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Motivations

Motivations: Why Irregular/General Shape Domains?

Consider a bounded domain of general (may be quite complicated)
shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ need fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract geometric information about the domain Ω =⇒ shape
clustering/classification.

Figure: Ω⊂Rd with ν being a normal vector on ∂Ω.
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Motivations

Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Motivations

Data Analysis on a Complicated Domain
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Motivations

3D Hippocampus Shape Analysis
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Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 10 / 78



Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0 =λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 11 / 78



Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0 =λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 11 / 78



Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0 =λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 11 / 78



Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0 =λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 11 / 78



Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0 =λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 11 / 78



Motivations

Laplacian Eigenfunctions . . .Why?

Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Ω using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?
After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
Laplacian eigenfunctions (LEs) allow us to perform spectral analysis of
data measured at more general domains or even on graphs and
networks =⇒ Generalization of Fourier analysis!
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Motivations

Laplacian Eigenfunctions . . .Why?

LEs have more physical meaning (i.e., vibration modes, heat
conduction, . . . ) than other popular basis functions such as wavelets
and wavelet packets.
LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Ω is fixed yet the material contents inside
that domain, say u(x), x ∈Ω, change over time, i.e., u(x , t ), x ∈Ω,
t ∈ [0,T ]. Suppose one want to detect whether there is any change in
the material contents in Ω over time, i.e., estimate ut (x , t ) via
imaging.
LEs may also be necessary for many shape optimization problems:
e.g., among all possible 2D shapes having unit area, what is the shape
that minimizes its fifth smallest Dirichlet-Laplacian eigenvalues?
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Motivations

Shape Optimization (Courtesy of B. Osting)

Computational results for single eigenvalues

Oudet (2004)TITLE WILL BE SET BY THE PUBLISHER

No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Fig. 5. Best-known shapes

Fig. 6. λ1 (left) and λ2 (right)

[6] M. G. Crandall and P. L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Tran. AMS 277 (1983),
1-43.

[7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die
kreisförmige den tiefsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss. (1923), 169-172.

[8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems : Discretization via relaxation, Adv. in
Math. Sci. and Appl. 9 (1999), 581-596.

[9] A. Henrot, Minimization problems of eigenvalues of the laplacian, to appear in Journal of Evol. Eq.

[10] A. Henrot, E. Oudet, Le stade ne minimise pas λ2 parmi les ouverts convexes du plan, C. R. Acad. Sci. Paris
Sér. I Math., 332 (2001), 417-422.
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I The level set method is used to
represent the domains

I Relaxed formulation used to
compute eigenvalues

I The k-th eigenvalue of the
minimizer is multiple

Antunes + Freitas (2012)

i Ω multiplicity λ∗
i Oudet’s result

5 2 78.20 78.47

6 3 88.52 88.96

7 3 106.14 107.47

8 3 118.90 119.9

9 3 132.68 133.52

10 4 142.72 143.45

11 4 159.39 -

12 4 172.85 -

13 4 186.97 -

14 4 198.96 -

15 5 209.63 -

Table 2: Dirichlet minimizers with the optimal values for λ∗
i and the corresponding multiplicity.

do this, we find that the results obtained do not differ in a significant way and, in particular, the numerical optimizer

for λ13 remains without any symmetries.

6 Symmetries, multiplicities and TRIANGULAR domains

An analysis of the optimizers obtained suggests several remarks and directions for future study, both numerically and

analytically. One first issue is related to symmetry. It is part of the folklore of this subject that optimizers should

have some sort of symmetry. Although this seems to be the case in most situations, we found one example, λ13,

for which there seems to be no symmetry involved. Due to the high multiplicies involved and to the complexity of

the optimization procedure we can’t, of course, ensure that there does not exist another domain - which does not

necessarily have to be close to this one - for which λ13 is lower than the one given here. We have considered the

optimization of λ13 among domains which are symmetric by reflection with respect to some line. Instead of the

expansion (12), we have considered

r(t) ≈ r̃(t) =
M∑

j=0

aj cos(j t) (17)

and then optimized the cooefficients aj , j = 0, ..., M to minimize λ13|Ω|. Our symmetric numerical optimizer is

plotted in Figure 5 together with the optimizer obtained without symmetry constraint. For this symmetric domain,

we obtained λ13 = 187.92 which, due to the high accuracy of the MFS, we believe to be significantly larger than 186.97

