
1

Simultaneous Segmentation, Compression, and

Denoising of Signals using Polyharmonic

Local Sine Transform and Minimum

Description Length Criterion
Naoki Saito,Senior Member, IEEEand Ernest Woei

Abstract

We present a new approach to simultaneously segment, compress, and denoise an observed noisy

signal by combining our compact signal representation scheme called thePolyharmonic Local Sine

Transform(PHLST) and the Minimum Description Length (MDL) criterion. The PHLST algorithm first

generates a redundant set of local pieces of an input signal each of which is supported on a dyadic subin-

terval and is approximated by a combination of an algebraic polynomial of low order and a trigonometric

polynomial. This combination of polynomials compensates their shortcomings and yields a compact

representation of the local piece. To select the best nonredundant combination of the local pieces from

this redundant set, we use the MDL criterion with or without actually quantizing the relevant parameters.

The resulting representation gives rise to simultaneous segmentation, compression, and denoising of

the given data. We apply our algorithms to synthetic and realdatasets and compare their performance

against other competing methods for denoising and compression such as the wavelet transform using

the MDL criterion. We observe that our PHLST algorithms perform better (in compression rate, relative

ℓ2-error, and visual quality) than the wavelet transform for oscillatory signals whereas their performance

is comparable to that of the wavelet transform for piecewisesmooth signals.

Index Terms

Polyharmonic Local Sine Transform, Signal Compression, Denoising, Quantization, MDL, Piecewise

Approximation
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I. I NTRODUCTION

For signal compression and feature extraction purposes, itis of significant interest to segment the input

data according to the local smoothness and the geometry of the singularities. There is no need to subdivide

a smooth region into a set of many smaller segments, and in fact, that is wasteful because each segment

requires to store some information such as the endpoints of the segment. This was also demonstrated by

our earlier papers [1], [2] using the so-calledpolyharmonic local sine transform(PHLST). The original

form of PHLST, however, assumes that the partition of an input signal is given a priori, and does not

automatically compute the best possible partition for the signal. In this paper, we propose an automatic

method to do that for 1D signals and give several convincing examples. Our approach is based on the

“split-and-merge” or “divide-and-conquer” strategyà la best basis of Coifman and Wickerhauser [3]. We

first split (or subdivide) an input signal brutally into a setof local pieces by multiplying the characteristic

functions supported on dyadic subintervals in the form of a binary tree. Then, we represent each local

piece using the PHLST and evaluate its cost in terms ofMinimum Description Length(MDL) criterion.

Finally, we “prune” this tree to come up with the “best” splitor segmentation of the original signal,

which results in the minimum overall MDL cost.

There are several published works closely related to our project. In [4] we showed how we used a

library of orthonormal bases and the MDL criterion to give the best compromise between the fidelity of

the estimation result to the data and the efficiency of the representation of the estimated signal: it selects

the “best” basis and the “best” number of terms to be retainedout of the various bases provided in the

library in an objective manner. The significant difference between this paper and [4] is that we now select

the best representation from scratch while in [4] we simply used the MDL criterion to choose the best

number of terms to be retained in the pre-computed best basisthat was selected by a different criterion,

e.g., the minimum entropy criterion [3].

Moulin [5] applied the idea of adapted tree structures in a wavelet packet library by viewing the

choice of a tree as a choice between competing models, and choosing the best model according to the

MDL principle. In fact, we adopt his idea of node selection cost in our algorithm as we will discuss in

Section VI. However, there are at least two differences between his approach and our approach. First, our

approach is not for wavelet packets. It is designed for our PHLST representation of a signal. Second, one

of our two proposed methods quantizes all the relevant parameters to convert them into integers followed

by the MDL cost computation whereas Moulin’s approach does not use the quantization procedure.

To improve denoising performance, Hansen and Yu [6] folded the prior distributional assumptions for
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natural images into a model selection framework for waveletdenoising via MDL. Another important

aspect of their work is their clear understanding on the difference between the signal models with and

without quantizing the parameters (e.g., wavelet coefficients) used in the models. We also distinguish

these two models and propose the corresponding algorithms using the PHLST representation of a given

signal. Hansen and Yu, however, strictly used a fixed waveletbasis selected by a user and their algorithm

is not designed to choose an optimal basis from a library of orthonormal bases.

The organization of this paper is the following. We will discuss two different versions of our basic

formulation for simultaneous compression and denoising inSections IV and V. Section VI further

develops our algorithm for signal segmentation, which willbe followed by our numerical experiments in

Section VII. We will then conclude this paper in Section VIII. But first, let us review briefly our PHLST

scheme in Section II and set up our noisy signal model in Section III.

II. REVIEW OF PHLST

We will review the one-dimensional and global version (i.e., without subdividing the domain) of our

PHLST scheme. For higher dimensions and the details, see [1], [2]. Suppose our signalf(x) is supported

on the unit intervalI = [0, 1], and has some smoothness, e.g.,f ∈ C2m(I) for somem ∈ N. Now, we

separate the data function into two pieces

f(x) = u(x) + v(x). (1)

The polyharmoniccomponentu in (1) satisfies the followingpolyharmonic differential equation.

d2mu

dx2m
(x) = u(2m)(x) = 0, x ∈ I, (2)

with the boundary condition

u(2ℓ)(0) = f (2ℓ)(0), u(2ℓ)(1) = f (2ℓ)(1), 0 ≤ ℓ < m. (3)

The u component satisfying the above conditions is a2m − 1 degree algebraic polynomial with2m

coefficients. We note that in higher dimensions, the polyharmonic equation (2) becomes∆mu = 0 where

∆ is the Laplace operator and its solution is not an algebraic polynomial in general.

Once we compute theu component, then theresidualv = f − u is computed and expanded into the

Fouriersineseries

v(x) =
√

2
∞∑

ℓ=1

βℓ sin(πℓx), βℓ =
√

2

∫ 1

0
v(x) sin(πℓx) dx.
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Thanks to the boundary condition (3), thev component satisfies

v(2ℓ)(0) = v(2ℓ)(1) = 0, 0 ≤ ℓ < m,

which makes the Fourier sine coefficients decay very quickly, i.e., |βℓ| ≈ O(ℓ−2m−1). One can compare

this decay rate with that of the ordinary Fourier series expansion with the periodic boundary condition,

which gives rise toO(ℓ−1) with the infamous Gibbs phenomenon [7, Sec. 10], or that of the Fourier

cosine series expansion with the Neumann boundary condition, which gives rise toO(ℓ−2). See [2] for

the proof of the above fact and the details of the decay rates of these coefficients. The main point of the

use of PHLST for signal compression is this speed of decay of the expansion coefficients. This means

that we can truncate the coefficients with a smaller number ofterms and still get a good approximation

if the original signal has enough smoothness. Moreover, representing theu component only requires2m

real-valued numbers since it is an algebraic polynomial of degree2m − 1. Another advantage of the

PHLST representation is its usefulness for signal interpolation and derivative computation at arbitrary

points inI thanks to the use of both the algebraic polynomial inu and the trigonometric polynomial in

v. This combination also compensates each other’s shortcomings. If we were to use only a trigonometric

polynomial to approximate the data, we would encounter the Gibbs phenomenon. On the other hand, if

we were to use only an algebraic polynomial (of high degree) to approximate the data, then we would

encounter the so-called Runge phenomenon [7, Sec. 18] that results in totally erroneous interpolation.

