Mysteries around the graph Laplacian eigenvalue 4

Yuji Nakatsukasaa, Naoki Saitob,\ast, Ernest Woeib

aSchool of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
bDepartment of Mathematics, University of California, Davis, CA 95616

Abstract

We describe our current understanding on the phase transition phenomenon of the graph Laplacian eigenvectors constructed on a certain type of unweighted trees, which we previously observed through our numerical experiments. The eigenvalue distribution for such a tree is a smooth bell-shaped curve starting from the eigenvalue 0 up to 4. Then, at the eigenvalue 4, there is a sudden jump. Interestingly, the eigenvectors corresponding to the eigenvalues below 4 are \textit{semi-global} oscillations (like Fourier modes) over the entire tree or one of the branches; on the other hand, those corresponding to the eigenvalues above 4 are much more \textit{localized} and \textit{concentrated} (like wavelets) around junctions/branching vertices. For a special class of trees called \textit{starlike trees}, we obtain a complete understanding of such phase transition phenomenon. For a general graph, we prove the number of the eigenvalues larger than 4 is bounded from above by the number of vertices whose degrees is strictly larger than 2. Moreover, we also prove that if a graph contains a branching path, then the magnitudes of the components of any eigenvector corresponding to the eigenvalue greater than 4 decay exponentially from the branching vertex toward the leaf of that branch. We have also identified a unique class of trees that can have an eigenvalue exactly equal to 4.

\textit{Keywords:} graph Laplacian, localization of eigenvectors, phase transition phenomena, starlike trees, dendritic trees, Gerschgorin’s disks

\textit{2000 MSC:} 15A22, 15A42, 65F15

\ast Corresponding author

Email addresses: yuji.nakatsukasa@manchester.ac.uk (Yuji Nakatsukasa), saito@math.ucdavis.edu (Naoki Saito), woei@math.ucdavis.edu (Ernest Woei)
1. Introduction

In our previous report [7], we proposed a method to characterize dendrites of neurons, more specifically retinal ganglion cells (RGCs) of a mouse, and cluster them into different cell types using their morphological features, which are derived from the eigenvalues of the graph Laplacians when such dendrites are represented as graphs (in fact literally as “trees”). For the details on the data acquisition and the conversion of dendrites to graphs, see [7] and the references therein. While analyzing the eigenvalues and eigenvectors of those graph Laplacians, we observed a very peculiar phase transition phenomenon as shown in Figure 1.1. The eigenvalue distribution for each dendritic tree is a smooth bell-shaped curve starting from the eigenvalue 0 up to 4. Then, at the eigenvalue 4, there is a sudden jump as shown in Figure 1.1(c, d). Interestingly, the eigenvectors corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors (or branches); on the other hand, those corresponding to the eigenvalues above 4 are much more localized and concentrated (like wavelets) around junctions/branching vertices, as shown in Figure 1.2.

We want to answer the following questions:

Q1 Why does such a phase transition phenomenon occur?
Q2 What is the significance of the eigenvalue 4?
Q3 Is there any tree that possesses an eigenvalue exactly equal to 4?
Q4 What about more general graphs that possess eigenvalues exactly equal to 4?

At this point of time, we have a complete answer to Q3, which will be described in Section 5. As for Q1 and Q2, which are closely related, we have a complete answer for a specific and simple class of trees called starlike trees as described in Section 3, and a partial answer for more general trees and graphs such as those representing neuronal dendrites, which we discuss in Section 4. In Section 6, we will prove that the existence of a long path between two subgraphs implies that the eigenvalues of either of the subgraphs that are larger than 4 are actually very close to some eigenvalues of the whole graph. Then, in Section 7, we will give a counterexample to the conjecture that the largest component in the eigenvector corresponding to the largest eigenvalue (which is larger than 4) lies on the vertex of the largest degree. Finally, we describe our investigation on Q4 in Section 8. But let us first start by fixing our notation and reviewing the basics of graph Laplacians in Section 2.
Figure 1.1: Typical dendrites of Retinal Ganglion Cells (RGCs) of a mouse and the graph Laplacian eigenvalue distributions. (a) 2D projection of dendrites of an RGC of a mouse; (b) that of another RGC revealing different morphology; (c) the eigenvalue distribution of the RGC shown in (a); (d) that of the RGC shown in (b). Regardless of their morphological features, a phase transition occurs at the eigenvalue 4.
2. Definitions and Notation

Let $G = (V, E)$ be a graph where $V = V(G) = \{v_1, v_2, \ldots, v_n\}$ is a set of vertices in G and $E = E(G) = \{e_1, e_2, \ldots, e_m\}$ is a set of edges where e_k connects two vertices v_i, v_j for some $1 \leq i, j \leq n$, and we write $e_k = (v_i, v_j)$. Let $d_k = d(v_k)$ be the degree of the vertex v_k. If a graph G is a tree, i.e., a connected graph without cycles, then it has $m = n - 1$ edges. Let $L(G) := D(G) - A(G)$ be the Laplacian matrix where $D(G) := \text{diag}(d_1, \ldots, d_n)$ is called the degree matrix of G, i.e., the diagonal matrix of vertex degrees, and $A(G) = (a_{ij})$ is the adjacency matrix of G, i.e., $a_{ij} = 1$ if v_i and v_j are adjacent; otherwise it is 0. Furthermore, let $0 = \lambda_0(G) \leq \lambda_1(G) \leq \cdots \leq \lambda_{n-1}(G)$ be the eigenvalues of $L(G)$, and $m_G(\lambda)$ be the multiplicity of the eigenvalue λ. More generally, if $I \subset \mathbb{R}$ is an interval of the real line, then we define $m_G(I) := \#\{\lambda_k(G) \in I\}$.

