n~NO0o’Ixn) (12)
by defining
W 2 [R(:,1)|S(,2: N)| R(;,2)] € RVFDx(V+D), (13)
oo
"/é Bll:N—1]| e RVFL (14)
aq

Note that the matrid¥? is not orthogonal

IV. ANALYTICAL COMPRESSION ANDDENOISING

The essence of MDL is the following. Suppose that we are gdegad € R"™ that were generated by
some parametric statistical mode(d | 8) where® < R*. Suppose also that we want to have a flexibility
that &£ is not fixed a priori and want to learn the “begi’and 8 from the data. Rissanen advocates (see

e.g., [8]) that the best model is the minimizer of the follogicost functional (or codelength):
L(d,0)=L(d|0)+ L(0) ~ —log P(d|0) + glogn. (15)

In this paperlog denotes the base 2 logarithm unless stated otherwise. Bhéefim quantifies how well
this model can fit the data. The second term is to penalize koabgpd models: the simpler the model
(i.e., the smallek), the better. MDL balances these two conflicting terms u#irginformation theoretic
justification.

There are two possible ways to apply to MDL criterion to ouslgem. One is called the “analytical”
formulation, the other is called the “quantized” formutatti(see also [6] for more about such terminology).
In this section, we focus on the analytical formulation, efhéssentially uses the MDL criterion as a way
to select the number of model parameters and to compute rtteirmum likelihood estimates (MLES).
We also used this strategy in our earlier paper [4] for sigoahpression and denoising using the wavelet
packets and local trigonometric dictionaries. On the othemd, the quantized formulation (which we
will discuss in Section V) actually performs the quantiaatof all the parameters, i.e., it truly converts
everything into “bits” and seeks the model that generatesstiortest bitstream for the given data. Let
us now introduce our notation for the MDL formulation.

Let 8, and 8, be the vectors of parameters that completely specify:trend v components in (7)

and (10), respectively. It is clear th@t, is simply the pair(m, ) if we have a choice imn, saym =1
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or 2. Since we only consider the: = 1 case, we can assume th&f = o € R2. As for 6, it is
a concatenation o/ nonzero real-valued DST coefficients,,, ..., 5., )" € R™ and their indicator
vector (v, ...,vy)T € {1,...,N — 1}, Therefore, the codelength (15) of our data with our signal

model (6) (or equivalently (11) or (12)) can be written as
L(f,0.4,0,,0%) = L(0*) + L(0,,0, | 6*) + L(f | 6.,0,,5% (16)

Note that weneedto estimate all these parameters via the maximum likelihmathod. Letd be the

MLE of a parametep. By the definition of MLE, we have
L(f,0u,60,0°) > L(f,0.,6,,5”). (17)

Using the notation (12), (13), and (14), the likelihood of tthataf can be written as

N+1

P(f|0u,0,,0%) = (210°) "= exp (—[|If = W~|?/(207)), (18)

where|| - || denotes the&2-Euclidean norm. Differentiating (18) with respectdé and setting the result

to zero, we can obtain the MLE of?:

1
~2 W 2

Then, from the optimality of the Shannon code, the codelengithe dataf given those parameters is

bounded from below by the following negative log-likeliltbof (18):

L(.f|9ua0v732) > _IOgP(f’0u70v>a2) (20)
N+1 ore ,
e —1 — .
hiog (217 - W)

Hence, the MLEs o, and 8, can be obtained by minimizing (20), which is equivalent to

(éu, /9\11) = arg min || f — W~|> = argmin || f — Ra — SB|°. (21)
6..,6, B
Differentiating this functional byv; andj,,, the MLE & and B,,,_; must satisfy
M ~
R"Ra = R (f — Zﬁwsw> : (22)
=1
By, = 8L (f — Ra), (23)

wheres,, € RN+ s the (1, + 1)st column vector of5 in (10). Eliminating3,, in (22) using (23) with

a bit of algebra, we obtain the following equation far

a= [RTJN+17MR}_1 [RT Ins,m] (24)
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where

M
A
INt1im = INy1 — Z SWSCIZ- (25)
=1

In practice, however, computing (24) and (25) gets comfditasince we do not know a priori which
M sinusoids out ofV — 1 sinusoids should be used to represent and approximatamponent. In fact,
if we want to minimize the functional (21) and obtain the ML{-AZ§ and 51,, then we have to evaluate
(24) and consequently (23) and (21) for each possible caatibim of M sinusoids{s,,, ..., s,,, } over
M =0,...,N—1 and find the best one. Unfortunately, there e ! possible combinations, which is
impractical even for moderat¥. There are two possible approaches to circumvent this @nolllthough
both of them are suboptimal:

1) Restrict theM sinusoids to those of thiewest M frequencies, i.e, = ¢, ¢/ =1,..., M. This
approach still requires to compute (24) and (25), but we aamainly avoid the combinatorial
explosion.

2) Forcea = (f[0], fIN] — £[0))T as if there is no noise on the boundary points and the noistsexi

only on the internal samples.

