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Motivations

Motivation: Lifting Multiscale Basis Dictionaries to Graphs

For conventional digital signals and images sampled on regular lattices,
Multiscale Basis Dictionaries including wavelet packet dictionaries
(which in turn include wavelet bases) and local cosine dictionaries
have a proven track record of success, e.g.:

JPEG 2000 Image Compression Standard;
Modified Discrete Cosine Transform (MDCT) in MP3;
Discriminant feature extraction for signal classification;
. . .

Want to lift/generalize these dictionaries to the graph setting for
graph signal processing and graph data analysis

(a) Shannon wavelet on R (b) Graph wavelet packet vector
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Classical Multiscale Basis Dictionaries

Classical Dictionaries ⇐= Rigid Hierarchical Bipartitioning
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Ω=RN where N = 2 jmax is a number of samples of an input signal

Partitioning is always rigid at the middle of the parent subspaces

Dictionary Ω Partitioning Mode

Hierarchical Block DCT time (spatial) axis hard
Local Cosine Transform (LCT) time (spatial) axis soft/overlapping

Haar-Walsh wavelet packets time/frequency axes hard

Cmpt.-Supp. wavelet packets frequency axis soft/overlapping
Shannon wavelet packets frequency axis hard
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Classical Multiscale Basis Dictionaries

Classical Multiscale Basis Dictionaries . . .
Let dim

(
Ω

j
k

)
= N /2 j = 2 jmax− j =: N j

Let
{
ϕ

j
k,l

}N j −1

l=0
be a set of orthonormal (ON) vectors of Ω j

k

# of ON vectors in the hierarchical bipartition tree is N (1+ log2 N )

However, it contains more than O(1.5N ) possible orthonormal bases (ONBs):
let B j be the number of choosable ONBs of the hierarchical bipartition tree
of depth j . Then B j+1 = B 2

j +1, B0 = 1, j = 0,1, . . . [Flajolet-Odlyzko (1984);
Thiele-Villemoes (1996)]

The best-basis algorithm [Coifman-Wickerhauser (1992)] can choose the
“best” ONB among such a vast number of choosable ONBs very efficiently,
i.e., O(N log2 N ) or O(N [log2 N ]2)

What is the “best” depends on the cost functional in the best-basis
algorithm (e.g., sparsity =⇒ ℓ1-norm minimization, . . . )

Can deal with multiple input signals for signal classification, modeling,
compression, etc.; see, e.g., Local Discriminant Basis [Saito et al. (1995;
2002)]), Least Statistically-Dependent Basis [Saito (2001)], . . .
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Classical Multiscale Basis Dictionaries

Roadmap

Classical Basis Dict. Ω Graph Basis Dict. Ω

HBDCT time (spatial) axis HGLET G
LCT time (spatial) axis LP-HGLET G

Haar-Walsh WPs time/frequency axes GHWT/eGHWT G

Cmpt-Supp. WPs frequency axis LP-NGWPs ?
Shannon WPs frequency axis NGWPs ?

Underlying Philosophy/Basso Continuo:

Split =⇒ “Organize” =⇒ Merge
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Classical Multiscale Basis Dictionaries

History

HBDCT Hierarchical Block Discrete Cosine Transform: ?
LCT Local Cosine Transform: Malvar-Staelin (1989), Malvar

(1990), Coifman-Meyer (1991)
HWWPs Haar-Walsh Wavelet Packets: Coifman-Meyer (1989)

eHWWPs extended HWWPs (or adapted time-frequency tiling):
Thiele-Villemoes (1996)

Cpt-Supp. WPs Compactly-Supported Wavelet Packets: Coifman-Meyer
(1990)

Shannon WPs Shannon Wavelet Packets: ?
HGLET Hierarchical Graph Laplacian Eigen Transform: Irion-Saito

(2014a)
GWHT Generalized Haar-Walsh Transform: Irion-Saito (2014b)

eGHWT extended GHWT: Saito-Shao (2019, 2021)
NGWPs Natural Graph Wavelet Packets: Cloninger-Li-Saito (2021)
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Graph Basics

What is a graph?