At this point we would like to give a simple yet important example of a tree and its graph Laplacian: a path graph consisting of n vertices shown in Figure 2.3. The graph Laplacian of such a path graph can be easily obtained and is instructive.
The eigenvectors of this matrix are nothing but the DCT Type II basis vectors used for the JPEG image compression standard; see e.g., [9]. In fact, we have
\[
\lambda_k = 4 \sin^2 \left(\frac{\pi k}{2n} \right); \quad (2.1)
\]
\[
\phi_k = \left(\cos \left(\frac{\pi k}{n} \left(j + \frac{1}{2} \right) \right) \right)_{0 \leq j < n}^T, \quad (2.2)
\]
where \(k = 0, 1, \ldots, n - 1 \). From these, it is clear that for any finite \(n \in \mathbb{N} \), \(\lambda_{\text{max}} = \lambda_{n-1} \leq 4 \), and no localization/concentration occurs in the eigenvector \(\phi_{n-1} \) (or any eigenvector), which is simply a global oscillation with the highest possible (i.e., the Nyquist) frequency, i.e., \(\phi_{n-1} = \left((-1)^j \sin \left(\frac{\pi}{n} \left(j + \frac{1}{2} \right) \right) \right)_{0 \leq j < n}^T \).

3. Analysis of Starlike Trees

As one can imagine, analyzing this phase transition phenomenon for complicated dendritic trees turns out to be rather formidable. Hence, we start our analysis on a simpler class of trees called starlike trees. A starlike tree is a tree that has exactly one vertex of degree greater than 2. Examples are shown in Figure 3.4.

We use the following notation. Let \(S(n_1, n_2, \ldots, n_k) \) be a starlike tree that has \(k(\geq 3) \) paths (i.e., branches) emanating from the central vertex \(v_1 \). Let the \(i \)th branch have \(n_i \) vertices excluding \(v_1 \). Let \(n_1 \geq n_2 \geq \cdots \geq n_k \). Hence, the total number of vertices is \(n = 1 + \sum_{i=1}^{k} n_i \).
Figure 3.4: Typical examples of a starlike tree.

(a) $S(2, 2, 1, 1, 1, 1)$

(b) $S(n_1, 1, 1, 1, 1, 1)$ a.k.a. comet

Figure 3.5: Zoomed-up versions of parts of some dendritic trees.

(a) RGC #100; $S \ell(T) \equiv 1$

(b) RGC #155; $S \ell(T) = 0.953 \leq 1$
Das proved the following results for a starlike tree $S(n_1, \ldots, n_k)$ in [2]:

$$\lambda_{\max} = \lambda_{n-1} < k + 1 + \frac{1}{k - 1};$$

$$2 + 2 \cos \left(\frac{2\pi}{2n_k + 1}\right) \leq \lambda_{n-2} \leq 2 + 2 \cos \left(\frac{2\pi}{2n_1 + 1}\right).$$ (3.3)

On the other hand, Grone and Merris [5] proved the following lower bound for a general graph G with at least one edge:

$$\lambda_{\max} \geq \max_{1 \leq j \leq n} d(v_j) + 1.$$ (3.4)

Hence we have the following

Corollary 3.1. A starlike tree has exactly one graph Laplacian eigenvalue greater than or equal to 4. The equality holds if and only if the starlike tree is $K_{1,3} = S(1, 1, 1)$, which is also known as a claw.

Proof. The first statement is easy to show. The lower bound in (3.4) is larger than or equal to 4 for any starlike tree since $\max_{1 \leq j \leq n} d(v_j) = d(v_1) \geq 3$. On the other hand, the second largest eigenvalue λ_{n-2} is clearly strictly smaller than 4 due to (3.3). The second statement about the necessary and sufficient condition on the equality requires the argument in Section 5, in particular, Corollary 5.1. From this, we can easily see that the only starlike tree having an eigenvalue exactly equal to 4 is $K_{1,3}$. \hfill \Box

As for the concentration/localization of the eigenvector ϕ_{n-1} corresponding to the largest eigenvalue λ_{n-1}, we have the following