A. AMDL assumingV/ lowest frequency sinusoids (AMDL1)

In the first case, we use th&l lowest frequency sinusoids to represent theomponent. Thus, we

cansetv, =¢,¢(=1,...,M in (23) and (25), which become

B = si (f — Ra) (26)
and
A M
INt1m = Ing1 — Z S¢S , (27)
=1

respectively. Using (27), we can compute (24) and obtainbttst estimate forx and consequently the
best estimate fof via (26). With this information we can finally determine thedelength forf as in
(16), which is

L(f,Ou,OU,JQ) = L(UQ)"’L(euaev’02)+L(‘f|0u70v702)

L(6%) + L(8.,0,|5°) + L(f]8.,6.,5%) (28)

v

AMDL1(M). (29)

We call the resulting description length (29), the “analgtiMDL with lowest frequency sinusoids” and

denote it byAM DL1(M) where M refers to the use of thé/ sinusoids. To determine precisely each
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term in (28) we will use our results from (19) and (20). Thetftesm L(5?) represents the description
length for the estimated noise variance (in bits). Si#ités a real-valued parameter, its description length
is

1

L(G%) = 5 log (N +1). (30)

This is because for each real-valued parameter we assighbitticest (1/2) log(# data samples), which
is (1/2)log (N + 1) in this case, and whose asymptotic optimality was shown lsgdtien (see e.g., [8,
Chap. 3)).

The second term in (28L(§u, 0, |52), represents the description length for thendwv components.
Since@u = (qp,ay)” and §U = (El, e ,BM)T, we haveM + 2 real valued parameters. We also need
to describe one integer paramefdr that ranges betweanand N — 1, which requiredog NV bits. Thus
the description length for this term becomes
M+ 2

L(6.,6, 5% = log (N + 1) + log . (31)

Finally the last term in (28) is given by the last equality 20). Summarizing all these terms, we have

AMDLI(M) =

M+3 N +1
log (N +1)+

(32)

log (2me - 6%(M)) + log N.

We now seekM over0 < M < N — 1 that minimizes (32). Once we find the minimiz&f*, we can

approximate the datf as
f~Ra"+SB, (33)

wherea™ and B* are the final MLEs usingV/* in (24) and (26), respectively. The righthand side of
(33) can be viewed as a denoised versionfof/vhereas(a*,,@*) can be viewed as its compressed

representation.

B. AMDL assuming noiseless boundary points (AMDLZ2)

The endpointsf[0] and f[N] are now deterministic, so is the component. Therefore there is no
difference betweemy, 0, v anda, §u, u, respectively. Note that we also reach to the same condusio
with M = N — 1 even if we do not explicitly assume this no noise scenariohat éndpoints. Let
FEF-wll:N—1=(f1] —ull],-, FIN — 1] —u[N — 1)) € R¥~!, whereu = Ra as (7).

Let s = s[1 : N — 1] € RV~1, Our simplified model thus has the following form instead ©: (

fF=3+n=Sv_1B+7cRY 7 ~NO0,0%Iy_1), (34)
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10

where3 2 B[1: N — 1], which hasM nonzero entries. The description length (16) now becomes
L(f,0.4,00,0%) = L(0.)+ L(05,0%) + L(f | 05,07)

L(6,) + L(65,5%) + L(f | 65,52) (35)

> v

AMDL2(M), (36)

where@; is exactly the same &,. In (36), we call the resulting description length as “atiabl MDL
with noiseless boundary”, and denote it Bp/ DL2(M') where M refers to the use of th&/ sinusoids.
This functionalAM D L2 of course depends also &] 55, o, but we omit them in our notation. We now

modify (18) accordingly as
P(F|05,0%) = (270%) "7 exp (1 F = Sn-1B]%/(20%)) (37)

From this, (21), (19), (20) become

~

B=arg min |f—Sy_187% (38)
1Bllo=n
. 1~ >
52 = ﬁ”f - SN—IBHQ- (39)
L(f|65,6%) = —— log (27me5?) . (40)

respectively, and we proceed our computation in this ofdete that||5||0 = M in (38) means that a set
of vectors of lengthV — 1 containing exactlyl/ nonzero entries are searched for the minimum. Because
If — Sn—18] = HSﬁ_lf— B3|l thanks to the orthonormality of y_, searching the minimum is now
very easy: we can simply choose the sinusoids correspornditige largestV/ coefficients ofS}{,_lf.

Now we can determine (36) precisely. The first tefit@,,) represents the description length (in bits)

of the w component. Sincé, = (ag, a1)?, i.e., two real-valued parameters, we have
L(6,) = log(N +1). (41)

The second term of (35) counts the description Iengtl@;pbnd the variance estimat® = 52(M),
which amounts to: 1) one integer parametérthat ranges betweemand N — 1; 2) M + 1 real-valued
parameters consisting of thd nonzero coefficients iu% anda?; and 3) M integer parameters, i.e., the
indices (v, ..., yM)T, each of which ranges betweérand N — 1. Therefore, we have

M+1

L(65,5%) =log N + log(N + 1) + Mlog(N — 1). (42)

The last term in (42) can be further shortened asmin(M, N —1— M) -log(N — 1), by recognizing
that it is shorter to describe the indices 8f— 1 — M zeroentries if M > N/2, provided that we add
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11

the 1 bit flag to indicate whether the indices are those of zercientir nonzero entries. Summarizing

all these terms, we have

M
AMDL2(M) = L3 10a(N 4 1)
+ min(M, N —1— M)log(N — 1) (43)
+ ———log (2me - 3%(M)) + log N + 1.

We now seekM over0 < M < N — 1 that minimizes (43). After finding the minimizev/*, we obtain
the approximation to the datfi as
f~Roa+SB,

which is different from (33) because is deterministic.