13

I Eigenvalues computed via meshless method

I Domains parameterized using Fourier
coefficients

I k = 13 minimizer is not symmetric

7/ 21
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Motivations

Laplacian Eigenfunctions . . . Some Facts

Analysis of L is difficult due to its unboundedness, etc.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
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Motivations

Laplacian Eigenfunctions . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.
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Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel is
called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y) by
the fundamental solution of the Laplacian:

K (x , y) =


−1

2 |x − y | if d = 1,
− 1

2π log |x − y | if d = 2,
|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫
Ω

K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)

The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:∫
∂Ω

K (x , y)
∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫
∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y), ∀x ∈ ∂Ω,

where ϕ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 21 / 78



Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005, 2008)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Integral Operators Commuting with Laplacian

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

−ϕ′(0) =ϕ′(1) =ϕ(0)+ϕ(1).

The kernel K (x, y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.
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Integral Operators Commuting with Laplacian

1D Example . . .

λ0 ≈−5.756915, which is a solution of tanh
p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =
p

2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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Integral Operators Commuting with Laplacian

First 5 Basis Functions
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Integral Operators Commuting with Laplacian

1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ =λϕ, ϕ(0) =ϕ(1) = 0, are sines. The Green’s function in this case
is:

GD (x, y) = min(x, y)−x y.

Those with the Neumann boundary condition, i.e., ϕ′(0) =ϕ′(1) = 0,
are cosines. The Green’s function is:

GN (x, y) =−max(x, y)+ 1

2
(x2 + y2)+ 1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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Integral Operators Commuting with Laplacian

1D Example: Rayleigh Functions/Trace Formula

Corollary (NS 2008; See also Hermi & Saito 2013)

Let {λn}∞n=0 be the 1D Laplacian eigenvalues of the non-local boundary
problem with the commuting integral operator whose kernel is
K (x, y) =−|x − y |/2. Then, they satisfy the following trace formula:

∞∑
n=0

1

λn
=

∫ 1

0
K (x, x)dx = 0.

Compare this with the famous Basel problem, which is based on the
Dirichlet boundary condition:

∞∑
n=1

1

π2n2 =
∫ 1

0
GD (x, x)dx = 1

6
⇐⇒

∞∑
n=1

1

n2 = π2

6
.
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Integral Operators Commuting with Laplacian

1D Example: Rayleigh Functions/Trace Formula . . .

Theorem (NS 2008; See also Hermi & Saito 2013)

Let Kp (x, y) be the pth iterated kernel of K (x, y) =−|x − y |/2. Then,

∞∑
n=0

1

λ
p
n

=
∫ 1

0
Kp (x, x)dx = 1

4p

(
S2p + (−1)p

α2p

)
+ 4p −1

2 · (2p)!
|B2p |,

where α≈ 1.19967864 satisfies α= cothα, B2p is the Bernoulli number, and

S2p :=
∞∑

m=1

(
4

λ2m

)p

,

satisfies the following recursion formula:

n+1∑
`=1

(−1)n−`+1 (2(n −`+1)−1)

(2(n −`+1))!

{
S2`+

(−1)`

α2`

}
= (−1)n

2(2n)!
.
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Integral Operators Commuting with Laplacian

2D Example
Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let βk,` is the `th zero of the Bessel function of order k, Jk (βk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm(βm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0(β0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{
β2

m−1,n , if m = 1, . . . , n = 1,2, . . .,

β2
0,n if m = 0, n = 1,2, . . ..
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Integral Operators Commuting with Laplacian

First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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Integral Operators Commuting with Laplacian