Theorem 3.1. Let $\phi_{n-1} = (\phi_1, n-1, \ldots, \phi_{n, n-1})^T$, where $\phi_{j, n-1}$ is the value of the eigenvector corresponding to the largest eigenvalue λ_{n-1} at the vertex v_j, $j = 1, \ldots, n$. Then, the absolute value of this eigenvector at the central vertex v_1 cannot be exceeded by those at the other vertices, i.e.,

$$|\phi_{1, n-1}| > |\phi_{j, n-1}|, \quad j = 2, \ldots, n.$$

To prove this theorem, we use the following lemma, which is simply a corollary of Gerschgorin’s theorem [10, Theorem 1.1]:
Lemma 3.1. Let A be a square matrix of size $n \times n$, $\lambda_k(A)$ be any eigenvalue of A, and $\phi_k = (\phi_{1,k}, \ldots, \phi_{n,k})^T$ be the corresponding eigenvector. Let k^* denote the index of the largest eigenvector component in ϕ_k, i.e., $|\phi_{k^*,k}| = \max_{j \in N} |\phi_{j,k}|$ where $N := \{1, \ldots, n\}$. Then, we must have $\lambda_k(A) \in \Gamma_{k^*}(A)$, where $\Gamma_i(A) := \{z \in \mathbb{C} : |z - a_{ii}| \leq \sum_{j \in N \setminus \{i\}} |a_{ij}|\}$ is the ith Gerschgorin disk of A. In other words, for the index of the largest eigenvector component, the corresponding Gerschgorin disk must contain the eigenvalue.

Proof. Recall the proof of Gerschgorin’s theorem. The k^*th row of $A\phi_k = \lambda_k \phi_k$ yields

$$|\lambda_k - a_{k^*,k^*}| \leq \sum_{j \in N \setminus \{k^*\}} |a_{k^*,j}| \frac{|\phi_{j,k}|}{|\phi_{k^*,k^*}|} \leq \sum_{j \in N \setminus \{k^*\}} |a_{k^*,j}|.$$

This implies $\lambda_k \in \Gamma_{k^*}(A)$, which proves the lemma. \hfill \Box

Proof of Theorem 3.1. First of all, by Corollary 3.1 we have $\lambda_{n-1} \geq 4$. However, $\lambda_{n-1} = 4$ happens only for $K_{1,3}$. In that case, it is easy to see that this theorem holds by directly examining the eigenvector $\phi_{n-1} = \phi_3 \propto (3, -1, -1, -1)^T$. Hence, let us examine the case $\lambda_{n-1} > 4$. In this case, Lemma 3.1 indicates $4 < \lambda_{n-1} \in \Gamma_{(n-1)^*}(L)$ where $(n-1)^* \in N$ is the index of the largest component in ϕ_{n-1}. Now, note that the disk $\Gamma_j(L)$ for any vertex v_1 that has degree 2 is $\{z \in \mathbb{C} : |z - 2| \leq 2\}$ (and $\{z \in \mathbb{C} : |z - 1| \leq 1\}$ for a degree 1 vertex). This means that the Gerschgorin disk $\Gamma_{(n-1)^*}$ containing the eigenvalue $\lambda_{n-1} > 4$ cannot be in the union of the Gerschgorin disks corresponding to the vertices whose degrees are 2 or less. Hence the index of the largest eigenvector component in ϕ_{n-1} must correspond to an index for which the vertex has degree 3 or larger. In our starlike-tree case, there is only one such vertex, v_1, i.e., $(n-1)^* = 1$. \hfill \Box

For different proofs without using Gerschgorin’s theorem, see Das [2, Lemma 4.2] and E. Woei’s dissertation [11]. We note that our proof using Gerschgorin’s disks is more powerful than those other proofs and can be used for more general situations than the starlike trees as we will see in Section 4.

Remark 3.1. Let $\phi = (\phi_1, \phi_2, \ldots, \phi_n)^T$ be an eigenvector of a starlike tree $S(n_1, \ldots, n_k)$ corresponding to the eigenvalue λ. Without loss of generality, let v_2, \ldots, v_{n_1+1} be the n_1 vertices along a branch emanating from the central vertex v_1 with v_{n_1+1} being the leaf (or pendant) vertex. Then, along this branch, the eigenvector components satisfy the following equations:

$$\lambda \phi_{n_1+1} = \phi_{n_1+1} - \phi_{n_1}, \quad (3.5)$$

$$\lambda \phi_j = 2\phi_j - \phi_{j-1} - \phi_{j+1} \quad 2 \leq j \leq n_1. \quad (3.6)$$
From Eq. (3.6), we have the following recursion relation:
\[\phi_{j+1} + (\lambda - 2)\phi_j + \phi_{j-1} = 0, \quad j = 2, \ldots, n_1. \]

This recursion can be explicitly solved using the roots of the characteristic equation
\[r^2 + (\lambda - 2)r + 1 = 0, \quad (3.7) \]
and when (3.7) has distinct roots \(r_1, r_2 \), the general solution can be written as
\[\phi_j = A r_1^{j-2} + B r_2^{j-2}, \quad j = 2, \ldots, n_1 + 1, \quad (3.8) \]
where \(A, B \) are appropriate constants derived from the boundary condition (3.5).