Let G be a graph.
V =V (G) = {v1, v2, . . . , vN } is the set of nodes (or vertices, where
N :=|V (G)|. For simplicity, we usually use i in place of vi .
E = E(G) = {e1,e2, . . . ,eM } is the set of edges, where ek = (i , j )
represents an edge connecting adjacent nodes i and j for some
1 ≤ i , j ≤ N , and M :=|E(G)|.
W =W (G) ∈RN×N is the edge weight matrix, where Wi j the edge
weight between i and j .

1 2 3

4

5
W12 W23

W 34

W35

W24
W

45
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Graph Basics

How to define Wi j ?

There are many ways to define Wi j .
For unweighted graphs, we use

Wi j :=
{

1, if i ∼ j (i.e., i and j are adjacent),
0, otherwise.

This is often referred to as the adjacency matrix.
For weighted graphs, Wi j should indicate the affinity between i ∼ j :

Wi j :=1/dist(i , j ),

where dist(·, ·) is a certain measure of dissimilarity of information at i
and j , e.g.,

the Euclidean distance between the spatial location of i and j ;
the Wasserstein distance between the vector-valued measurements
recorded at i and j ;
their exponential versions with scale parameters;
. . .
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Graph Basics

Our Assumptions

In this talk, we assume that every graph is
Finite: M , N <∞.

Undirected: Any ek ∈ E(G) does not specify a direction, i.e., W is
symmetric.

Connected: Any two nodes i , j ∈V (G) are connected by a sequence of
head-tail edges.

Simple: G does not have any loops (an edge connecting a node to
itself) or multiple edges (more than one edge connecting a
pair of nodes).

Note that our graphs may be weighted or unweighted.
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Graph Basics

Graph Laplacians{
D(G) :=diag(d1,d2, . . . ,dN ), the degree matrix, where di :=∑N

j=1 Wi j ,

L(G) :=D(G)−W (G), the (unnormalized) Laplacian matrix.

We have:
sorted eigenvalues 0 =λ0 <λ1 ≤ ·· · ≤λN−1.
associated eigenvectors φ0,φ1, . . . ,φN−1.

The eigenvectors form a basis for RN . In particular:
L is symmetric nonnegative definite =⇒ the eigenvectors form an
ONB.
φ0(= 1/

p
N ) is called the DC vector.

φ1 is called the Fiedler vector.
The random-walk normalized Laplacian matrix can be obtained by

Lrw(G) :=D(G)−1L(G),

whereas the symmetrically normalized Laplacian matrix is defined as

Lsym(G) :=D(G)−1/2L(G)D(G)−1/2.
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Graph Basics

A Simple Yet Important Example: A Path Graph PN
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The eigenvalues of L are λl = 4sin2(πl/2N ), l = 0 : N −1.

The corresponding eigenvectors are φl [x] = al ;N cos(πl (x + 1
2 )/N ),

l , x = 0 : N −1; al ;N is a normalization const. s.t. ∥φl∥2 = 1.

λl (eigenvalue) is a monotonic function w.r.t. the frequency l , and
{
φl

}N−1
l=0

are the DCT Type II basis vectors used in the JPEG standard while those of
Lsym are the DCT Type I basis vectors [Strang (1999)], [Saito-Woei (2009)].

So, many people view
{
φl

}N−1
l=0 and {λl }N−1

l=0 as a generalization of the
Fourier modes and their corresponding “frequencies” on general graphs, and
have built graph wavelets based on this viewpoint =⇒ Lead to problems!
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Graph Cut/Partitioning via Spectral Clustering
Unlike the regular lattice cases assumed for the classical multiscale basis
dictionaries, it is too difficult to apply a fixed and rigid partition (or cut) of a
given general graph =⇒ No “center” edge to cut can be easily found a priori!

We need a good method to bipartition a graph (i.e., cut it into two
subgraphs of roughly equal sizes).

In this talk, we use the Fiedler vector φ1 of Lrw(G):

V1(G) = {
i ∈V (G) |φ1[i ] ≥ 0

}
, V2(G) =V (G) \V1(G),

s.t. the subgraphs induced on V1 and V2 by G are both connected.