3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Historical Remarks

Connection with Potential Theory

Mark Kac mentioned at the very end of his 1951 paper (Proceedings
of the 2nd Berkeley Symposium on Mathematical Statistics and
Probability) that the same integral equation in 3D is equivalent to the
Laplacian eigenvalue problem. But his BC was incorrect.
In 1967–9, John Troutman studied the eigenvalues of the same
integral operator (i.e., the logarithmic potential) in 2D. He posed this
problem as the Laplacian eigenvalue problem whose eigenfunctions are
harmonic outside of the given domain. He proved that there exists one
negative eigenvalue iff the transfinite diameter (or logarithmic
capacity) of the closed domain Ω exceeds 1.
In 1970, Mark Kac and Tomasz Bojdecki obtained similar results using
probabilistic argument (Kac) and purely analytic method (Bojdecki).
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Historical Remarks

Connection with Potential Theory . . .

Since then, there have been some sporadic related works, but the use of
the eigenfunctions of such potential operators has not been systematically
pursued as far as we know.

(a) Mark Kac (1914–1984) (b) John Troutman (193?– ) (c) Tomasz Bojdecki (?)
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Historical Remarks

Connection with Volterra Operators

The 1959 paper of Victor B. Lidskĭı “Conditions for completeness of a
system of root subspaces for non-selfadjoint operators with discrete
spectra,” Amer. Math. Soc. Transl. Ser. 2, vol. 34, pp. 241–281, 1963,
discusses the iterated Volterra integral operator:

A f (x) :=
∫ 1

x
f (y)dy, f ∈ L2(0,1) =⇒ A2 f (x) =

∫ 1

x
(x − y) f (y)dy

which was decomposed into the real and imaginary parts:

(A2)R f := 1

2
(A2 + A2∗) =−1

2

∫ 1

0
|x − y | f (y)dy ;

(A2)I f := 1

2i
(A2 − A2∗) = 1

2i

∫ 1

0
(x − y) f (y)dy.
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Historical Remarks

Connection with Volterra Operators . . .

The famous book of Gohberg-Krĕın (Introduction to the Theory of
Linear Nonselfadjoint Operators, AMS, 1969) also discusses the same
operators.
Do the higher dimensional cases have also similar correspondence?

(a) Victor Lidskĭı
(1924–2008)

(b) Mark Krein
(1907–1989)

(c) Israel Gohberg
(1928–2009)
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Historical Remarks

Connection with von Neumann–Krĕın Extension Theory

John von Neumann (1929) and Mark Krĕın (1947) considered a
self-adjoint extension of symmetric operators.
Let T := − d2

d x2 , D(T ) := H 2
0 (0,1) ⊂ H 2(0,1), where

H 2
0 (0,1) := {

f ∈ H 2(0,1) | f (0) = f (1) = f ′(0) = f ′(1) = 0
}
and

H 2(0,1) := {
f ∈C 1[0,1] | f ′ ∈ AC [0,1], f ′′ ∈ L2(0,1)

}
. T is a positive

symmetric operator on D(T ), but not self-adjoint because
D(T ∗) = H 2(0,1)%D(T ).
von Neumann-Krĕın extension of T is the smallest (or soft)
self-adjoint extension T0 =− d2

d x2 ,
D(T0) = {

f ∈ H 2(0,1) | f ′(0) = f ′(1) = f (1)− f (0)
}=D(T ∗

0 ).
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Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

Compare it with our boundary condition: − f ′(0) = f ′(1) = f (0)+ f (1).
Also, compare it with the Friedrichs extension of T , which is the
largest (or hard) self-adjoint extension: T∞ =− d2

d x2 ,
D(T∞) = {

f ∈ H 2(0,1) | f (0) = f (1) = 0
}=D(T ∗∞) ⇐⇒ Dirichlet BC!