Now, let us consider these roots of (3.7) in detail. The determinant of (3.7) is
\[D(\lambda) := (\lambda - 2)^2 - 4 = \lambda(\lambda - 4). \]
Since we know that \(\lambda \geq 0 \), this determinant changes its sign depending on \(\lambda < 4 \) or \(\lambda > 4 \). (Note that \(\lambda = 4 \) occurs only for the claw \(K_{1,3} \) on which we explicitly know everything; hence we will not discuss this case further in this remark.) If \(\lambda < 4 \), then \(D(\lambda) < 0 \) and it is easy to show that the roots are complex valued with magnitude 1. This implies that (3.8) becomes
\[\phi_j = A' \cos(\omega(j - 2)) + B' \sin(\omega(j - 2)), \quad j = 2, \ldots, n_1 + 1, \]
where \(\omega \) satisfies \(\tan \omega = \sqrt{\lambda(4 - \lambda)} / (2 - \lambda) \), and \(A', B' \) are appropriate constants. In other words, if \(\lambda < 4 \), the eigenvector along this branch is of oscillatory nature. On the other hand, if \(\lambda > 4 \), then \(D(\lambda) > 0 \) and it is easy to show that both \(r_1 \) and \(r_2 \) are real valued with \(-1 < r_1 = (2 - \lambda + \sqrt{\lambda(4 - \lambda)}) / 2 < 0 \) while
\[r_2 = (2 - \lambda - \sqrt{\lambda(4 - \lambda)}) / 2 < -1. \]
On the surface, the term \(Br_2^{j-2} \) looks like a dominating part in (3.8); however, we see from (3.5) that \(|\phi_{n_1}| > |\phi_{n_1+1}| \), which means the real dominating part in (3.8) for \(j = 2, \ldots, n_1 + 1 \) is the term \(Ar_1^{j-2} \). Hence we conclude that \(|\phi_j| \) decays exponentially with \(j \), that is, the eigenvector component decays rapidly towards the leaves. The situation is the same for the other branches. In summary, for a starlike tree, the phase transition phenomenon with the eigenvalue 4 is hence completely understood.

4. The Localization Phenomena on General Graphs

Unfortunately, actual dendritic trees are not exactly starlike. However, our numerical computations and data analysis indicate that:
\[0 \leq \frac{\# \{ j \in N \mid d(v_j) \geq 2 \} - m_G([4, \infty))}{n} \leq 0.047 \]
for each RGC we examined. Hence, we can define the *starlikeliness* $S \ell(T)$ of a given tree T as

$$S \ell(T) := 1 - \frac{\# \{ j \in N | d(v_j) \geq 2 \} - m_T([4, \infty))}{n}.$$

We note that $S \ell(T) \equiv 1$ for a certain class of RGCs whose dendrites are sparsely spread (see [7] for the characterization). This means that dendrites in that class are all close to a starlike tree or a concatenation of several starlike trees. We show some examples of dendritic trees with $S \ell(T) \equiv 1$ and those with $S \ell(T) \leq 1$ in Figure 3.5.

The above observation has led us to prove the following

Theorem 4.1. For any graph G of finite volume, we have

$$0 \leq m_G([4, \infty)) \leq \# \{ j \in N | d(v_j) \geq 2 \}$$

and each eigenvector corresponding to $\lambda \geq 4$ has its largest component (in absolute value) on the vertex whose degree is larger than 2.

Proof. The second statement follows from Lemma 3.1, because the Gerschgorin disks corresponding to vertices of degree 1 or 2 do not include $\lambda > 4$.

We next prove the first statement. Let L be a Laplacian matrix of G. We can apply a permutation P such that

$$P^TLP = \begin{bmatrix} L_1 & E^T \\ E & L_2 \end{bmatrix},$$

(4.9)

where the diagonals of L_1 are 3 or larger (correspond to vertices of degree > 2), and the diagonals of L_2 are 2 or 1. By Gerschgorin’s theorem all the eigenvalues of L_2 must be below 4.

Suppose L_2 is ℓ-by-ℓ. Now by the Courant-Fischer min-max characterization of eigenvalues [4, Theorem 8.1.2] of P^TLP, denoting by $\lambda_\ell(P^TLP)$ the ℓth smallest eigenvalue, we have

$$\lambda_\ell(P^TLP) = \min_{\dim S = \ell} \max_{y \in \text{span}(S), \|y\|_2 = 1} y^T(P^TLP)y.$$

Hence letting S_0 be the last ℓ column vectors of the identity I_n and noting $S_0^TP^TLP S_0 = L_2$, we have

$$\lambda_\ell(P^TLP) \leq \max_{y \in S_0, \|y\|_2 = 1} y^T(P^TLP)y = \lambda_{\max}(S_0^TP^TLP S_0) = \lambda_{\max}(L_2).$$
Since $\lambda_{\text{max}}(L_2) < 4$, we conclude that P^TLP (and hence L) has at least ℓ eigenvalues smaller than 4, i.e., $m_G([0,4)) \geq \ell$. Hence, $m_G([4,\infty)) = n - m_G([0,4)) \leq n - \ell = \# \{j \in N | d(v_j) \geq 2\}$, which proves the first statement.