This approximately minimizes the Normalized Cut (Shi-Malik, 2000):

NormalizedCut(A, Ac ) :=cut(A, Ac )

vol(A)
+ cut(A, Ac )

vol(Ac )
, V (G) = A⊔ Ac ,

where cut(A, Ac ) :=∑
i∈A, j∈Ac Wi j indicates the quality of the cut (the

smaller, the better), vol(A) :=∑
i∈A di is the so-called volume of the set A.

Note that any other good graph bipartition methods can be used for
building our multiscale graph basis dictionaries.
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Hierarchical Bipartition Tree of a Graph
V 0

0 =V (G)

V 1
0 =V (G1

0)

V 2
0 =V (G2
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...
...

V 2
1 =V (G2
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V 1
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V 2
2 =V (G2

2)
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V 2
3 =V (G2
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1 The root of the tree is the input whole graph, i.e., G0
0 =G;

2 Let N j
k :=|V j

k |, j = 0 : jmax, k = 0 : K j −1. Each G j
k with N j

k > 1 is partitioned
into exactly two subgraphs G j+1

k ′ and G j+1
k ′+1.

3 All regions (i.e., nodes in the subgraphs) on the same level are disjoint, i.e.,
V (G j

k )⊔V (G j
k ′ ) =; if k ̸= k ′;

4 The leaves of the tree are single-node graphs, i.e., N jmax

k = 1, k = 0 : N −1;

5 (Optional) In practice, N j+1
k ′ ≈ N j+1

k ′+1 to reduce inefficiency.
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Hierarchical Bipartition Tree of P6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Figure: An example of a hierarchical bipartition tree for a path graph with N = 6
nodes, where the edge weights are equal. The root is the whole graph.
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Hierarchical Bipartitions of Toronto Street Network
(N = 2275, M = 3381)

Figure: Level j = 1
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Hierarchical Bipartitions of Toronto Street Network
(N = 2275, M = 3381)

Figure: Level j = 2
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Hierarchical Partitioning on Primal Domain Hierarchical Bipartition Trees

Hierarchical Bipartitions of Toronto Street Network
(N = 2275, M = 3381)

Figure: Level j = 3

saito@math.ucdavis.edu (UC Davis) Multiscale Graph Basis Dictionaries 09/21/21 22 / 60



Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

Outline

1 Motivations

2 Classical Multiscale Basis Dictionaries

3 Graph Basics

4 Multiscale Graph Basis Dictionaries I:
Hierarchical Partitioning on Primal Domain

Hierarchical Bipartition Trees
Hierarchical Graph Laplacian Eigen Transform (HGLET)

5 Multiscale Graph Basis Dictionaries II:
Hierarchical Partitioning on Dual Domain

6 Numerical Examples

7 Summary

8 References
saito@math.ucdavis.edu (UC Davis) Multiscale Graph Basis Dictionaries 09/21/21 23 / 60



Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

Hierarchical Graph Laplacian Eigen Transform (HGLET)

J. Irion and N. Saito proposed this in 2013, and published it in JSIAM
Letters in 2014 =⇒ Awarded the 2016 JSIAM Best Paper Prize!
Once a hierarchical bipartition tree of an input graph G(V ,E) is given,
the idea is quite simple: at each G j

k , compute the eigenvectors{
φ

j
k,l

}N j
k−1

l=0
of L(G j

k ).

Since suppφ j
k,· =V j

k , we extend its support to the entire V by

appending zeros on V \V j
k so that φ j

k,l ∈RN , ∀ j ,k, l .
If G = PN , then it exactly reduces to the Block Hierarchical DCT of N
points. Furthermore, if N = 2 jmax , the decomposition of a given signal
on PN is O(N [log2 N ]2) thanks to the FFT!
For a general graph G, it takes O(N 3) mainly due to the eigenvector
computations.
One can also construct the HGLET with the eigenvectors of Lsym(G j

k )

(ONBs) or those of Lrw(G j
k ) (“weighted” ONBs) as an option.
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Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on the Toronto Street Network

Figure: φ0
0,5
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Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on the Toronto Street Network

Figure: φ1
0,1
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Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on the Toronto Street Network

Figure: φ2
0,5
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Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on the Toronto Street Network

Figure: φ3
0,15
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Hierarchical Partitioning on Primal Domain Hierarchical Graph Laplacian Eigen Transform (HGLET)

HGLET Basis Vectors on the Toronto Street Network

Figure: φ10
0,1
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Hierarchical Partitioning on Dual Domain What is the Dual Domain of a Graph?