Of course, the story gets more complicated (and interesting) in more realistic situations because those

signals of our interest contain noise, singularities, and transients, which will be discussed below.

For the practical purposes, we only considerm = 1 in this paper. Then we have

u(x) = α0 + α1x, (4)

where the coefficientsαk’s are determined from the boundary conditions.

Remark II.1. Note that form = 2, we have a cubic polynomial:u(x) = α0 + α1x + α2x
2 + α3x

3. To

determineαk’s, we need to estimatef ′′(0) andf ′′(1) from the data. Although there are several interesting

algorithms to estimate them (e.g., [7, Sec. 19]), which we are currently investigating, we will not deal

with this cubic case in this paper. We believe that the cases with m > 2 are impractical due to the need

of estimating even higher derivatives from the data.

III. O UR SIGNAL MODEL

Let us now consider the case where the data contain additive white Gaussian noise (AWGN) with

unknown varianceσ2. Suppose the data are sampled uniformly atxn = n/N , n = 0, 1, . . . , N . Thus,
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our signal model can be written as

f(xn) = u(xn) + v(xn) + η(xn), η(xn)
i.i.d.∼ N(0, σ2). (5)

In the vector notation, (5) can be written as

f = u + v + η ∈ R
N+1, η ∼ N(0, σ2IN+1). (6)

We denote thekth entry of f by f [k]. Thusf [0] = f(0) and f [N ] = f(1). The u component can be

written as

u = Rα, R
∆
=




1 0

1 ∆x
...

...

1 N∆x



∈ R

(N+1)×2, ∆x = 1/N, (7)

whereα = (α0, α1)
T .

We assume that thev component consists ofM sinusoids (0 ≤ M ≤ N − 1) with frequencies

1 ≤ ν1, . . . , νM ≤ N − 1 instead ofN − 1 sinusoids of frequencies1, . . . , N − 1:

v(xn) =

√
2

N

M∑

ℓ=1

βνℓ
sin(πνℓxn), (8)

where

βνℓ
=

√
2

N

N−1∑

n=1

v(xn) sin(πνℓxn). (9)

These are a subset of the Discrete Sine Transform (in fact theso-called DST Type I or DST-I for short)

coefficients of thev component. The reason why we model thev component byM sinusoids instead

of N − 1 sinusoids is the following. The column vectors ofU in (7) and theN − 1 DST basis vectors

jointly span the whole spaceRN+1, i.e., they can completely represent the given data including the noise

without error. Hence, we could not reduce noise if we were to use allN − 1 sinusoids. Let us write the

v component as

v = Sβ, S
∆
=




0 · · · 0
... SN−1

...

0 · · · 0


 ∈ R

(N+1)×(N+1), (10)

whereSN−1 is the DST-I basis matrix of size(N − 1)× (N − 1). The coefficient vectorβ is of length

N + 1 but has at mostM nonzero entries. Furthermore,v[0] = v[N ] = 0 andβ[0] = β[N ] = 0 since

the u component removes the endpoints. Therefore, our signal model (6) can be rewritten as

f = Rα + Sβ + η, η ∼ N(0, σ2IN+1), (11)
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which can be further simplified as

f = Wγ + η, η ∼ N(0, σ2IN+1) (12)

by defining

W
∆
= [R(:, 1) |S(:, 2 : N) |R(:, 2)] ∈ R

(N+1)×(N+1), (13)

γ
∆
=




α0

β[1 : N − 1]

α1


 ∈ R

N+1. (14)

Note that the matrixW is not orthogonal.

IV. A NALYTICAL COMPRESSION ANDDENOISING

The essence of MDL is the following. Suppose that we are givendatad ∈ R
n that were generated by

some parametric statistical modelP (d |θ) whereθ ∈ R
k. Suppose also that we want to have a flexibility

that k is not fixed a priori and want to learn the “best”k andθ from the data. Rissanen advocates (see

e.g., [8]) that the best model is the minimizer of the following cost functional (or codelength):

L(d, θ) = L(d |θ) + L(θ) ≈ − log P (d |θ) +
k

2
log n. (15)

In this paper,log denotes the base 2 logarithm unless stated otherwise. The first term quantifies how well

this model can fit the data. The second term is to penalize complicated models: the simpler the model

(i.e., the smallerk), the better. MDL balances these two conflicting terms usingthe information theoretic

justification.

There are two possible ways to apply to MDL criterion to our problem. One is called the “analytical”

formulation, the other is called the “quantized” formulation (see also [6] for more about such terminology).

In this section, we focus on the analytical formulation, which essentially uses the MDL criterion as a way

to select the number of model parameters and to compute theirmaximum likelihood estimates (MLEs).

We also used this strategy in our earlier paper [4] for signalcompression and denoising using the wavelet

packets and local trigonometric dictionaries. On the otherhand, the quantized formulation (which we

will discuss in Section V) actually performs the quantization of all the parameters, i.e., it truly converts

everything into “bits” and seeks the model that generates the shortest bitstream for the given data. Let

us now introduce our notation for the MDL formulation.

Let θu and θv be the vectors of parameters that completely specify theu and v components in (7)

and (10), respectively. It is clear thatθu is simply the pair(m, α) if we have a choice inm, saym = 1
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or 2. Since we only consider them = 1 case, we can assume thatθu = α ∈ R
2. As for θv, it is

a concatenation ofM nonzero real-valued DST coefficients(βν1
, . . . , βνM

)T ∈ R
M and their indicator

vector (ν1, . . . , νM )T ∈ {1, . . . , N − 1}M . Therefore, the codelength (15) of our data with our signal

model (6) (or equivalently (11) or (12)) can be written as

L(f , θu, θv, σ
2) = L(σ2) + L(θu, θv |σ2) + L(f |θu, θv, σ

2) (16)

Note that weneed to estimate all these parameters via the maximum likelihoodmethod. Letθ̂ be the

MLE of a parameterθ. By the definition of MLE, we have

L(f , θu, θv, σ
2) ≥ L(f , θ̂u, θ̂v, σ̂

2). (17)

Using the notation (12), (13), and (14), the likelihood of the dataf can be written as

P (f |θu, θv, σ
2) = (2πσ2)−

N+1

2 exp
(
−‖f − Wγ‖2/(2σ2)

)
, (18)

where‖ · ‖ denotes theℓ2-Euclidean norm. Differentiating (18) with respect toσ2 and setting the result

to zero, we can obtain the MLE ofσ2:

σ̂2 =
1

N + 1
‖f − Wγ‖2. (19)

Then, from the optimality of the Shannon code, the codelength of the dataf given those parameters is

bounded from below by the following negative log-likelihood of (18):

L(f |θu, θv, σ̂
2) ≥ − log P (f |θu, θv, σ̂

2) (20)

=
N + 1

2
log

(
2πe

N + 1
‖f − Wγ‖2

)
.