To give a further explanation for the eigenvector localization behavior observed in Introduction, we next show that eigenvector components of $\lambda > 4$ must decay exponentially along a branching path.

Theorem 4.2. Suppose that a graph G has a branch that consists of a path of length k, whose indices are $\{i_1, i_2, \ldots, i_k\}$ where i_1 is connected to the rest of the graph and i_k is the leaf of that branch. Then for any eigenvalue greater than 4, the corresponding eigenvector $\phi = (\phi_1, \cdots, \phi_n)^T$ satisfies

$$|\phi_{i_j+1}| \leq \gamma |\phi_{i_j}| \quad \text{for } j = 1, 2, \ldots, k - 1,$$

where

$$\gamma := \frac{2}{\lambda - 2} < 1.$$ \hspace{1cm} (4.11)

Hence $|\phi_j| \leq \gamma^{j-1} |\phi_{i_1}|$ for $j = 1, \ldots, k$, that is, the magnitude of the components of an eigenvector corresponding to any $\lambda > 4$ along such a branch decays exponentially toward its leaf with rate at least γ.

Proof. There exists a permutation P such that

$$\hat{L} := P^TLP = \begin{bmatrix} L_1 & E^T \\ E & L_2 \end{bmatrix},$$

where

$$L_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 & -1 \\ & & \ddots & \ddots & \ddots \\ & & & -1 & 2 & -1 \\ & & & & -1 & 1 \end{bmatrix} \in \mathbb{R}^{k \times k}$$

and E has a -1 in the top-right corner and 0 elsewhere. The diagonals of L_2 correspond to the vertices v_{i_1}, \ldots, v_{i_k} of the branch under consideration.

Let $L\phi = \lambda \phi$ with $\lambda > 4$. We have $\hat{L}y = \lambda y$ where $y = (y_1, y_2, \cdots, y_n)^T = P^T\phi$. Note that $(y_{n-k+1}, y_{n-k+2}, \cdots, y_n) = (\phi_{i_1}, \phi_{i_2}, \ldots, \phi_{i_k})$. The last row of $\hat{L}y = \lambda y$ gives

$$-y_{n-1} + y_n = \lambda y_n,$$

11
hence
\[|y_n| = \frac{1}{\lambda - 1} |y_{n-1}| \leq \gamma |y_{n-1}|. \tag{4.12} \]

The \((n - 1)\)st row of \(\widetilde{L}y = \lambda y\) gives
\[-y_{n-2} + 2y_{n-1} - y_n = \lambda y_{n-1}. \]

Using \(|y_n| \leq |y_{n-1}|\) we get
\[|y_{n-1}| = \frac{|y_{n-2} + y_n|}{\lambda - 2} \leq \frac{|y_{n-2}| + |y_{n-1}|}{\lambda - 2}, \tag{4.13} \]
from which we get \(|y_{n-1}| \leq |y_{n-2}|\). Therefore \(|y_n| \leq |y_{n-1}| \leq |y_{n-2}|\), and so
\[|y_{n-1}| = \frac{|y_{n-2} + y_n|}{\lambda - 2} \leq \frac{2|y_{n-2}|}{\lambda - 2} = \gamma |y_{n-2}|. \]
Repeating this argument \(k - 1\) times we obtain (4.10).

We note that the inequalities (4.12) and (4.13) include considerable overestimates, and tighter bounds can be obtained at the cost of simplicity. Hence in practice the decay rate is much smaller than \(\gamma\) defined in (4.11). We also note that the larger the eigenvalue \(\lambda > 4\), the smaller the decay rate \(\gamma\) is, i.e., the faster the amplitude decays along the branching path.

Also note that the above result holds for any branching path of a tree. In particular, if a tree has \(k\) branches consisting of paths, they must all have the exponential decay in eigenvector components if \(\lambda > 4\). This gives a partial explanation for the eigenvector localization behavior observed in Introduction. However, the theorem cannot compare the eigenvector components corresponding to branches emanating from different vertices of degrees greater than 2, so a complete explanation remains an open problem.

Remark 4.1. Let us briefly consider the case \(\lambda = 4\). In this case we have \(\gamma = \frac{2}{\lambda - 2} = 1\), suggesting the corresponding eigenvector components along a branching path may not decay. However, we can still prove that unless \(\phi_{i_1} = \phi_{i_2} = \cdots = \phi_{i_k} = 0\), we must have
\[|\phi_{i_k}| < |\phi_{i_{k-1}}| < \cdots < |\phi_{i_1}|. \tag{4.14} \]
In other words, the eigenvector components must decay along the branch, although not necessarily exponentially. To see this, we first note that if \(y_n = 0\), then the last row of \(\widetilde{L}y = \lambda y\) forces \(y_{n-1} = 0\). Then, \(y_n = y_{n-1} = 0\) together with the
(n - 1)st row gives $y_{n-2} = 0$. Repeating this argument we conclude that y_j must be zero for all $j = n - k + 1, \ldots, n$. Now suppose that $|y_n| > 0$. Following the above arguments we see that the inequality in (4.12) with $\gamma = 1$ must be strict, that is, $|y_n| < |y_{n-1}|$. Using this we see that the inequality in (4.13) must also be strict, hence $|y_{n-1}| < |y_{n-2}|$. Repeating this argument proves (4.14).