Remark 1V.1. Theoretically, the minimized/* of the MDL cost (32) or (43) should be searched over all
possible range o#/, i.e.,0 < M < N —1. However, in practice, whei reaches very close t& —1, the
cost functions (32) and (43) are completely dominated byfithedity term rather than the regularization
(or model cost) term. Consequently/* = N — 1 would be chosen, and we could achieve neither data
compression nor noise removal. Hence, we limit the seamperaf M as0 < M < C'- (N — 1), where

0 < C < 1is typically chosen to bé.6, i.e., slightly more than half the number of the DST coeffitse

V. SIMULTANEOUS COMPRESSION ANDDENOISING WITH QUANTIZATION

A possibly better way to approach our simultaneous comjmesand denoising problem is to use a
scalar quantizatiorprocedure to truly convert all the real-valued coefficiesmtsl parameters to integers
by truncating them with some precisior(which is to be optimized). In other words, we seek the sisorte
bitstream that can be stored as an acfilaland from which we can recover a good approximation of
the true signal with less noise.

If we want the quantized version of AMDL1, i.e., the modelngsthelowest M frequency sinusoids
then we need to compute (24) and (26) for eddhand to quantize all the relevant parameters. This
computational process is expensive when we apply it to oaralthical segmentation that will be
discussed in Section VI and thus is not practical for use.

So instead, let us assume that our simplified model (34) fordata f still holds true except one
difference: we do not explicitly assume that the DST coea‘ﬁcivectorﬁ in (34) consists of\/ nonzero

entries and théV — 1 — M zeros. In our new formulation, the number of nonzero entaras that of zero
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12

entries are completely and automatically controlleddbylhus instead of (36) we have the following

total description length:
L(f,04,6,,0%6) = L(8) + L(8,|0) + L(07,5°|6)
+ L(:f| 057 027 5)
> L(5) + L(0.8) + (83,5 | 5) (44)
+ L(f | é\ﬁa 827 5)
2 QMDL(5),
where QMDL stands for “quantized MDL” and it depends on theapzeters.
Let us analyze (44) so that we can determine an explicit eodgh formula. In the first term of (44),

the precisiorny is encoded using
L(0) = log(1/6) (45)

bits. It is sometimes convenient to use the precision of e = 27¢, ¢ € N, which leads ta_(J) = ¢
bits. Note that this is the key parameter in the minimizatwdr{44) and thus it needs to be optimized.
The second term of (44) is the parameter veaigrwhich will be truncated with precision. For
example, the parametey, is approximated by« /d] - 5, where[-] is the nearest integer of its argument.
Since/ is already recorded in the first term, we only need to storeiriteger [c; /d] for oy, i = 0, 1.
Thus, we have
L(6y|6) = L* ([0 /0]) + L* ([ /6]) , (46)

where L*(-) is the codelength derived from the so-calladiversal prior for integers(see e.g., [8,

Chap. 3]), which assigns the codelength for any integerZ as follows:

. 1 if j =0,
L*(j) = (47)
log* |j| + log4cy otherwise
wherelog™ |j| is the sum of iterated logarithms with only positive terms:

log* || = log|j| + loglog |j| + -+ = > max (10g™® 1,0},
k>0

where log(k)(-) is the k-times iterated logarithm. The constafnt ~ 2.865064 in (47) was derived so
that equality holds in the Kraft inequalit)E;?‘;_C>o 2-L7(5) < 1. Note that these truncated version e@f
should be used to compute and consequently and the other quantities.

In the third term of (44), we quantize the entriesagf: '5 € RN~! with precisiond. For simplicity,

we adopt the so-called uniform quantization with “deadZofi@e entire range of the coefficient values
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—-T — 26 —-T -6 -T 0 T T+6 T+26

Fig. 1. The real line is subdivided into three major regiérso, —1') U [—T,T) U [T, co) where(—oco, —T') and (T, co) are

further subdivided into regions of equal widéh

is divided into a set of regions—oco, —7") U [-T,T') U [T, c0) whereT > 0 and the regions except the
“deadzone”[—T,T) are further divided into a set of bins of the equal widtas shown in Figure 1. The

coefficients falling into a specific bin are replaced by theresentative value of that bin, which is called
the reconstruction value. For simplicity, we use the vallithe midpoint of that bin as the reconstruction
value so that we do not have to explicitly record them, i.ee,a&n recover the reconstruction value of
any bin from itshin index Also, the coefficients whose values lie within the deadzareetruncated to

0. This “thresholding” operation clearly serves as a dengisiperation. As for the choice of the value
T, it would be best to use the optimal theoretical thresholdesdy considering the nature of the signal,
the DST coefficients3, and the statistics of the noise. Such choice was used bygGttaal. for wavelets

[9]. For the ease of implementation, however, we will defe theoretical question of determining the

optimal value ofT'. Instead we will choose the betamong the finite number of possible values:

_ max(|3])
{n5 n—l,...,{T-‘}. (48)

With such choice ofl" and with the symmetric quantization bins around the origlhof the coefficients

can be mapped int@K + 1 bins for someK < N that depends o and the coefficient range. Thus,
the quantization procedure conveiss RV~! to an integer-valued vector € {—K, ..., K}V~! of the
bin indices.

We can further reduce the codelength by applying a lossleisemy coding technique (e.g., Huffman
or arithmetic coder) to this vectet. In this paper, we use the Huffman coder that can further exanv
n into a bitstream ofit most(N — 1)(H (p) + 1) bits [10, Chap. 3], wheréf(-) computes the Shannon
entropy of the probability mass function (pmf), apd= (p_x, ..., px) is the pmf ofn, i.e.,pr = #{i €
{1,...,N —1}|n; = k}/(N — 1). Note that if we directly encode without using any entropy coder,
then (V — 1) log(2K + 1) bits is required, which is the worst case scenario.