The Dual Domain of a Graph

Want to build graph wavelet packets that are smooth in the primal
domain (i.e., on a given graph)
In the classical setting (e.g., the regular lattices in Rd ), the dual
domain of an input signal is well-defined =⇒ the reciprocal regular
lattice representing the Fourier modes via the Discrete Fourier
Transform (DFT).
In the graph setting, using graph Laplacian eigenvectors as “cosines”
or Fourier modes on graphs with eigenvalues as (the square of) their
“frequencies” has been quite popular . . .
In fact, if an input graph is a simple path PN or a simple circle CN ,
then the situation is the same as the classical setting.
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Hierarchical Partitioning on Dual Domain What is the Dual Domain of a Graph?

Problems of Interpreting “eigenvalues ≈ frequencies2”

However, the notion of frequency is ill-defined on general graphs;
Fourier modes on graphs may be quite different from those on regular
lattices =⇒ extremely localized eigenvectors
Graph Laplacian eigenvectors may also exhibit peculiar behaviors
depending on topology and structure of given graphs!
Spectral Graph Wavelet Transform (SGWT) [Hammond et al. (2011)]
derived wavelets on a graph based on the Littlewood-Paley theory that
organized the graph Laplacian eigenvectors corresponding to dyadic
partitions of eigenvalues by viewing the eigenvalues as “frequencies”
Unfortunately, this view may face difficulty for graphs more
complicated than PN or CN .
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Hierarchical Partitioning on Dual Domain What is the Dual Domain of a Graph?

Problem with 2D Lattice Graph

As soon as the domain becomes even slightly more complicated than
PN or CN , the situation completely changes: we cannot view the
eigenvalues as a simple monotonic function of frequency anymore.
For example, consider a thin strip in R2, and suppose that the domain
is discretized as Pm ×Pn (m > n), whose Laplacian eigenpairs are:

λk = 4

[
sin2

(
πkx

2m

)
+ sin2

(
πky

2n

)]
,

φk [x, y] = akx ;m aky ;n cos

(
πkx

m

(
x + 1

2

))
cos

(
πky

n

(
y + 1

2

))
,

where k = 0 : mn −1; kx = 0 : m −1; ky = 0 : n −1; x = 0 : m −1; and
y = 0 : n −1.
Any numerical eigenpair solver gives you the sequence of
{(λk ,φk )}k=0:mn−1, but it doesn’t tell you what kx and ky are for a
given k!!
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Hierarchical Partitioning on Dual Domain What is the Dual Domain of a Graph?

All of a sudden the eigenvalue of a completely different type of oscillation
sneaks into the eigenvalue sequence.

Hence, on a general domain or a general graph, by simply looking at the
Laplacian eigenvalue sequence {λk }k=0,1,..., it is almost impossible to organize
the eigenpairs into physically meaningful dyadic blocks and apply the
Littlewood-Paley approach unless the underlying domain is of very simple
nature, e.g., Pn or Cn .

For complicated domains, the notion of frequency is not well-defined
anymore.
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Hierarchical Partitioning on Dual Domain What is the Dual Domain of a Graph?

What we want to do is to organize those eigenvectors as

instead of
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Hierarchical Partitioning on Dual Domain Measuring Differences between Eigenvectors

Plan

How can we quantify the difference between the eigenvectors?

The usual ℓ2-distance doesn’t work since
∥∥∥φi −φ j

∥∥∥
2
=p

2δi ̸= j .