Hence, the MLEs ofθu andθv can be obtained by minimizing (20), which is equivalent to

(θ̂u, θ̂v) = arg min
θu,θv

‖f − Wγ‖2 = arg min
α,β

‖f − Rα − Sβ‖2. (21)

Differentiating this functional byαk andβνℓ
, the MLE α̂ and β̂νℓ

must satisfy

RT Rα̂ = RT

(
f −

M∑

ℓ=1

β̂νℓ
sνℓ

)
, (22)

β̂νℓ
= sT

νℓ
(f − Rα̂), (23)

wheresνℓ
∈ R

N+1 is the(νℓ + 1)st column vector ofS in (10). Eliminatingβ̂νℓ
in (22) using (23) with

a bit of algebra, we obtain the following equation forα̂:

α̂ =
[
RT JN+1,MR

]−1 [
RT JN+1,M

]
f , (24)
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where

JN+1,M
∆
= IN+1 −

M∑

ℓ=1

sνℓ
sT

νℓ
. (25)

In practice, however, computing (24) and (25) gets complicated since we do not know a priori which

M sinusoids out ofN − 1 sinusoids should be used to represent and approximatev component. In fact,

if we want to minimize the functional (21) and obtain the MLEsθ̂u and θ̂v, then we have to evaluate

(24) and consequently (23) and (21) for each possible combination of M sinusoids{sν1
, . . . , sνM

} over

M = 0, . . . , N − 1 and find the best one. Unfortunately, there are2N−1 possible combinations, which is

impractical even for moderateN . There are two possible approaches to circumvent this problem although

both of them are suboptimal:

1) Restrict theM sinusoids to those of thelowestM frequencies, i.e.,νℓ = ℓ, ℓ = 1, . . . , M . This

approach still requires to compute (24) and (25), but we can certainly avoid the combinatorial

explosion.

2) Forceα̂ = (f [0], f [N ]−f [0])T as if there is no noise on the boundary points and the noise exists

only on the internal samples.

A. AMDL assumingM lowest frequency sinusoids (AMDL1)

In the first case, we use theM lowest frequency sinusoids to represent thev component. Thus, we

can setνℓ = ℓ, ℓ = 1, . . . , M in (23) and (25), which become

β̂ℓ = sT
ℓ (f − Rα̂) (26)

and

JN+1,M
∆
= IN+1 −

M∑

ℓ=1

sℓs
T
ℓ , (27)

respectively. Using (27), we can compute (24) and obtain thebest estimate forα and consequently the

best estimate forβ via (26). With this information we can finally determine the codelength forf as in

(16), which is

L(f , θu, θv, σ
2) = L(σ2) + L(θu, θv |σ2) + L(f |θu, θv, σ

2)

≥ L(σ̂2) + L(θ̂u, θ̂v | σ̂2) + L(f | θ̂u, θ̂v, σ̂
2) (28)

∆
= AMDL1(M). (29)

We call the resulting description length (29), the “analytical MDL with lowest frequency sinusoids” and

denote it byAMDL1(M) whereM refers to the use of theM sinusoids. To determine precisely each
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term in (28) we will use our results from (19) and (20). The first term L(σ̂2) represents the description

length for the estimated noise variance (in bits). Sinceσ̂2 is a real-valued parameter, its description length

is

L(σ̂2) =
1

2
log (N + 1). (30)

This is because for each real-valued parameter we assign thebit cost (1/2) log(# data samples), which

is (1/2) log (N + 1) in this case, and whose asymptotic optimality was shown by Rissanen (see e.g., [8,

Chap. 3]).

The second term in (28),L(θ̂u, θ̂v | σ̂2), represents the description length for theu andv components.

Since θ̂u = (α̂0, α̂1)
T and θ̂v = (β̂1, . . . , β̂M )T , we haveM + 2 real valued parameters. We also need

to describe one integer parameterM that ranges between0 andN − 1, which requireslog N bits. Thus

the description length for this term becomes

L(θ̂u, θ̂v | σ̂2) =
M + 2

2
log (N + 1) + log N. (31)

Finally the last term in (28) is given by the last equality in (20). Summarizing all these terms, we have

AMDL1(M) =

M + 3

2
log (N + 1) +

N + 1

2
log (2πe · σ̂2(M)) + log N.

(32)

We now seekM over 0 ≤ M ≤ N − 1 that minimizes (32). Once we find the minimizerM∗, we can

approximate the dataf as

f ≈ Rα̂∗ + Sβ̂
∗
, (33)

where α̂∗ and β̂
∗

are the final MLEs usingM∗ in (24) and (26), respectively. The righthand side of

(33) can be viewed as a denoised version off whereas(α̂∗, β̂
∗
) can be viewed as its compressed

representation.

B. AMDL assuming noiseless boundary points (AMDL2)

The endpointsf [0] and f [N ] are now deterministic, so is theu component. Therefore there is no

difference betweenα, θu, u andα̂, θ̂u, û, respectively. Note that we also reach to the same conclusion

with M = N − 1 even if we do not explicitly assume this no noise scenario at the endpoints. Let

f̃
∆
= (f − u)[1 : N − 1] = (f [1] − u[1], · · · , f [N − 1] − u[N − 1])T ∈ R

N−1, whereu = Rα as (7).

Let s̃ = s[1 : N − 1] ∈ R
N−1. Our simplified model thus has the following form instead of (6):

f̃ = s̃ + η̃ = SN−1β̃ + η̃ ∈ R
N−1, η̃ ∼ N(0, σ2IN−1), (34)
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whereβ̃
∆
= β[1 : N − 1], which hasM nonzero entries. The description length (16) now becomes

L(f , θu, θv, σ
2) = L(θu) + L(θev, σ

2) + L(f̃ |θev, σ
2)

≥ L(θu) + L(θ̂ev, σ̂
2) + L(f̃ | θ̂ev, σ̂

2) (35)

∆
= AMDL2(M), (36)

whereθev is exactly the same asθv. In (36), we call the resulting description length as “analytical MDL

with noiseless boundary”, and denote it byAMDL2(M) whereM refers to the use of theM sinusoids.

This functionalAMDL2 of course depends also oñf , θ̂ev, σ̂, but we omit them in our notation. We now

modify (18) accordingly as

P (f̃ |θev, σ
2) = (2πσ2)−

N−1

2 exp
(
−‖f̃ − SN−1β̃‖2/(2σ2)

)
. (37)

From this, (21), (19), (20) become

̂̃
β = arg min

‖eβ‖0=M

‖f̃ − SN−1β̃‖2, (38)

σ̂2 =
1

N − 1
‖f̃ − SN−1

̂̃
β‖2. (39)

L(f̃ |θev, σ̂
2) =

N − 1

2
log
(
2πeσ̂2

)
. (40)

respectively, and we proceed our computation in this order.Note that‖β̃‖0 = M in (38) means that a set

of vectors of lengthN −1 containing exactlyM nonzero entries are searched for the minimum. Because

‖f̃ − SN−1β̃‖ = ‖ST
N−1f̃ − β̃‖ thanks to the orthonormality ofSN−1, searching the minimum is now

very easy: we can simply choose the sinusoids correspondingto the largestM coefficients ofST
N−1f̃ .