Lastly, to encoder?, we first compute (39) with the quantized DST coefficientsed the codelength
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of 2 with precisiond is L*([52/§]) bits. Hence, the third term of (44) can be approximated as
L(65,5%|6) ~ L*(K) + (N — 1)(H(p) + 1) + L*([6%/3)]). (49)

Therefore, using (40), (45), (46), and (49), the total cedgth (44) can be written as

QMDL(5) = log(1/6) + L*([ao/6]) + L*([a1 /6])

+ LK)+ (N —-1)(H(p)+1) (50)

+ L*([5/4)) + log (2me - 52) ,

wherep, 52, and K all depend ons. We then searclh = §* that minimizes (50) over a finite set of
possible values. We will discuss an example of such a finitensgection VII. Finally, with all the model
parameters quantized with precisiéh and encoded by the Huffman coder, we obtain the compressed

bitstream representation of the denoised signal, whichbeadecoded and reconstructed at our disposal.

VI. ADAPTIVE HIERARCHICAL SEGMENTATION, COMPRESSION AND DENOISING

Based on our analysis of the global single segment case aveveow consider the hierarchical split
of the input data and how to prune the tree-structured seivials to obtain the best segmentation, which
in turn should improve the compression and denoising peidoce as we discussed in Introduction. Let
us assume thav = 27 for someJ € N, and let us define a collection of the standard dyadic sutvials
on the interval(0, 1], Z; £ {I;, = [k/20,(k +1)/29]|j = 0,1,...,J — 1, k = 0,1,...,29 —1}. Let
N; 2 9J-j. The number of available samples @¥y. including the two endpoints isV; 4 1 for all
k=0,...,2 —1 for a given levelj, 0 < j < J — 1. Thus each of the shortest subintervals ;.
contains three samples and the longest intefyal contains the whol@”’ + 1 samples.

We adopt the “split-and-merge” or “divide-and-conquer’pegacha la best basis of Coifman and
Wickerhauser [3]. In other words, we first split the inputada@tto a collection of the data segments
supported oriZ;, and at each node (or subintervdl), € Z; we compute its MDL value by adjusting
the formulas (32), (43), or (50) faf; ;, instead of the whole intervdl = Iy o. Then we start the “merge”
procedure by examining the bottom (finest) level nodes, (j.e: J — 1) whether they should be merged
or not and continue this check from bottom to up until we retacthe root node. To determine whether
two adjacent subintervals should be merged or not, we caarpar MDL cost of theunion of these two
nodes with that of their parent node. If the cost of the un®rsmaller, we keep the children nodes;

otherwise they are eliminated and we keep the parent node, Nowever, that our MDL cost functional
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is not additive we cannot simply add the MDL values of the children nodesaaly computed in the

“split” stage. We also need to pay attention to the following

« The midpoint of the parent node corresponds to the right entli.e., tail) of the left child node
and the left endpoint (i.e., head) of the right child nodenszmuently, when we compute the cost
of the union of the children nodes, the MDL cost of this midponust be subtracted from the cost
of the union.

« When we split the parent node into the left and right childnedes, we must add an additional two
bits. This is because the cost of just representing the pame is 1 bit (in the bit representation,
it is 1 where 1 symbolizes the terminal node) and the cost pifesenting the two children nodes
is 3 bits (in the bit representation, it is 011 where 0 syn#sdia split). Therefore, the difference is

2 bits. For a detailed explanation and examples see [5].

VII. NUMERICAL EXPERIMENTS
A. Experimental Data

To test the performance of our algorithms, we used four wffe datasets shown in Figure 2: a) a
synthetic signal from Mallat’s book [11, p. 81], which is eefed to as “MSignal” with heavy AWGN
of 02 = 107!; b) the MSignal with extremely weak AWGN af? = 10~'4; c) the “Doppler” signal
available in the WaveLab software system [13] with modeféGN of o2 = 10~5; and d) a single row
from a standard digital image called “Peppers”.

The MSignal has many interesting features: piecewise dmoatnponents with several jump discon-
tinuities in the signal values and derivatives in the firdf bhad a noisy textured region in the last half;
see Figure 2(b). The wavelet transforms are known to perf@ethon this signal thanks to the piecewise
smooth nature of the first part of this signal. Note that theavees of AWGN are unknown to our
algorithms.

For the Doppler signal, we added WGN with variance= 10> as shown in Figure 2(c). This is
highly oscillatory, in particular, in the earlier part.

For the real dataset, we used a single row from a standardidigiage as shown in Figure 2(d). More
precisely, this is a normalized version of th&6th row of the standard image known as “Peppers”. We

assume that the real dataset has some amount of noise (acbwnkrariance).
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o 50 100 1s0 200 250 o 50 100 1s0 200 250

(a) MSignal witho? = 1071 (b) MSignal withg? = 10714

() 50 100 150 200 250 300 350 200 as0 500

(c) Doppler withg? = 107° (d) Real Signal (a row of the “Peppers” image)

Fig. 2. Plot of the signals used in our experiments.

B. Description of Experiments

Before presenting the results of our experiments, let usridiEsthe types of experiments we conducted.
Recall that in Sections IV and V we described two formulagidar the PHLST-MDL method: 1) the
“analytical” formulation (which has in turn two cases AMDLland AMDL?2); and 2) the “quantized”
formulation. We compared and assessed the performanceiotisalgorithms by observing the compres-
sion ratio, relative/?-error, and MDL cost. In addition, we visually compared tignals reconstructed
from their compressed representations.