(a) John von Neumann
(1903–1957)

(b) Mark Krein
(1907–1989)

(c) Kurt Friedrichs
(1901–1982)
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(1907–1989)

(c) Kurt Friedrichs
(1901–1982)
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Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

Our Basis Krĕın-Laplacian Basis

λ0 -5.756915. . . ; tanh
√
−λ0/2 = 2/

√
−λ0 0

ϕ0 cosh
√
−λ0(x −1/2) 1

λ1 π2 0
ϕ1 sinπ(x −1/2) 1/2-x

λ2m tan
√
λ2m/2 =−2/

√
λ2m (2mπ)2

ϕ2m cos
√
λ2m(x −1/2) cos2mπ(x −1/2)

λ2m+1 ((2m +1)π)2 tan
√
λ2m+1/2 =

√
λ2m+1/2

ϕ2m+1 sin(2m +1)π(x −1/2) sin
√
λ2m+1(x −1/2)

Note that the above eigenfunctions are not normalized to have ‖ ·‖2 = 1.
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Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

(a) Our Basis (b) Krĕın-Laplacian Basis
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Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

In higher dimensions, the von Neumann-Krĕın extension of the
Laplacian T =−∆, D(T ) = H 2

0 (Ω), on Ω⊂Rd turns out to be: T0 =−∆,
D(T0) =

{
f ∈ H 2(Ω)

∣∣∣ ∂ f

∂ν
(x) = ∂H( f )

∂ν
(x), x ∈ ∂Ω

}
where H( f ) is a

harmonic function in Ω with the boundary condition: H( f ) = f on ∂Ω;
See e.g., A. Alonso & B. Simon: “The Birman-Krĕın-Vishik theory of
self-adjoint extensions of semibounded operators,” J. Operator Theory,
vol. 4, pp. 251–270, 1980.
This is closely related to our Polyharmonic Local Sine Transform
(PHLST): N. Saito & J.-F. Remy: “The polyharmonic local sine
transform: A new tool for local image analysis and synthesis without
edge effect,” Appl. Comput. Harm. Anal., vol. 20, pp. 41–73, 2006.
After all, the von Neumann-Krĕın extensions do not deal with the
exterior of the domain Ω while our approach based on the commuting
integral operators allow us to extend our eigenfunctions very naturally
to the exterior of Ω.
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After all, the von Neumann-Krĕın extensions do not deal with the
exterior of the domain Ω while our approach based on the commuting
integral operators allow us to extend our eigenfunctions very naturally
to the exterior of Ω.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 41 / 78



Discretization of the Problem

Outline

1 Acknowledgment

2 Motivations

3 Integral Operators Commuting with Laplacian

4 Historical Remarks

5 Discretization of the Problem

6 Applications
Incorporating the DC Vector
Statistical Image Analysis; Comparison with PCA
Hippocampal Shape Analysis

7 Fast Algorithms for Computing Eigenfunctions

8 Summary

9 References

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 42 / 78



Discretization of the Problem

Discretization of the Problem

Assume that the whole dataset consists of a collection of data sampled
on a regular grid, and that each sampling cell is a box of size

∏d
i=1∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are{x i }N

i=1.
Under these assumptions, we can approximate the integral eigenvalue
problem K ϕ=µϕ with a simple quadrature rule with node-weight
pairs (x j , w j ) as follows.

N∑
j=1

w j K (x i , x j )ϕ(x j ) =µϕ(x i ), i = 1, . . . , N , w j =
d∏

i=1
∆xi .

Let Ki , j := w j K (x i , x j ), ϕi := ϕ(x i ), and ϕ := (ϕ1, . . . ,ϕN )T ∈RN .
Then, the above equation can be written in a matrix-vector format as:
Kϕ=µϕ, where K = (Ki j ) ∈RN×N . Under our assumptions, the
weight w j does not depend on j , which makes K symmetric.
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Applications

General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.

. . .
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Applications Incorporating the DC Vector

Incorporating the DC Vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ := 1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.
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Applications Incorporating the DC Vector

Incorporating the DC vector . . .