Now we can determine (36) precisely. The first termL(θu) represents the description length (in bits)

of the u component. Sinceθu = (α0, α1)
T , i.e., two real-valued parameters, we have

L(θu) = log(N + 1). (41)

The second term of (35) counts the description length ofθ̂ev and the variance estimatêσ2 = σ̂2(M),

which amounts to: 1) one integer parameterM that ranges between0 andN − 1; 2) M + 1 real-valued

parameters consisting of theM nonzero coefficients in̂̃β and σ̂2; and 3)M integer parameters, i.e., the

indices(ν1, . . . , νM )T , each of which ranges between1 andN − 1. Therefore, we have

L(θ̂ev, σ̂
2) = log N +

M + 1

2
log(N + 1) + M log(N − 1). (42)

The last term in (42) can be further shortened as1+min(M, N −1−M) · log(N −1), by recognizing

that it is shorter to describe the indices ofN − 1 − M zero entries ifM ≥ N/2, provided that we add
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the 1 bit flag to indicate whether the indices are those of zero entries or nonzero entries. Summarizing

all these terms, we have

AMDL2(M) =
M + 3

2
log(N + 1)

+ min(M, N − 1 − M) log(N − 1)

+
N − 1

2
log
(
2πe · σ̂2(M)

)
+ log N + 1.

(43)

We now seekM over 0 ≤ M ≤ N − 1 that minimizes (43). After finding the minimizerM∗, we obtain

the approximation to the dataf as

f ≈ Rα + Sβ̂
∗
,

which is different from (33) becauseα is deterministic.

Remark IV.1. Theoretically, the minimizerM∗ of the MDL cost (32) or (43) should be searched over all

possible range ofM , i.e.,0 ≤ M ≤ N−1. However, in practice, whenM reaches very close toN−1, the

cost functions (32) and (43) are completely dominated by thefidelity term rather than the regularization

(or model cost) term. Consequently,M∗ = N − 1 would be chosen, and we could achieve neither data

compression nor noise removal. Hence, we limit the search range ofM as0 ≤ M ≤ C · (N − 1), where

0 < C < 1 is typically chosen to be0.6, i.e., slightly more than half the number of the DST coefficients.

V. SIMULTANEOUS COMPRESSION ANDDENOISING WITH QUANTIZATION

A possibly better way to approach our simultaneous compression and denoising problem is to use a

scalar quantizationprocedure to truly convert all the real-valued coefficientsand parameters to integers

by truncating them with some precisionδ (which is to be optimized). In other words, we seek the shortest

bitstream that can be stored as an actualfile and from which we can recover a good approximation of

the true signal with less noise.

If we want the quantized version of AMDL1, i.e., the model using thelowestM frequency sinusoids,

then we need to compute (24) and (26) for eachM and to quantize all the relevant parameters. This

computational process is expensive when we apply it to our hierarchical segmentation that will be

discussed in Section VI and thus is not practical for use.

So instead, let us assume that our simplified model (34) for our dataf still holds true except one

difference: we do not explicitly assume that the DST coefficient vectorβ̃ in (34) consists ofM nonzero

entries and theN −1−M zeros. In our new formulation, the number of nonzero entriesand that of zero
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entries are completely and automatically controlled byδ. Thus instead of (36) we have the following

total description length:

L(f , θu, θv, σ
2, δ) = L(δ) + L(θu | δ) + L(θev, σ

2 | δ)

+ L(f̃ |θev, σ
2, δ)

≥ L(δ) + L(θu | δ) + L(θ̂ev, σ̂
2 | δ)

+ L(f̃ | θ̂ev, σ̂
2, δ)

∆
= QMDL(δ),

(44)

where QMDL stands for “quantized MDL” and it depends on the parameterδ.

Let us analyze (44) so that we can determine an explicit codelength formula. In the first term of (44),

the precisionδ is encoded using

L(δ) = log(1/δ) (45)

bits. It is sometimes convenient to use the precision of the form δ = 2−q, q ∈ N, which leads toL(δ) = q

bits. Note that this is the key parameter in the minimizationof (44) and thus it needs to be optimized.

The second term of (44) is the parameter vectorα, which will be truncated with precisionδ. For

example, the parameterα0 is approximated by[α0/δ] · δ, where[·] is the nearest integer of its argument.

Sinceδ is already recorded in the first term, we only need to store theinteger [αi/δ] for αi, i = 0, 1.

Thus, we have

L(θu | δ) = L∗ ([α0/δ]) + L∗ ([α1/δ]) , (46)

where L∗(·) is the codelength derived from the so-calleduniversal prior for integers(see e.g., [8,

Chap. 3]), which assigns the codelength for any integerj ∈ Z as follows:

L∗(j) =





1 if j = 0,

log∗ |j| + log 4c0 otherwise,
(47)

wherelog∗ |j| is the sum of iterated logarithms with only positive terms:

log∗ |j| = log |j| + log log |j| + · · · =
∑

k>0

max
(
log(k) |j|, 0

)
,

where log(k)(·) is the k-times iterated logarithm. The constantc0 ≈ 2.865064 in (47) was derived so

that equality holds in the Kraft inequality:
∑∞

j=−∞ 2−L∗(j) ≤ 1. Note that these truncated version ofα

should be used to computeu and consequentlyv and the other quantities.

In the third term of (44), we quantize the entries ofθ̂ev =
̂̃
β ∈ R

N−1 with precisionδ. For simplicity,

we adopt the so-called uniform quantization with “deadzone”. The entire range of the coefficient values
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−T − 2δ −T − δ −T 0 T T + δ T + 2δ

δ δ 2T δ δ︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷

Fig. 1. The real line is subdivided into three major regions(−∞,−T )∪ [−T, T )∪ [T,∞) where(−∞,−T ) and(T,∞) are

further subdivided into regions of equal widthδ.

is divided into a set of regions(−∞,−T ) ∪ [−T, T ) ∪ [T,∞) whereT > 0 and the regions except the

“deadzone”[−T, T ) are further divided into a set of bins of the equal widthδ as shown in Figure 1. The

coefficients falling into a specific bin are replaced by the representative value of that bin, which is called

the reconstruction value. For simplicity, we use the value of the midpoint of that bin as the reconstruction

value so that we do not have to explicitly record them, i.e., we can recover the reconstruction value of

any bin from itsbin index. Also, the coefficients whose values lie within the deadzoneare truncated to

0. This “thresholding” operation clearly serves as a denoising operation. As for the choice of the value

T , it would be best to use the optimal theoretical threshold value by considering the nature of the signal,

the DST coefficients̃β, and the statistics of the noise. Such choice was used by Chang et al. for wavelets

[9]. For the ease of implementation, however, we will defer the theoretical question of determining the

optimal value ofT . Instead we will choose the bestT among the finite number of possible values:
{

nδ

∣∣∣∣∣n = 1, . . . ,

⌈
max(|β̃|)

δ

⌉}
. (48)

With such choice ofT and with the symmetric quantization bins around the origin,all of the coefficients

can be mapped into2K + 1 bins for someK ∈ N that depends onδ and the coefficient range. Thus,

the quantization procedure convertsβ̃ ∈ R
N−1 to an integer-valued vectorn ∈ {−K, . . . , K}N−1 of the

bin indices.