For the experiments on the analytical MDL formulation, wedisuuniform precisionacross all levels
of decomposition, which means that the description lendteazh real-valued parameter for an input
signal of lengthN € N is fixed asl/2 -log N and independent of the node in the tree.

For the experiments on the quantized MDL formulation, weo alsed auniform ¢, i.e., § did not
change across the levels while computing the MDL cost. @niiie analytical formulation, however, for

this formulation we searched the optimiai= 6* from the set
1

— |j=-2,-1,0,...,J — 1%, 51

{V2J—J +1 “7 } G

where2”’ + 1 is the length of an input signal. Note that for each possibie (51), we also optimized
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the thresholdl" over the finite set (48).

To compare the performance of our proposed methods olgéctive also implemented the WAVELET-
MDL methods, which replace the PHLST representation by theslet representation and by applying the
necessary modifications (e.g., the number of real-valuednpeters, etc.) in our PHLST-MDL methods.
In the WAVELET-MDL methods, we used th®06 wavelet transform (Daubechies 6-tap QMF with 3
vanishing moments, see [12]) using the WaveLab softwark [t Particular, we applied th&®06 wavelet
transform in three different ways:

1) Periodized Wavelet Transform (PWT);

2) Global line removal (similar to PHLST without any segnagittin of the interval) followed by the

Periodized Wavelet Transform (PWTLR);

3) Wavelets on the Interval (WOI); see [12, Chap. X].

The reason why we used these three different ways of appthiegvavelet transform is that we wanted
to see : 1) the effect of removing the linear structure cotingadhe head and tail of the signal to form
a continuous periodic extension of a signal before applyirgwavelet transform; and 2) the effect of
the wavelet transform adjusted on the interval (i.e., WGOithaut any such preprocessing.

Before describing the results of our experiments, we noteraéspecifics about our algorithm setting.
First, we decided to follow the noiseless boundary assumgtr both the analytical (i.e., AMDL2) and
qguantized MDL formulations for the WAVELET-MDL methods. bther words, we did not examine the
case corresponding to the PHLST-AMDL1 algorithm for the VEMET-MDL methods. This is because
the noise at boundary points are essentially immaterialtier WAVELET-MDL methods, which do
not segment the input data explicitly in the time domain kenlihe PHLST so that there are only two
boundary points (the head and tail of the input data) for theetond, our WAVELET-AMDL algorithms
search the optimal number of wavelet coefficients to retaar 60% of the number of the sorted wavelet
coefficients as described in Remark 1V.1. Third, in order pplg these algorithms rapidly the length
of an input signal should b2’ + 1 for some.J € N for the PHLST-MDL algorithms an@’ for the
WAVELET-MDL algorithms; hence, we cut one sample from théyimral signals when we applied the
WAVELET-MDL algorithms. Fourth, the depth of the decompimsi of each transform in the experiments
was set to its deepest possible odex- 1 for the PHLST;J for the PWT and PWTLR; and — 3 for
the WOI.
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C. Results

In this subsection we present the results of our experimantdisplaying a reconstruction plot and a
numerical table for each formulation and for each noiselléme2ach reconstruction plot, the reconstructed
signal is always plotted in a thick solid black line and oagd the original noiseless data plotted in a
thin black line. The partitions (segmentations) obtaingdiie PHLST-MDL algorithms are shown as
vertical lines. In each numerical table, we limpression ratiprelative ¢2-error (between the original
noiseless signal and the reconstructed signal), MBd. cost For each row of each table, the value in
the italic font and the one in théold italic font denote the worst and the best results among all the
methods in that table, respectively.

We note that an ideal compression method would yield highpression ratio while maintaining the
small relative/?-error. In any practical compression method, however, igadr the compression ratio,
the larger the relativé®-error in general.

1) Mallat's Signal: We begin our evaluation of the results on MSignal with AWGNos# variance
is 02 = 107!; see Table I. The first noticeable result for the analyticdDlMexperiments are the
extreme values (best and worst result) for each categos.PHLST-AMDL1 produced the best relative
¢%-error and the worst compression ratio while the waveletgheninterval (WOI) produced the best
compression ratio and the worst relati¢&-error. The first three plots in Figure 3 show the signals
reconstructed from the compressed representations byHh& RAMDL1, PHLST-AMDL2, and PWT-
AMDL, respectively. The PHLST-AMDL1 produced a very smoa#tonstruction tracing the original
noiseless MSignal relatively closely except for the chemastic sharp features such as the step edges
and the cusp. The PHLST-AMDL2 tried to follow those charaste features more closely than the
PHLST-AMDL1 by using the higher frequency sinusoids, butdese of this, it also produced artifacts
(e.g., the bump around the sample index 70). On the contrary, the PWT-AMDL (as well as the
other two WAVELET-AMDL algorithms) produced much more vadly annoying false sharp features
due to the roughness of thB06 wavelet basis functions, which is particularly visible imetregion
before the textured region starts. Judging from the resaltSable | and Figure 3, we conclude that
the PHLST-AMDL1 produced the overall best result among thDA methods due to its low MDL
cost, low relative/2-error, and overall visual quality of the reconstructechaig with the expense of the
compression ratio.