Need to come up with a metric that quantifies the “behavioral”
differences between any pair of eigenvectors. Having such a metric, we
do the following:

1 Choose a metric and compute the “distance” between φi and φ j for
all i , j = 0 : N −1, which results in a “distance” matrix D ∈RN×N

≥0

2 Construct a dual graph G⋆(V ⋆,E⋆) where the i th node corresponds to
φi , and the weight of the edge (i , j ) is the affinity between φi and φ j ,
e.g., 1/Di j or exp(−D2

i j /ϵ) with some ϵ> 0

3 Organize and group V ⋆ to generate wavelet packet vectors on G
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Hierarchical Partitioning on Dual Domain Measuring Differences between Eigenvectors

Various Metrics for Eigenvector Differences

A similarity measure (HAD) based on the average of local correlations
of eigenvectors [Cloninger-Steinerberger (2018)]
The ramified optimal transport (ROT) method [Saito (2018)]
The difference of absolute gradient (DAG) method [Li-Saito (2019)]
The time-stepping diffusion (TSD) method [Li-Saito (2019)]
The ROT method seems to work well for transportation networks with
hubs (e.g., neuronal dendritic trees) whereas the HAD and DAG
methods seem to work well for (ir)regular grids/lattices (e.g., road
networks).
For more pros and cons of these methods, see Li-Saito (2019).
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Hierarchical Partitioning on Dual Domain Measuring Differences between Eigenvectors

Difference of Absolute Gradient (DAG) Pseudometric

The basic idea: use the absolute gradient of each eigenvector as its feature vector
describing its behavior.
Let G(V ,E) be an input graph (connected, undirected, weighted, and simple) with
|V | = N , |E | = M . Let Q ∈RN×M be its incidence matrix. Then, DAG pseudometric
(the identity of discernible is not satisfied) is defined as:

dDAG(φi ,φ j ) :=∥|∇G |φi −|∇G |φ j ∥2 where |∇G |φ :=abs.(QTφ) ∈RM
≥0

It is related to the Hadamard product-based affinity proposed by
Cloninger-Steinerberger (2018) as

dDAG(φi ,φ j )2 =
〈
|∇G |φi −|∇G |φ j , |∇G |φi −|∇G |φ j

〉
E

= 〈|∇G |φi , |∇G |φi
〉

E +
〈
|∇G |φ j , |∇G |φ j

〉
E
−2

〈
|∇G |φi , |∇G |φ j

〉
E

=λi +λ j −
∑

x∈V

∑
y∼x

|φi (x)−φi (y)| · |φ j (x)−φ j (y)| thanks to QQT = L

where 〈·, ·〉E is the inner product over edges.
The last term of the formula can be viewed as a global average of absolute local
correlation between eigenvectors =⇒ the Hadamard-product affinity.
Given the eigenvectors, the computational cost is O(M) for each dDAG(·, ·) eval.
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Hierarchical Partitioning on Dual Domain Measuring Differences between Eigenvectors

2D Lattice P7 ×P3: dDAG visualized by the classical MDS

dDAG nicely detects two directions of the oscillations and the
eigenvectors are organized naturally in the 2D lattice.
For each column of the lattice, the eigenvectors have the same
oscillation pattern in the y-direction and the oscillation in the
x-direction increases linearly, and vice versa.
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

Natural Graph Wavelet Packets: Basic Steps
1 Bipartition the dual graph G⋆ recursively via any method, e.g., spectral

graph bipartition using the Fiedler vectors
2 Generate wavelet packet vectors on each subgraph of G⋆ that are well

localized on G

We refer to the graph wavelet packets generated by the above strategy as Natural
Graph Wavelet Packets (NGWPs).
∃ Several possibilities in Step 2; will discuss only one of them today.
The details were published as part of the Topical Collection: Harmonic Analysis on
Combinatorial Graphs of the Journal of Fourier Analysis and Applications this year.
Let Φ0

0 :=[φ0, . . . ,φN−1] = a matrix representation of the GL eigenvectors of G =
the node set V ⋆ of G⋆, and suppose we get the following hierarchical bipartition
tree of Φ0

0: Φ0
0

Φ1
1

Φ2
3Φ2

2

Φ1
0

Φ2
1Φ2

0
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

Hierarchical Bipartitioning of (P7 ×P3)∗

Figure: The hierarchical bipartition algorithm applied to (P7 ×P3)∗ with J = 2.
The thick red line: bipartition at j = 1; the orange lines: bipartitions at j = 2.
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