(a) Laplacian Eigenfunctions via
Commuting Integral Operator

(b) Laplacian Eigenfunctions incorporating
the DC vector

=⇒ leads to the generalized discrete cosine basis!
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
72 training dataset; 71 test dataset
Left & right eye regions
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Energy Distribution over Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Applications Statistical Image Analysis; Comparison with PCA

Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Sparsity

(a) Training set

(b) Test set
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Coefficient Decay

(a) Training set

(b) Test set
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Applications Hippocampal Shape Analysis

Hippocampal Shape Analysis

Presenting the work of Faisal Beg and his group at Simon Fraser Univ.
using our technique
Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people
Hippocampus plays important roles in long-term memory and spatial
navigation

Figure: From Wikipedia
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Applications Hippocampal Shape Analysis

Hippocampal Shape Analysis . . .

Dataset: Left hippocampus segmented from 3D MRI images
Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator K ) for each left hippocampus
Construct a feature vector for each left hippocampus:

F :=
(
λ1

λ2
, . . . ,

λ1

λn+1

)T
=

(
µ2

µ1
, . . . ,

µn+1

µ1

)T
∈Rn .

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).
Reduce the feature space dimension via PCA to from n = 998 to n′

Classified by the linear SVM (support vector machine)
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Applications Hippocampal Shape Analysis

First Three Eigenfunctions of Three Patients
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Applications Hippocampal Shape Analysis

The Second Eigenfunction ϕ2

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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Applications Hippocampal Shape Analysis

The Third Eigenfunction ϕ3

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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Applications Hippocampal Shape Analysis

Classification Results

Dataset consists of the segmented left hippocampuses of 18 DAT subjects
and of 26 CN subjects:

Method Accuracy Specificity Sensitivity n n′

MomInv 68.1% 69.2% 66.6% 12 1
TensorInv 75.0% 76.9% 72.2% ≥ 1.9E5 17
LapEig 77.2% 84.6% 66.6% 998 14
GeodesicInv 86.3% 77.7% 92.3% ≥ 1.3E6 27

accuracy := |T P |+ |T N |
|people examined| =

|people correctly diagnosed|
|people examined|

specificity := |T N |
|T N |+ |F P | =

|people correctly diagnosed as healthy|
|healthy people examined|

sensitivity := |T P |
|T P |+ |F N | =

|people correctly diagnosed as mild AD|
|people with mild AD examined|
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Fast Algorithms for Computing Eigenfunctions

A Possible Fast Algorithm for Computing ϕ j ’s

Observation: our kernel function K (x , y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.
Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).
Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N 2), but
can achieve O(N log N ) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).
Construct O(N ) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).
Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N ) for each eigenvalue/eigenvector).
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Fast Algorithms for Computing Eigenfunctions

Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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Fast Algorithms for Computing Eigenfunctions

A Real Challenge: Kernel matrix is of 387924×387924.
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Fast Algorithms for Computing Eigenfunctions

First 25 Basis Functions via the FMM-based algorithm
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Fast Algorithms for Computing Eigenfunctions

Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 73 / 78



Fast Algorithms for Computing Eigenfunctions

Eigenfunctions for Separated Islands
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Summary

Summary

Our approach using the commuting integral operators
Allows object-oriented signal/image analysis & synthesis
Can get fast-decaying expansion coefficients (less Gibbs effect)
Can naturally extend the basis functions outside of the initial domain
Can extract geometric information of a domain through eigenvalues
Can decouple geometry/domain information and statistics of data
Is closely related to the von Neumann-Krĕın Laplacian, yet is distinct
Can use Fast Multipole Methods to speed up the computation, which
is the key for higher dimensions/large domains
Many things to be done:

Examine further our boundary conditions for specific geometry in
higher dimensions; e.g., analysis of S2 leads to Clifford Analysis
Examine the relationship with the Volterra operators in Rd , d ≥ 2
(Lidskĭı; Gohberg-Krĕın)
Integral operators commuting with polyharmonic operators (−∆)p ,
p ≥ 2?
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Thank you very much for your attention!

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions December 1, 2014 78 / 78


	Acknowledgment
	Motivations
	Integral Operators Commuting with Laplacian
	Historical Remarks
	Discretization of the Problem
	Applications
	Incorporating the DC Vector
	Statistical Image Analysis; Comparison with PCA
	Hippocampal Shape Analysis

	Fast Algorithms for Computing Eigenfunctions
	Summary
	References