We can further reduce the codelength by applying a lossless entropy coding technique (e.g., Huffman

or arithmetic coder) to this vectorn. In this paper, we use the Huffman coder that can further convert

n into a bitstream ofat most(N − 1)(H(p) + 1) bits [10, Chap. 3], whereH(·) computes the Shannon

entropy of the probability mass function (pmf), andp = (p−K , . . . , pK) is the pmf ofn, i.e.,pk = #{i ∈
{1, . . . , N − 1} |ni = k}/(N − 1). Note that if we directly encoden without using any entropy coder,

then (N − 1) log(2K + 1) bits is required, which is the worst case scenario.

Lastly, to encodêσ2, we first compute (39) with the quantized DST coefficients. Then the codelength
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of σ̂2 with precisionδ is L∗([σ̂2/δ]) bits. Hence, the third term of (44) can be approximated as

L(θ̂ev, σ̂
2 | δ) ≈ L∗(K) + (N − 1)(H(p) + 1) + L∗([σ̂2/δ]). (49)

Therefore, using (40), (45), (46), and (49), the total codelength (44) can be written as

QMDL(δ) = log(1/δ) + L∗([α0/δ]) + L∗([α1/δ])

+ L∗(K) + (N − 1)(H(p) + 1)

+ L∗([σ̂2/δ]) +
N − 1

2
log
(
2πe · σ̂2

)
,

(50)

wherep, σ̂2, and K all depend onδ. We then searchδ = δ∗ that minimizes (50) over a finite set of

possible values. We will discuss an example of such a finite set in Section VII. Finally, with all the model

parameters quantized with precisionδ∗ and encoded by the Huffman coder, we obtain the compressed

bitstream representation of the denoised signal, which canbe decoded and reconstructed at our disposal.

VI. A DAPTIVE HIERARCHICAL SEGMENTATION, COMPRESSION, AND DENOISING

Based on our analysis of the global single segment case above, we now consider the hierarchical split

of the input data and how to prune the tree-structured subintervals to obtain the best segmentation, which

in turn should improve the compression and denoising performance as we discussed in Introduction. Let

us assume thatN = 2J for someJ ∈ N, and let us define a collection of the standard dyadic subintervals

on the interval[0, 1], IJ
∆
= {Ij,k = [k/2j, (k + 1)/2j ] | j = 0, 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1}. Let

Nj
∆
= 2J−j . The number of available samples onIj,k including the two endpoints isNj + 1 for all

k = 0, . . . , 2j − 1 for a given levelj, 0 ≤ j ≤ J − 1. Thus each of the shortest subintervalsIJ−1,k

contains three samples and the longest intervalI0,0 contains the whole2J + 1 samples.

We adopt the “split-and-merge” or “divide-and-conquer” approach à la best basis of Coifman and

Wickerhauser [3]. In other words, we first split the input data into a collection of the data segments

supported onIJ , and at each node (or subinterval)Ij,k ∈ IJ we compute its MDL value by adjusting

the formulas (32), (43), or (50) forIj,k instead of the whole intervalI = I0,0. Then we start the “merge”

procedure by examining the bottom (finest) level nodes (i.e., j = J − 1) whether they should be merged

or not and continue this check from bottom to up until we reachto the root node. To determine whether

two adjacent subintervals should be merged or not, we compare the MDL cost of theunion of these two

nodes with that of their parent node. If the cost of the union is smaller, we keep the children nodes;

otherwise they are eliminated and we keep the parent node. Note, however, that our MDL cost functional
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is not additive: we cannot simply add the MDL values of the children nodes already computed in the

“split” stage. We also need to pay attention to the following:

• The midpoint of the parent node corresponds to the right endpoint (i.e., tail) of the left child node

and the left endpoint (i.e., head) of the right child node. Consequently, when we compute the cost

of the union of the children nodes, the MDL cost of this midpoint must be subtracted from the cost

of the union.

• When we split the parent node into the left and right childrennodes, we must add an additional two

bits. This is because the cost of just representing the parent node is 1 bit (in the bit representation,

it is 1 where 1 symbolizes the terminal node) and the cost of representing the two children nodes

is 3 bits (in the bit representation, it is 011 where 0 symbolizes a split). Therefore, the difference is

2 bits. For a detailed explanation and examples see [5].

VII. N UMERICAL EXPERIMENTS

A. Experimental Data

To test the performance of our algorithms, we used four different datasets shown in Figure 2: a) a

synthetic signal from Mallat’s book [11, p. 81], which is referred to as “MSignal” with heavy AWGN

of σ2 = 10−1; b) the MSignal with extremely weak AWGN ofσ2 = 10−14; c) the “Doppler” signal

available in the WaveLab software system [13] with moderateAWGN of σ2 = 10−5; and d) a single row

from a standard digital image called “Peppers”.

The MSignal has many interesting features: piecewise smooth components with several jump discon-

tinuities in the signal values and derivatives in the first half and a noisy textured region in the last half;

see Figure 2(b). The wavelet transforms are known to performwell on this signal thanks to the piecewise

smooth nature of the first part of this signal. Note that the variances of AWGN are unknown to our

algorithms.

For the Doppler signal, we added WGN with varianceσ2 = 10−5 as shown in Figure 2(c). This is

highly oscillatory, in particular, in the earlier part.

For the real dataset, we used a single row from a standard digital image as shown in Figure 2(d). More

precisely, this is a normalized version of the256th row of the standard image known as “Peppers”. We

assume that the real dataset has some amount of noise (of unknown variance).
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(a) MSignal withσ2 = 10−1
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(b) MSignal withσ2 = 10−14
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(c) Doppler withσ2 = 10−5
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(d) Real Signal (a row of the “Peppers” image)

Fig. 2. Plot of the signals used in our experiments.

B. Description of Experiments

Before presenting the results of our experiments, let us describe the types of experiments we conducted.

Recall that in Sections IV and V we described two formulations for the PHLST-MDL method: 1) the

“analytical” formulation (which has in turn two cases AMDL1and AMDL2); and 2) the “quantized”

formulation. We compared and assessed the performance of various algorithms by observing the compres-

sion ratio, relativeℓ2-error, and MDL cost. In addition, we visually compared the signals reconstructed

from their compressed representations.

For the experiments on the analytical MDL formulation, we used auniform precisionacross all levels

of decomposition, which means that the description length of each real-valued parameter for an input

signal of lengthN ∈ N is fixed as1/2 · log N and independent of the node in the tree.

For the experiments on the quantized MDL formulation, we also used auniform δ, i.e., δ did not

change across the levels while computing the MDL cost. Unlike the analytical formulation, however, for

this formulation we searched the optimalδ = δ∗ from the set
{

1√
2J−j + 1

∣∣∣∣ j = −2,−1, 0, . . . , J − 1

}
, (51)

where2J + 1 is the length of an input signal. Note that for each possibleδ in (51), we also optimized
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the thresholdT over the finite set (48).

To compare the performance of our proposed methods objectively, we also implemented the WAVELET-

MDL methods, which replace the PHLST representation by the wavelet representation and by applying the

necessary modifications (e.g., the number of real-valued parameters, etc.) in our PHLST-MDL methods.

In the WAVELET-MDL methods, we used theD06 wavelet transform (Daubechies 6-tap QMF with 3

vanishing moments, see [12]) using the WaveLab software [13]. In particular, we applied theD06 wavelet

transform in three different ways:

1) Periodized Wavelet Transform (PWT);

2) Global line removal (similar to PHLST without any segmentation of the interval) followed by the

Periodized Wavelet Transform (PWTLR);

3) Wavelets on the Interval (WOI); see [12, Chap. X].