5. A Class of Trees Having the Eigenvalue 4

As raised in Introduction, we are interested in answering Q3: Is there any tree that possesses an eigenvalue exactly equal to 4? To answer this question, we use the following result of Guo [6] (written in our own notation).

Theorem 5.1 (Guo 2006). Let T be a tree with n vertices. Then,

$$
\lambda_j(T) \leq \left\lceil \frac{n}{n-j} \right\rceil, \quad j = 0, \ldots, n-1,
$$

and the equality holds if and only if all of the following hold: a) $j \neq 0$; b) $n - j$ divides n; and c) T is spanned by $n - j$ vertex disjoint copies of $K_{\frac{n}{n-j}}$.

Here, a tree $T = T(V, E)$ is said to be spanned by ℓ vertex disjoint copies of K if $K = K_\ell(V_i, E_i)$ for $i = 1, \ldots, \ell$ (K_i's are of course identical), $V = \bigcup_{i=1}^\ell V_i$, and $V_i \cap V_j = \emptyset$ for all $i \neq j$.

This theorem implies the following

Corollary 5.1. A tree has an eigenvalue exactly equal to 4 iff it consists of m vertex disjoint copies of $K_{1,3} \equiv S(1,1,1)$.

Proof. Setting $n/(n-j) = 4$ implies $3n = 4j$. Since 3 and 4 are relatively prime, there exists $m \in \mathbb{N}$ such that $n = 4m$ and $j = 3m$. Hence Guo's theorem with $n = 4m$ and $j = 3m$ guarantees that the eigenvalue exactly equal to 4 occurs at $j = 3m$, i.e., $\lambda_{3m} = 4$, iff the tree consists of m vertex disjoint copies of $K_{1,3}$.

Figure 5.6(a) illustrates such an example while Figure 5.6(b) shows the eigenvalue distribution of a tree consisting of $m = 5$ copies of $K_{1,3}$. Regardless of m, the eigenvector corresponding to the eigenvalue 4 has only two values: one constant value at the central vertices, and the other constant value of the opposite sign at the leaves, as shown in Figure 5.7(a). By contrast, the eigenvector corresponding to the largest eigenvalue is again concentrated around the central vertex as shown in Figure 5.7(b).
Figure 5.6: (a) A tree consisting of multiple copies of $K_{1,3}$ connected via their central vertices. This tree has an eigenvalue equal to 4 with multiplicity 1. (b) The eigenvalue distribution of such a tree consisting of 5 copies of $K_{1,3}$. We note that $S(T) = 1$ for this tree.

Figure 5.7: (a) The eigenvector ϕ_{15} corresponding to $\lambda_{15} = 4$ in the 3D perspective view. (b) The eigenvector ϕ_{19} corresponding to the maximum eigenvalue $\lambda_{19} = 7.1091$, which concentrates around the central vertex.
6. Implication of a long path on eigenvalues

In Section 4 we saw that for a graph that has a branch consisting of a long path, its Laplacian eigenvalue greater than 4 has the property that the corresponding eigenvector components along the branch must decay exponentially.

Here we discuss a consequence of such a structure in terms of the eigenvalues. We consider a graph G formed by connecting two graphs G_1 and G_3 with a path G_2. Note that this is a more general graph than in Section 4 (which can be regarded as the case without G_3). We show that if G_2 is a long path then any eigenvalue greater than 4 of the Laplacian of either of the two subgraphs $G_1 \cup G_2$ and $G_2 \cup G_3$ must be nearly the same as an eigenvalue of the Laplacian of the whole graph G.

Theorem 6.1. Let G be a graph obtained by connecting two graphs with a path, whose Laplacian L can be expressed as

$$L = \begin{bmatrix} L_1 & E_1^T & 0 \\ E_1 & L_2 & E_2^T \\ 0 & E_2 & L_3 \end{bmatrix},$$

where E_1 and E_2 have -1 in the top-right corner and 0 elsewhere. L_i is $\ell_i \times \ell_i$ for $i = 1, 2, 3$ and L_2 represents the path G_2, that is, a tridiagonal matrix with 2 on the diagonals and -1 on the off-diagonals.

Let $\lambda > 4$ be any eigenvalue of the top-left $(\ell_1 + \ell_2) \times (\ell_1 + \ell_2)$ (or bottom-right $(\ell_2 + \ell_3) \times (\ell_2 + \ell_3)$) submatrix of L. Then there exists an eigenvalue λ of L such that

$$|\lambda - \lambda_0| \leq \gamma^{\ell_2},$$

(6.15)

where $\gamma = \frac{2}{\lambda-2} < 1$.

Proof. We treat the case where λ_0 is an eigenvalue of the top-left $(\ell_1 + \ell_2) \times (\ell_1 + \ell_2)$ part of L, which we denote by L_{12}. The other case is analogous.