Let us now analyze the results of the quantized MDL methauJable Il we see that each quantized

MDL method produced better results than its analytical M@lumterpart. This is particularly so in the
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TABLE |

ANALYTICAL MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE 1Sc? = 107!,

H PHLST-AMDL1 PHLST—AMDLZ‘ PWT ‘PWTLR‘ WOl \

Compression ratig 14.752 17.350 19.932 | 17.246 | 21.845
Relative ¢*-error 0.22219 0.22920 0.27269| 0.27375| 0.27457
MDL cost 264.97 337.14 353.68 | 362.80 | 366.53

compression ratios, which is understandable because we @ity integers after quantization instead of
the double precision floating point humbers used in the aicalyMDL methods. The best compression
ratio and the worst relativé?-error was produced by the PWT while the worst compressitia aad the
best relativer2-error was produced by the PHLST, which also produced thesowWIDL cost among all
the QMDL methods. It is also interesting to note that the PRCIMDL method split the signal into four
meaningful segments: 1) the step edges; 2) the smooth pahte usp region; and 4) the noisy textured
region. We also list here the paif$*, n*) € N? that specify the optimal precisiofit = 1/1/28-7" + 1
for PHLST andé* = 1/v/28-7" for wavelets, and the optimal threshdldt = n*6*. These arg(6, 3),
(7,2), (7,2), (7,2) for PHLST, PWT, PWTLR, and WOI, respectively. In other wardslatively large
(i.e., low precision)*’s were chosen for this heavy noise MSignal. Judging fromréselts in Tables I,
II, and Figure 3, we conclude that the PHLST with QMDL formtida produced the best result among
all the methods including those with the AMDL formulatiorr fiis highly noisy MSignal.

TABLE Il

QUANTIZED MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE ISo2 = 107 1.

H PHLST‘ PWT ‘PWTLR‘ WOl ‘

Compression ratig| 102.33 | 117.99 116.31 | 110.12
Relative/2-error || 0.20675 | 0.24787 | 0.24787 | 0.22744
MDL cost 300.72 317.17 | 319.17 | 324.77

We now examine the results on MSignal with AWGN whose vamaixo? = 1074, i.e., almost
noiseless case. Table Ill and the first three plots in FigusbaW the results of the AMDL methods. The

first thing we notice here is the drop of the compression satim the improvement of the relatigeerrors
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(d) PHLST-QMDL (e) PWT-QMDL

Fig. 3. Signals reconstructed by our methods. The inputasignMSignal with AWGN whose variance i8> = 10~". (a) The
PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) the PWYAMDL method that produced the lowest MDL cost
among the wavelet-based methods; (d) the PHLST-QMDL mett@dhe PWT-QMDL method that produced the lowest MDL

cost among the wavelet-based methods.

in all the methods. The PHLST-AMDL1 produced the lowest MDastwith comparable compression
ratio as that of the wavelet methods with moderate relativerror. A close examination of Figure 4(a)
reveals, however, the undesired edge effect (overshootuaddrshoot) around the step discontinuities
aroundi € [32,72]. Moreover, it created an unintuitively large number of segtations, particularly
around the discontinuities. As for the overshoot and urers around the step discontinuities, our

reasoning is as follows. If an original signal segment is alinear curve without heavy noise, then
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subtracting the MLE/least squares line computed by (24h &f7) in the PHLST-AMDL1 from that
segment results in the nonzero boundary values invtbemponent. Since we use the DST basis vectors
to approximate thes component, this essentially leads to a loss of the boundamtg Moreover,

in the PHLST-AMDL1 reconstruction, the value at a commonrmary point between two successive
segments is computed by averaging the values ofiwtt@omponent of the left segment evaluated at
that common boundary point and that of the right segmentusecshe two least squares lines in the
left and right segments do not match at the common boundaint po general. These contribute to
the undesired edge effect around the step discontinufiashe other hand, this does not happen in the
PHLST-AMDL2 where the line passing through the two endminteach segment and the reconstruction
value at the common boundary point between two successiuaesds is shared between them. As for
the overly fine segmentations around the discontinuitiethen PHLST-AMDL1, the following is our
reasoning. The PHLST-AMDL1 generally does not provide ughwai good approximation for the long
subintervals particularly for the low noise case. This isduse it only uses thé/ lowest frequency
sinusoids instead of the besf frequency sinusoids, and moreover, as we mentioned in Rehdt,

we restrict the search range of = M; up to 60% of the number of sinusoids we can maximally
have at levelj, i.e.,0 < M; < 0.6 x 277 to avoid the use of too many sinusoids. We found that
the MDL value (or more precisely the AMDLL1 value) of a noderesponding to a short subinterval
in the piecewise constant region in MSignal is much smalntthat of its parent node due to the
dominant fidelity term and the very small complexity term.nde, this restriction im/ in the AMDL1
formulation tends to produce finer segments, which is mowersethan in the AMDL2 formulation.
On the other hand, the PHLST-AMDL2 produced a quite readenad intuitive segmentation pattern
and an excellent visually-pleasing reconstruction as @sden in Figure 4(b). It did particularly nice
job in discontinuous part, i.e., it produced progressivatyprter segments toward the discontinuities. We
also point out that the high frequency fluctuations in theduwesd part were considered as noise in the
PHLST-AMDL methods. The WAVELET-AMDL methods resulted imet good relative?-errors with the
expense of the bad compression ratios. Figure 4(c) showeetimmstructed signal by the PWT-AMDL
method, which yielded the lowest MDL cost among the WAVELEVWIDL methods. As we can see, the
reconstruction is quite good over all except some Gibbsllaons on the discontinuous steps in the
earlier part and on the flat region before the large jump atahe sample index = 150 compared to
the PHLST-AMDLZ2. Unlike the PHLST-AMDL models, the high freency fluctuations in the textured
part were considered as a part of the signal in the WAVELETEAMmModels, and hence they were not

removed. We conclude that the PHLST-AMDL?2 is the best amdhtha AMDL methods in terms of
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its visually-pleasing reconstruction and the compressitio.