The reason why we used these three different ways of applyingthe wavelet transform is that we wanted

to see : 1) the effect of removing the linear structure connecting the head and tail of the signal to form

a continuous periodic extension of a signal before applyingthe wavelet transform; and 2) the effect of

the wavelet transform adjusted on the interval (i.e., WOI) without any such preprocessing.

Before describing the results of our experiments, we note several specifics about our algorithm setting.

First, we decided to follow the noiseless boundary assumption for both the analytical (i.e., AMDL2) and

quantized MDL formulations for the WAVELET-MDL methods. Inother words, we did not examine the

case corresponding to the PHLST-AMDL1 algorithm for the WAVELET-MDL methods. This is because

the noise at boundary points are essentially immaterial forthe WAVELET-MDL methods, which do

not segment the input data explicitly in the time domain unlike the PHLST so that there are only two

boundary points (the head and tail of the input data) for them. Second, our WAVELET-AMDL algorithms

search the optimal number of wavelet coefficients to retain over 60% of the number of the sorted wavelet

coefficients as described in Remark IV.1. Third, in order to apply these algorithms rapidly the length

of an input signal should be2J + 1 for someJ ∈ N for the PHLST-MDL algorithms and2J for the

WAVELET-MDL algorithms; hence, we cut one sample from the original signals when we applied the

WAVELET-MDL algorithms. Fourth, the depth of the decomposition of each transform in the experiments

was set to its deepest possible one:J − 1 for the PHLST;J for the PWT and PWTLR; andJ − 3 for

the WOI.
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C. Results

In this subsection we present the results of our experimentsby displaying a reconstruction plot and a

numerical table for each formulation and for each noise level. In each reconstruction plot, the reconstructed

signal is always plotted in a thick solid black line and overlays the original noiseless data plotted in a

thin black line. The partitions (segmentations) obtained by the PHLST-MDL algorithms are shown as

vertical lines. In each numerical table, we listcompression ratio, relative ℓ2-error (between the original

noiseless signal and the reconstructed signal), andMDL cost. For each row of each table, the value in

the italic font and the one in thebold italic font denote the worst and the best results among all the

methods in that table, respectively.

We note that an ideal compression method would yield high compression ratio while maintaining the

small relativeℓ2-error. In any practical compression method, however, the higher the compression ratio,

the larger the relativeℓ2-error in general.

1) Mallat’s Signal: We begin our evaluation of the results on MSignal with AWGN whose variance

is σ2 = 10−1; see Table I. The first noticeable result for the analytical MDL experiments are the

extreme values (best and worst result) for each category. The PHLST-AMDL1 produced the best relative

ℓ2-error and the worst compression ratio while the wavelets onthe interval (WOI) produced the best

compression ratio and the worst relativeℓ2-error. The first three plots in Figure 3 show the signals

reconstructed from the compressed representations by the PHLST-AMDL1, PHLST-AMDL2, and PWT-

AMDL, respectively. The PHLST-AMDL1 produced a very smoothreconstruction tracing the original

noiseless MSignal relatively closely except for the characteristic sharp features such as the step edges

and the cusp. The PHLST-AMDL2 tried to follow those characteristic features more closely than the

PHLST-AMDL1 by using the higher frequency sinusoids, but because of this, it also produced artifacts

(e.g., the bump around the sample indexi = 70). On the contrary, the PWT-AMDL (as well as the

other two WAVELET-AMDL algorithms) produced much more visually annoying false sharp features

due to the roughness of theD06 wavelet basis functions, which is particularly visible in the region

before the textured region starts. Judging from the resultsin Table I and Figure 3, we conclude that

the PHLST-AMDL1 produced the overall best result among the AMDL methods due to its low MDL

cost, low relativeℓ2-error, and overall visual quality of the reconstructed signal, with the expense of the

compression ratio.

Let us now analyze the results of the quantized MDL methods. In Table II we see that each quantized

MDL method produced better results than its analytical MDL counterpart. This is particularly so in the
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TABLE I

ANALYTICAL MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE ISσ2 = 10−1.

PHLST-AMDL1 PHLST-AMDL2 PWT PWTLR WOI

Compression ratio 14.752 17.350 19.932 17.246 21.845

Relativeℓ2-error 0.22219 0.22920 0.27269 0.27375 0.27457

MDL cost 264.97 337.14 353.68 362.80 366.53

compression ratios, which is understandable because we store only integers after quantization instead of

the double precision floating point numbers used in the analytical MDL methods. The best compression

ratio and the worst relativeℓ2-error was produced by the PWT while the worst compression ratio and the

best relativeℓ2-error was produced by the PHLST, which also produced the lowest MDL cost among all

the QMDL methods. It is also interesting to note that the PHLST-QMDL method split the signal into four

meaningful segments: 1) the step edges; 2) the smooth part; 3) the cusp region; and 4) the noisy textured

region. We also list here the pairs(j∗, n∗) ∈ N
2 that specify the optimal precisionδ∗ = 1/

√
28−j∗

+ 1

for PHLST andδ∗ = 1/
√

28−j∗ for wavelets, and the optimal thresholdT ∗ = n∗δ∗. These are(6, 3),

(7, 2), (7, 2), (7, 2) for PHLST, PWT, PWTLR, and WOI, respectively. In other words, relatively large

(i.e., low precision)δ∗’s were chosen for this heavy noise MSignal. Judging from theresults in Tables I,

II, and Figure 3, we conclude that the PHLST with QMDL formulation produced the best result among

all the methods including those with the AMDL formulation for this highly noisy MSignal.

TABLE II

QUANTIZED MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE ISσ2 = 10−1.

PHLST PWT PWTLR WOI

Compression ratio 102.33 117.99 116.31 110.12

Relativeℓ2-error 0.20675 0.24787 0.24787 0.22744

MDL cost 300.72 317.17 319.17 324.77

We now examine the results on MSignal with AWGN whose variance is σ2 = 10−14, i.e., almost

noiseless case. Table III and the first three plots in Figure 4show the results of the AMDL methods. The

first thing we notice here is the drop of the compression ratios and the improvement of the relativeℓ2-errors
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(e) PWT-QMDL

Fig. 3. Signals reconstructed by our methods. The input signal is MSignal with AWGN whose variance isσ2 = 10−1. (a) The

PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) the PWT-AMDL method that produced the lowest MDL cost

among the wavelet-based methods; (d) the PHLST-QMDL method; (e) the PWT-QMDL method that produced the lowest MDL

cost among the wavelet-based methods.

in all the methods. The PHLST-AMDL1 produced the lowest MDL cost with comparable compression

ratio as that of the wavelet methods with moderate relativeℓ2-error. A close examination of Figure 4(a)

reveals, however, the undesired edge effect (overshoot andundershoot) around the step discontinuities

around i ∈ [32, 72]. Moreover, it created an unintuitively large number of segmentations, particularly

around the discontinuities. As for the overshoot and undershoot around the step discontinuities, our

reasoning is as follows. If an original signal segment is a nonlinear curve without heavy noise, then
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subtracting the MLE/least squares line computed by (24) with (27) in the PHLST-AMDL1 from that

segment results in the nonzero boundary values in thev component. Since we use the DST basis vectors

to approximate thev component, this essentially leads to a loss of the boundary points. Moreover,

in the PHLST-AMDL1 reconstruction, the value at a common boundary point between two successive

segments is computed by averaging the values of theu component of the left segment evaluated at

that common boundary point and that of the right segment because the two least squares lines in the

left and right segments do not match at the common boundary point in general. These contribute to

the undesired edge effect around the step discontinuities.On the other hand, this does not happen in the