As in Theorem 4.2, we can show that any eigenvalue $\lambda_0 > 4$ of L_{12} has its corresponding eigenvector components decay exponentially along the path G_2. This means that the bottom eigenvector component is smaller than γ^{ℓ_2} in absolute value (we normalize the eigenvector so that it has unit norm) where $\gamma = \frac{2}{\lambda-2} < 1$ as in (4.11).

Let $L_{12} = Q\Lambda Q^T$ be an eigendecomposition where $Q^T Q = I$ and the eigenvalues are arranged so that λ_0 appears in the top diagonal of Λ. For notational convenience let $\ell_{12} := \ell_1 + \ell_2$. Then, consider the matrix

$$\tilde{L} = \begin{bmatrix} Q^T & 0 \\ 0 & I \end{bmatrix} L \begin{bmatrix} Q & 0 \\ 0 & I \end{bmatrix} = \begin{bmatrix} \Lambda & ve_1^T \\ e_1v^T & L_3 \end{bmatrix},$$

(6.16)
where \(e_1 = (1, 0, \ldots, 0)^T \in \mathbb{R}^3 \) and \(v = (v_1, \ldots, v_{12})^T \in \mathbb{R}^{12} \). Direct calculations show that \(v_i = -q_{12,i} \ell \), where \(q_{12,i} \ell \) is the bottom component of the eigenvector \(q_i \) of \(L_{12} \) corresponding to the \(i \)th eigenvalue. In particular, by the above argument we have \(|q_{12,1}| = |v_1| \leq \tilde{\gamma}^{\ell/2} (\ll 1) \).

Note that in the first row and column of \(\hat{L} \), the only nonzeros are the diagonal (which is \(\tilde{\lambda} \)), and the \((1, \ell_{12} + 1)\) and \((\ell_{12} + 1, 1)\) entries, both of which are equal to \(v_1 \). Now, viewing the \((1, \ell_{12} + 1)\) and \((\ell_{12} + 1, 1)\) entries of \(\hat{L} \) as perturbations (write \(\hat{L} = \tilde{L} + \hat{L}_2 \) where \(\tilde{L} \) is obtained by setting the \((1, \ell_{12} + 1)\) and \((\ell_{12} + 1, 1)\) entries of \(\tilde{L} \) to 0) and using Weyl’s theorem [4, Theorem 8.1.5] we see that there exists an eigenvalue \(\lambda \) of \(\hat{L} \) (and hence of \(L \)) that lies in the interval \([\tilde{\lambda} - \|\hat{L}_2\|_2, \tilde{\lambda} + \|\hat{L}_2\|_2]\) = \([\tilde{\lambda} - |v_1|, \tilde{\lambda} + |v_1|]\). Together with \(|v_1| \leq \tilde{\gamma}^{\ell/2} \) we obtain (6.15). \(\square \)

Recall that \(\tilde{\gamma}^{\ell/2} \) decays exponentially with \(\ell \), and it can be negligibly small for moderate \(\ell \); for example, for \((\lambda, \ell_2) = (5, 30)\) we have \(\tilde{\gamma}^{\ell/2} = 5.2 \times 10^{-6} \). We conclude that the existence of a subgraph consisting of a long path implies that the eigenvalues \(\lambda > 4 \) of a subgraph must match those of the whole graph to high accuracy.

7. On the eigenvector of the largest eigenvalue

In view of the results in Section 4 it is natural to ask whether it is always true that the largest component of the eigenvector corresponding to the largest eigenvalue of a Laplacian matrix of a graph lies on the vertex of the largest degree. Here we show by a counterexample that this is not necessarily true.

Consider for example a tree as in Figure 7.8, which is generated as follows: first we connect \(m \) copies of \(K_{1,3} \) as shown in Figure 5.7; then add to the right a comet \(S(\ell, 1, 1, 1, 1) \) as in Figure 3.4(b).

Now for sufficiently large \(m \) and \(\ell \) (\(m, \ell \geq 4 \) is sufficient), the largest component in the eigenvector \(\phi \) corresponding to the largest eigenvalue of the resulting
Laplacian L occurs at one of the central vertices of $K_{1,3}$, not at the vertex of degree 5 belonging to the comet.