TABLE 11l

ANALYTICAL MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE I1So? = 10714,

H PHLST-AMDL1 | PHLST-AMDL2 PWT PWTLR WOI

Compression ratig 1.5104 2.1004 1.5309 1.5128 1.5309
Relative -error 0.075521 0.080101 0.0036657 | 0.0037904| 0.0054259
MDL cost -1668.5 -1046.0 -16.050 4.2976 57.795

The quantized MDL results will be examined next. In Table W& again notice that the quantized
MDL methods produced numerically better results than thaealytical methods counterparts. The best
compression ratio and the worst relatiéeerror was achieved by the PHLST-QMDL.

The pairs(j*,n*) € N? for the precisions* and the threshold™ are (5, 1), (-2,1), (=2,1), (-2,1)
for PHLST, PWT, PWTLR, and WOI, respectively. It is inteliegtto note that the WAVELET-QMDL
methods all chose the very finest precision in the searcheraing, 0* = 1/@ ~ 0.03125 while
the PHLST-QMDL selected the coarser precisitn= 1/1/23 + 1 ~ 0.3333. This is the reason why
PHLST-QMDL got the highest compression ratio. Because vesl tise same quantization step for both
the DST coefficients of the components and the line parameters for dheomponents (or equivalently
the two endpoints of the subintervals of the given input aigrthe reconstructed signal of the PHLST-
QMDL reveals the undesired kinks at the joints of the segsjéntparticular, the smooth region after the
discontinuous steps aroumd: [32, 72]. On the other hand, the partition generated by the PHLST-QMD
is quite reasonable and close to that of the PHLST-AMDL2 pkaethe smooth part arounde [64, 96].

Judging from the results in Table IV and Figure 4, it is harddtaw a conclusion for this MSignal
with extremely low noise level. In terms of the compressiatio; the PHLST-QMDL is by far the best
with the undesired artifacts in its reconstruction. In terofi the relative/?-error and the visual quality of
the reconstruction, the WAVELET-QMDL methods, in partatlthe PWT gives rise to the best except
that it could not remove noise in the textured region.

2) The Doppler SignalAll of the tested AMDL methods had difficulty in capturing tfest oscillations
in the beginning of the Doppler signal. The PHLST-AMDL1 yietl the smallest MDL cost, but the
PHLST-AMDL2 produced the most visually-pleasing recomstion among all the tested AMDL methods.
The relative/?-error of the latter was also smaller than that of the the &arriut it is slightly worse than

that of the WAVELET-AMDL methods. This comes from the diffiguin capturing the fast oscillations
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TABLE IV

QUANTIZED MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE 1Sg2 = 10714,

| PHLST | Pwr PWTLR WOl

Compression ratid| 47.013 15.501 15.443 14.885
Relative/-error || 0.069999| 0.0073826 | 0.0074728| 0.0082622
MDL cost -635.07 -152.50 -144.06 -61.370

in the beginning although the WAVELET-AMDL methods couldtraapture that part well either. The
partition pattern of the PHLST-AMDL2 is also much more raasue than that of the PHLST-AMDL1.
The former progressively becomes longer as the signal émoyudecreases and is robust against noise
except the first segment whereas the latter seems moreigernsitnoise. In order to capture that fast
oscillation, one needs to increase the search range ofver the coefficients for the minimization of the
MDL cost. As we discussed in Remark V.1, we set this rangé0#h of the coefficients, which was not
enough for capturing this fast oscillatory part. One canhotvever, increase this percentage too high

since that would reduce the ability of the algorithms to coesp and denoise the input data.

TABLE V

ANALYTICAL MDL RESULTS ON THEDOPPLER SIGNAL WITHAWGN WHOSE VARIANCE IS¢g? = 107°.

H PHLST-AMDL1 PHLST—AMDLZ‘ PWT ‘PWTLR‘ WOl ]

Compression ratig 2.8169 5.4771 6.0817 | 5.9578 | 7.0197
Relative ¢2-error 0.13275 0.13161 0.11400| 0.11338 | 0.14125
MDL cost -587.59 -385.20 -203.23 | -202.53 | -206.12

The results of the quantized MDL algorithms are far bettantthe analytical counterpart. The best
result is obtained by the PHLST, and clearly this demoresréite superiority of this method over the
WAVELET-QMDL methods although the relativ&-error of the PHLST is slightly worse than those of
the PWT and PWTLR but is better than that of the WOI. Interggyi as shown in Figure 5, the QMDL
methods could capture the fast oscillatory part unlike tHdDA methods. This suggests a potential
superiority of the quantization process (in the QMDL me#)oalver the explicit coefficient selection (in

the AMDL methods). We list here the paif$*, n*) € N? that specify the optimal quantization step and
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Fig. 4. Signals reconstructed by our methods. The inputasignMSignal with AWGN whose variance s> = 107'%. (a)
The PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) tR®WT-AMDL method that produced the lowest MDL cost
among the WAVELET-AMDL methods; (d) the PHLST-QMDL methd@) the PWT-QMDL method that produced the lowest
MDL cost among the WAVELET-QMDL methods.

the threshold for each QMDL metho(®, 2), (2,1), (2,1), (3,1), respectively. In other words, for this
dataset, each method chose relatively similar parameters.