PHLST-AMDL2 where the line passing through the two endpoints in each segment and the reconstruction

value at the common boundary point between two successive segments is shared between them. As for

the overly fine segmentations around the discontinuities inthe PHLST-AMDL1, the following is our

reasoning. The PHLST-AMDL1 generally does not provide us with a good approximation for the long

subintervals particularly for the low noise case. This is because it only uses theM lowest frequency

sinusoids instead of the bestM frequency sinusoids, and moreover, as we mentioned in Remark IV.1,

we restrict the search range ofM = Mj up to 60% of the number of sinusoids we can maximally

have at levelj, i.e., 0 ≤ Mj ≤ 0.6 × 2J−j to avoid the use of too many sinusoids. We found that

the MDL value (or more precisely the AMDL1 value) of a node corresponding to a short subinterval

in the piecewise constant region in MSignal is much smaller than that of its parent node due to the

dominant fidelity term and the very small complexity term. Hence, this restriction inM in the AMDL1

formulation tends to produce finer segments, which is more severe than in the AMDL2 formulation.

On the other hand, the PHLST-AMDL2 produced a quite reasonable and intuitive segmentation pattern

and an excellent visually-pleasing reconstruction as can be seen in Figure 4(b). It did particularly nice

job in discontinuous part, i.e., it produced progressivelyshorter segments toward the discontinuities. We

also point out that the high frequency fluctuations in the textured part were considered as noise in the

PHLST-AMDL methods. The WAVELET-AMDL methods resulted in the good relativeℓ2-errors with the

expense of the bad compression ratios. Figure 4(c) shows thereconstructed signal by the PWT-AMDL

method, which yielded the lowest MDL cost among the WAVELET-AMDL methods. As we can see, the

reconstruction is quite good over all except some Gibbs oscillations on the discontinuous steps in the

earlier part and on the flat region before the large jump around the sample indexi = 150 compared to

the PHLST-AMDL2. Unlike the PHLST-AMDL models, the high frequency fluctuations in the textured

part were considered as a part of the signal in the WAVELET-AMDL models, and hence they were not

removed. We conclude that the PHLST-AMDL2 is the best among all the AMDL methods in terms of
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its visually-pleasing reconstruction and the compressionratio.

TABLE III

ANALYTICAL MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE ISσ2 = 10−14.

PHLST-AMDL1 PHLST-AMDL2 PWT PWTLR WOI

Compression ratio 1.5104 2.1004 1.5309 1.5128 1.5309

Relativeℓ2-error 0.075521 0.080101 0.0036657 0.0037904 0.0054259

MDL cost -1668.5 -1046.0 -16.050 4.2976 57.795

The quantized MDL results will be examined next. In Table IV,we again notice that the quantized

MDL methods produced numerically better results than theiranalytical methods counterparts. The best

compression ratio and the worst relativeℓ2-error was achieved by the PHLST-QMDL.

The pairs(j∗, n∗) ∈ N
2 for the precisionδ∗ and the thresholdT ∗ are(5, 1), (−2, 1), (−2, 1), (−2, 1)

for PHLST, PWT, PWTLR, and WOI, respectively. It is interesting to note that the WAVELET-QMDL

methods all chose the very finest precision in the search range, i.e., δ∗ = 1/
√

210 ≈ 0.03125 while

the PHLST-QMDL selected the coarser precisionδ∗ = 1/
√

23 + 1 ≈ 0.3333. This is the reason why

PHLST-QMDL got the highest compression ratio. Because we used the same quantization step for both

the DST coefficients of thev components and the line parameters for theu components (or equivalently

the two endpoints of the subintervals of the given input signal), the reconstructed signal of the PHLST-

QMDL reveals the undesired kinks at the joints of the segments, in particular, the smooth region after the

discontinuous steps aroundi ∈ [32, 72]. On the other hand, the partition generated by the PHLST-QMDL

is quite reasonable and close to that of the PHLST-AMDL2 except in the smooth part aroundi ∈ [64, 96].

Judging from the results in Table IV and Figure 4, it is hard todraw a conclusion for this MSignal

with extremely low noise level. In terms of the compression ratio, the PHLST-QMDL is by far the best

with the undesired artifacts in its reconstruction. In terms of the relativeℓ2-error and the visual quality of

the reconstruction, the WAVELET-QMDL methods, in particular, the PWT gives rise to the best except

that it could not remove noise in the textured region.

2) The Doppler Signal:All of the tested AMDL methods had difficulty in capturing thefast oscillations

in the beginning of the Doppler signal. The PHLST-AMDL1 yielded the smallest MDL cost, but the

PHLST-AMDL2 produced the most visually-pleasing reconstruction among all the tested AMDL methods.

The relativeℓ2-error of the latter was also smaller than that of the the former, but it is slightly worse than

that of the WAVELET-AMDL methods. This comes from the difficulty in capturing the fast oscillations
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TABLE IV

QUANTIZED MDL RESULTS ONMSIGNAL WITH AWGN WHOSE VARIANCE ISσ2 = 10−14.

PHLST PWT PWTLR WOI

Compression ratio 47.013 15.501 15.443 14.885

Relativeℓ2-error 0.069999 0.0073826 0.0074728 0.0082622

MDL cost -635.07 -152.50 -144.06 -61.370

in the beginning although the WAVELET-AMDL methods could not capture that part well either. The

partition pattern of the PHLST-AMDL2 is also much more reasonable than that of the PHLST-AMDL1.

The former progressively becomes longer as the signal frequency decreases and is robust against noise

except the first segment whereas the latter seems more sensitive to noise. In order to capture that fast

oscillation, one needs to increase the search range ofM over the coefficients for the minimization of the

MDL cost. As we discussed in Remark IV.1, we set this range to60% of the coefficients, which was not

enough for capturing this fast oscillatory part. One cannot, however, increase this percentage too high

since that would reduce the ability of the algorithms to compress and denoise the input data.

TABLE V

ANALYTICAL MDL RESULTS ON THEDOPPLER SIGNAL WITHAWGN WHOSE VARIANCE ISσ2 = 10−5.