Let us explain how we came up with this counterexample. The idea is based on two facts. The first is the discussion in Section 6, where we noted that a long path G_2 implies any eigenvalue larger than 4 must be close to an eigenvalue of a subgraph $G_1 \cup G_2$ or $G_2 \cup G_3$. Therefore, in the notation of Section 6, by connecting two graphs ($G_1 = mK_{1,3}$ and $G_3 = K_{1,5}$, a star) with a path G_2 such that the largest eigenvalue $\tilde{\lambda}$ of L_{12} is larger than that of L_{23}, we ensure that the largest eigenvalue λ of L is very close to $\tilde{\lambda}$. The second is the Davis-Kahan sin θ theorem [3], which states that a small perturbation of size $\tilde{\gamma}$ in the matrix \hat{L} (recall the proof of Theorem 6.1) can only induce small perturbation also in the eigenvector: its angular perturbation is bounded by $\tilde{\gamma}/\delta$, where δ is the distance between λ and the eigenvalues of \hat{L} after removing its first row and column. Furthermore, the eigenpair $(\tilde{\lambda}, \tilde{\phi})$ of \hat{L} satisfies $\tilde{\phi} = (1, 0, \ldots, 0)^T$, and the eigenvectors $\tilde{\phi}$ (by Davis-Kahan) of \hat{L} and ϕ of L corresponding to λ are related by $\phi = \left[\begin{smallmatrix} 0 & \lambda \\ \phi' \end{smallmatrix} \right] \tilde{\phi}$, which follows from (6.16). Therefore, ϕ has its large components at the vertices belonging to G_1. In view of these our approach was to find two graphs G_1 and G_3 such that the maximum degrees of the vertices of G_1 and G_3 are 4 and 5 respectively, and the largest eigenvalue of the Laplacian of G_1 is larger than that of G_3.

8. Discussion

In this paper, we obtained precise understanding of the phase transition phenomenon of the combinatorial graph Laplacian eigenvalues and eigenvectors for starlike trees. For a more complicated class of graphs including those representing dendritic trees of RGCs, we proved in Theorem 4.1 that the number of the eigenvalues greater than or equal to 4 is bounded from above by the number of vertices whose degrees are strictly larger than 2. In Theorem 4.2, we proved that if a graph has a branching path, the magnitude of the components of an eigenvector corresponding to any eigenvalue greater than 4 along such a branching path decays exponentially toward its leaf. In Remark 4.1, we also extended Theorem 4.2 for the case of $\lambda = 4$ although the decay may not be exponential. We also answered Q3 raised in Introduction by proving Corollary 5.1. In other words, we identified a special class of trees consisting of copies of the claw $K_{1,3}$, which is the only class of trees that can have an eigenvalue exactly equal to 4.

Another quite interesting question is Q4 raised in Introduction: Can a simple and connected graph, not necessarily a tree, have eigenvalues equal to 4? The
answer is a clear “Yes.” For example, a regular finite lattice graph in \(\mathbb{R}^d \), \(d > 1 \) has repeated eigenvalue 4. In fact, each eigenvalue and the corresponding eigenvector of such a lattice graph of size \(n \times n \times \cdots \times n = n^d \) can be written as

\[
\lambda_{j_1, \ldots, j_d} = 4 \sum_{i=1}^{d} \sin^2 \left(\frac{j_i \pi}{2n} \right) \quad (8.17)
\]

\[
\phi_{j_1, \ldots, j_d}(x_1, \ldots, x_d) = \prod_{i=1}^{d} \cos \left(\frac{j_i \pi (x_i + \frac{1}{2})}{n} \right), \quad (8.18)
\]

where \(j_i, x_i \in \mathbb{Z}/n\mathbb{Z} \) for each \(i \), as shown by Burden and Hedstrom [1]. Note that (8.17) and (8.18) are also valid for \(d = 1 \). In that case these reduce to (2.2) that we already examined in Section 2.

Now, determining \(m_G(4) \), i.e., the multiplicity of the eigenvalue 4 of this lattice graph, is equivalent to finding the number of the integer solutions \((j_1, \ldots, j_d) \in (\mathbb{Z}/n\mathbb{Z})^d \) to the following equation:

\[
\sum_{i=1}^{d} \sin^2 \left(\frac{j_i \pi}{2n} \right) = 1. \quad (8.19)
\]

For \(d = 1 \), there is no solution as we mentioned in Section 2. For \(d = 2 \), it is easy to show that \(m_G(4) = n - 1 \) by direct examination of (8.19) using some trigonometric identities. For \(d = 3 \), \(m_G(4) \) behaves in a much more complicated manner, which is deeply related to number theory. We expect that more complicated situations occur for \(d > 3 \). We are currently investigating this interesting problem on regular finite lattices. On the other hand, it is clear from (8.18) that the eigenvectors corresponding to the eigenvalues greater than or equal to 4 on such lattice graphs cannot be localized or concentrated on those vertices whose degree is larger than 2 unlike the tree case. Theorem 4.2 and Remark 4.1 do not apply either since such a finite lattice graph do not have branching paths.

Finally, we would like to note that even a simple path, such as the one shown in Figure 2.3, exhibits the eigenfunction localization phenomena if it has nonuniform edge weights, which we recently observed numerically. We will report our progress on investigation of localization phenomena on such weighted graphs at a later date.

Acknowledgments

This research was partially supported by the following grants from the Office of Naval Research: N00014-09-1-0041; N00014-09-1-0318. A preliminary ver-
sion of a part of the material in this paper [8] was presented at the workshop on “Recent development and scientific applications in wavelet analysis” held at the Research Institute for Mathematical Sciences (RIMS), Kyoto University, Japan, in October 2010, and at the 7th International Congress on Industrial and Applied Mathematics (ICIAM), held in Vancouver, Canada, in July 2011.

References