3) Real Dataset:The results of our experiments on the real dataset are sumedan Tables VI,
VI, and Figure 6. Among the AMDL methods, the PHLST-AMDL kgerated the smallest relative
¢?-error and the smallest MDL cost with the expense of the cession ratio. The WAVELET-PWT

gave the best compression ratio with the expense of theéveel&terror. The deviation from the original
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TABLE VI

QUANTIZED MDL RESULTS ON THEDOPPLER SIGNAL WITHAWGN WHOSE VARIANCE ISc? = 107°.

| PHLST | PWT | PWTLR| wor |

Compression ratig| 64.326 | 47.753 | 47.476 | 57.201
Relative/?-error || 0.12347| 0.12074 | 0.12074| 0.15161
MDL cost -389.96 | -325.26 | -323.26 | -290.83

signal around the beginning and the end of the support wasceedin the WAVELET-PWTLR and the
WAVELET-WOI compared to the WAVELET-PWT with the expense tbk compression ratio and the
MDL cost.

TABLE VI
ANALYTICAL MDL RESULTS ON THE REAL DATASET

| PHLSTAMDLL | PHLST-AMDL2 | PWT | PWTLR | woI |

Compression ratig 3.4204 5.0480 8.5623 7.5852 6.4657
Relative /*-error 0.038769 0.059709 0.058855| 0.054261| 0.055854
MDL cost -579.86 -325.43 -85.082 | -68.616 | 106.57

As for the QMDL methods, we again observe that they clearlyopmed better numerically than the
AMDL methods. The best compression ratio was achieved byPiHEST method while the smallest
relative ¢2-error was achieved by the PWTLR method. We also note thatréhenstruction by the
PHLST method decided to use the straight lines without thessiids in the interval aroun2, 80],
which contributed to the best compression ratio and the twaistive ¢2-error. Overall, the PWTLR
method seems to be the best choice for this signal, which tisumprising because this signal is quite
suitable for the wavelet transform similarly to the MSigralse, and the global line removal helps the
wavelet transform reduce the large size coefficients ardbadedges of the support interval. We again
list the pairs(j*,n*) € N? that specify the optimal quantization step and the thresfal the QMDL
methods:(4, 1), (3,1), (3,1), (3, 1), respectively.
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Fig. 5. Signals reconstructed by our methods. The inpuiaigrthe Doppler signal with AWGN whose variancesi$ = 107°.
(@) The PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; ttle WOI-AMDL method that produced the lowest MDL
cost among the wavelet-based methods; (d) the PHLST-QMDthaode and (e) the PWT-QMDL method that produced the

lowest MDL cost among the wavelet-based methods.

VIII. CONCLUSION

We presented algorithms for simultaneous signal dengisiompression, and segmentation. In these
algorithms we had two formulations: “analytical” and “qtiaed” formulations. The results of the
experiments in Section VII showed the PHLST-MDL algorithperforming very well in compression,
denoising, and segmentation of the observed noisy signahatticular, the results on the oscillatory

“Doppler” data were better than the WAVELET-MDL algorithmaghereas the results on the piecewise
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TABLE VIII

QUANTIZED MDL RESULTS ON THE REAL DATASET

| PHLST | PWT | PWTIR [ woi |

Compression ratig| 54.989 48.365 46.558 40.485
Relative/?-error || 0.053274| 0.041854| 0.041053 | 0.041577
MDL cost -322.66 | -386.93 -374.44 | -251.18

smooth datasets (MSignal and the real dataset) were cobipayaalitatively and quantitatively. We also
observed that the “quantized” methods performed signifigdretter than the “analytical” methods. In
particular, we observed lower relativé-errors and higher compression ratios for the “quantizedLM
experiments in almost all cases since each parameter idizeghirand converted into bit (or integer)
representations. As for the computational cost of the PHMBL algorithms, the expansion of a given
input signal of lengthlV into a full binary tree structured subspaces cost ali®UV [log N]?), which
should be compared wit(N) of the wavelet transforms.

In order to improve our PHLST-MDL algorithms, we plan to istigate the following ideas:

« Estimation of boundary points using a local least squarehade

« A more elaborated search strategy for the optimal quaitizgtrecision rather than the simple

minded strategy as (51).

« The use of different precision for encoding thg parameters from that for th@, parameters; and

« The use of level dependent precisions and thresholds.

Furthermore, the most important advantage of the PHLST-Midthods is their ability to perform
interpolation, derivative estimation, and other featwmputationsn the compressed representatioery
easily thanks to formulas (1), (4), (8), and (9). On the camyirin the wavelet-based representation, such
computational tasks become much more involved and cumimersd/e hope to report this aspect of our
algorithms at a later date.

Also as a future development, we plan to address the follpwimportant question: “Given a budget
of B bits, what is the best PHLST representation of an input $Rjna

Finally we mention that it is straightforward to construc2@ version of the PHLST-MDL algorithm

for 2-D datasets.
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(a) PHLST-AMDL1 (b) PHLST-AMDL2

25F

(d) PHLST-QMDL (e) PWT-QMDL

Fig. 6. Signals reconstructed by our methods. The inputasignthe 256th row of the standard image “peppers.” (a) The
PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) the PYAMDL method that produced the lowest MDL cost
among the wavelet-based methods; (d) the PHLST-QMDL metand (e) the PWT-QMDL method that produced the lowest

MDL cost among the wavelet-based methods.
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