PHLST-AMDL1 PHLST-AMDL2 PWT PWTLR WOI

Compression ratio 2.8169 5.4771 6.0817 5.9578 7.0197

Relativeℓ2-error 0.13275 0.13161 0.11400 0.11338 0.14125

MDL cost -587.59 -385.20 -203.23 -202.53 -206.12

The results of the quantized MDL algorithms are far better than the analytical counterpart. The best

result is obtained by the PHLST, and clearly this demonstrates the superiority of this method over the

WAVELET-QMDL methods although the relativeℓ2-error of the PHLST is slightly worse than those of

the PWT and PWTLR but is better than that of the WOI. Interestingly, as shown in Figure 5, the QMDL

methods could capture the fast oscillatory part unlike the AMDL methods. This suggests a potential

superiority of the quantization process (in the QMDL methods) over the explicit coefficient selection (in

the AMDL methods). We list here the pairs(j∗, n∗) ∈ N
2 that specify the optimal quantization step and

July 28, 2008 DRAFT



24

046810121416202224262830324048566472808896104108112116120128132134136138140142144 160 192196200202204208 224232240 256

0

0.5

1

1.5

2

2.5

(a) PHLST-AMDL1

0 8121416242628324048 64 96104108112120128132136140142144152160 192 208216224 240 256

0

0.5

1

1.5

2

2.5

(b) PHLST-AMDL2

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

(c) PWT-AMDL

0 8121416 24262832 48 64 72 80 88 96104112 128130132136140142144 160 192 224 240248256

0

0.5

1

1.5

2

2.5

(d) PHLST-QMDL

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

(e) PWT-QMDL

Fig. 4. Signals reconstructed by our methods. The input signal is MSignal with AWGN whose variance isσ2 = 10−14. (a)

The PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) thePWT-AMDL method that produced the lowest MDL cost

among the WAVELET-AMDL methods; (d) the PHLST-QMDL method;(e) the PWT-QMDL method that produced the lowest

MDL cost among the WAVELET-QMDL methods.

the threshold for each QMDL method:(2, 2), (2, 1), (2, 1), (3, 1), respectively. In other words, for this

dataset, each method chose relatively similar parameters.

3) Real Dataset:The results of our experiments on the real dataset are summarized in Tables VII,

VIII, and Figure 6. Among the AMDL methods, the PHLST-AMDL1 generated the smallest relative

ℓ2-error and the smallest MDL cost with the expense of the compression ratio. The WAVELET-PWT

gave the best compression ratio with the expense of the relative ℓ2-error. The deviation from the original
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TABLE VI

QUANTIZED MDL RESULTS ON THEDOPPLER SIGNAL WITHAWGN WHOSE VARIANCE ISσ2 = 10−5.

PHLST PWT PWTLR WOI

Compression ratio 64.326 47.753 47.476 57.201

Relativeℓ2-error 0.12347 0.12074 0.12074 0.15161

MDL cost -389.96 -325.26 -323.26 -290.83

signal around the beginning and the end of the support was reduced in the WAVELET-PWTLR and the

WAVELET-WOI compared to the WAVELET-PWT with the expense ofthe compression ratio and the

MDL cost.

TABLE VII

ANALYTICAL MDL RESULTS ON THE REAL DATASET.

PHLST-AMDL1 PHLST-AMDL2 PWT PWTLR WOI

Compression ratio 3.4204 5.0480 8.5623 7.5852 6.4657

Relativeℓ2-error 0.038769 0.059709 0.058855 0.054261 0.055854

MDL cost -579.86 -325.43 -85.082 -68.616 106.57

As for the QMDL methods, we again observe that they clearly performed better numerically than the

AMDL methods. The best compression ratio was achieved by thePHLST method while the smallest

relative ℓ2-error was achieved by the PWTLR method. We also note that thereconstruction by the

PHLST method decided to use the straight lines without the sinusoids in the interval around[32, 80],

which contributed to the best compression ratio and the worst relative ℓ2-error. Overall, the PWTLR

method seems to be the best choice for this signal, which is not surprising because this signal is quite

suitable for the wavelet transform similarly to the MSignalcase, and the global line removal helps the

wavelet transform reduce the large size coefficients aroundthe edges of the support interval. We again

list the pairs(j∗, n∗) ∈ N
2 that specify the optimal quantization step and the threshold for the QMDL

methods:(4, 1), (3, 1), (3, 1), (3, 1), respectively.

July 28, 2008 DRAFT



26

0 16202432404446485660646668727680 96104108112 128 192 224232236238240 256

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(a) PHLST-AMDL1

0 16202432 485664 96 128 256

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b) PHLST-AMDL2

0 50 100 150 200 250

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(c) WOI-AMDL

0 1624324048 64 96 128 256

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(d) PHLST-QMDL

0 50 100 150 200 250

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(e) PWT-QMDL

Fig. 5. Signals reconstructed by our methods. The input signal is the Doppler signal with AWGN whose variance isσ2 = 10−5.

(a) The PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c)the WOI-AMDL method that produced the lowest MDL

cost among the wavelet-based methods; (d) the PHLST-QMDL method; and (e) the PWT-QMDL method that produced the

lowest MDL cost among the wavelet-based methods.

VIII. C ONCLUSION

We presented algorithms for simultaneous signal denoising, compression, and segmentation. In these

algorithms we had two formulations: “analytical” and “quantized” formulations. The results of the

experiments in Section VII showed the PHLST-MDL algorithmsperforming very well in compression,

denoising, and segmentation of the observed noisy signal. In particular, the results on the oscillatory

“Doppler” data were better than the WAVELET-MDL algorithmswhereas the results on the piecewise
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TABLE VIII

QUANTIZED MDL RESULTS ON THE REAL DATASET.

PHLST PWT PWTLR WOI

Compression ratio 54.989 48.365 46.558 40.485

Relativeℓ2-error 0.053274 0.041854 0.041053 0.041577

MDL cost -322.66 -386.93 -374.44 -251.18

smooth datasets (MSignal and the real dataset) were comparable qualitatively and quantitatively. We also

observed that the “quantized” methods performed significantly better than the “analytical” methods. In

particular, we observed lower relativeℓ2-errors and higher compression ratios for the “quantized” MDL

experiments in almost all cases since each parameter is quantized and converted into bit (or integer)

representations. As for the computational cost of the PHLST-MDL algorithms, the expansion of a given

input signal of lengthN into a full binary tree structured subspaces cost aboutO(N [log N ]2), which

should be compared withO(N) of the wavelet transforms.

In order to improve our PHLST-MDL algorithms, we plan to investigate the following ideas:

• Estimation of boundary points using a local least squares method;

• A more elaborated search strategy for the optimal quantization precision rather than the simple

minded strategy as (51).

• The use of different precision for encoding theθu parameters from that for theθv parameters; and

• The use of level dependent precisions and thresholds.

Furthermore, the most important advantage of the PHLST-MDLmethods is their ability to perform

interpolation, derivative estimation, and other feature computationsin the compressed representationvery

easily thanks to formulas (1), (4), (8), and (9). On the contrary, in the wavelet-based representation, such

computational tasks become much more involved and cumbersome. We hope to report this aspect of our

algorithms at a later date.

Also as a future development, we plan to address the following important question: “Given a budget

of B bits, what is the best PHLST representation of an input signal?”

Finally we mention that it is straightforward to construct a2D version of the PHLST-MDL algorithm

for 2-D datasets.
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Fig. 6. Signals reconstructed by our methods. The input signal is the256th row of the standard image “peppers.” (a) The

PHLST-AMDL1 method; (b) the PHLST-AMDL2 method; (c) the PWT-AMDL method that produced the lowest MDL cost

among the wavelet-based methods; (d) the PHLST-QMDL method; and (e) the PWT-QMDL method that produced the lowest

MDL cost among the wavelet-based methods.
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