NGWPs by Varimax Rotation
Given the full binary partition tree of Φ0

0 ∈RN×N , perform the varimax

rotation on Φ j
k ∈RN×N j

k for each j and k.
Varimax rotation [Kaiser (1958); Jennrich (2001)] is an orthogonal
rotation, often used in factor analysis, to maximize the variances of
energy distribution (or a scaled version of the kurtosis) of the input
column vectors.
Thanks to the orthonormality of columns of Φ j

k , this is equivalent to
finding an orthogonal rotation that maximizes the overall 4th order
moments, i.e.,

Ψ
j
k :=Φ j

k ·R j
k , where R j

k = arg max
R∈SO(N j

k )

N∑
p=1

N j
k∑

q=1

[(
Φ

j
k ·R

)4
]

p,q
.

The column vectors of Ψ j
k are more “localized” in the primal domain G

than those of Φ j
k . This type of localization procedure is important

since the GL eigenvectors in Φ j
k may be of global nature in general.
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

The VM-NGWPs on PN

are essentially the Shannon wavelet packets !

(a) Father wavelet vectors Ψ4
0 (b) Mother wavelet vectors Ψ4

1 (c) Wavelet packet vectors Ψ4
4

Figure: Some of the Shannon wavelet packet vectors on P512
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

The VM-NGWPs on P7 ×P3

Figure: The VM-NGWP vectors of P7 ×P3. The column vectors of the basis
matrix Ψ2

k are denoted as ψk,l , l = 0,1, . . .
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Hierarchical Partitioning on Dual Domain Natural Graph Wavelet Packets (NGWPs)

Selecting a Good Natural Graph Wavelet Packet Basis

Once the NGWP dictionary is built, one can apply the best-basis
selection algorithm of Coifman-Wickerhauser or its variants developed
by the Saito group to choose the most suitable basis for a given task
(e.g., efficient approximation, denoising, classification, regression,
etc.). Note that the best-basis algorithm searches the best one among
more than (1.5)N possible ONBs from the wavelet packet dictionary.
For the examples today, we used the ℓ1-norm minimization to select
the best (or sparsest) basis among the NGWP dictionary.
Of course, one can also choose the wavelet basis explicitly from the
NGWP dictionary by selecting the specific subspaces and basis vectors.

Ψ0
0

Ψ1
1

Ψ2
3Ψ2

2

Ψ1
0

Ψ2
1Ψ2

0
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Numerical Examples

Toronto Street Network (N = 2275 nodes; M = 3381 edges)

Obtained from the City of Toronto’s open data portal:
https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes

Nodes = intersections (with traffic lights); edges = streets

Edge weights = the inverse Euclidean distances between nodes

Two graph signals considered: 1) spatial distribution of the street
intersections; 2) real pedestrian counts between the hours of 7:30am and
6:00pm on a single day measured during the period 03/22/2004–02/28/2018
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Numerical Examples

Example 1: Smooth Histogram of Street Intersections

(a) Graph signal (b) Approximation

Figure: (a) A graph signal representing the smooth spatial distribution of the
street intersections on the Toronto street network Toronto. The horizontal and
vertical axes of this plot represent the longitude and latitude geo-coordinates of
this area, respectively. (b) The results of our approximation experiments.
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Numerical Examples

Top 12 VM-NGWP best basis vectors (w.o. DC)

(a) ψ43
2,0 ≡φ2 (b) ψ6

2,0 (c) ψ6
1,0 (d) ψ6

5,2

(e) ψ43
1,0 ≡φ1 (f) ψ6

2,4 (g) ψ8
24,0 (h) ψ5

4,4

(i) ψ6
5,3 (j) ψ6

2,2 (k) ψ43
12,0 ≡φ10 (l) ψ6

2,3
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Numerical Examples

Top 12 HGLET best basis (= the global GL) vectors (w.o.
DC)

(a) φ0
0,2 (b) φ0

0,7 (c) φ0
0,6 (d) φ0

0,4

(e) φ0
0,3 (f) φ0

0,23 (g) φ0
0,5 (h) φ0

0,11

(i) φ0
0,1 (j) φ0

0,12 (k) φ0
0,29 (l) φ0

0,22

saito@math.ucdavis.edu (UC Davis) Multiscale Graph Basis Dictionaries 09/21/21 49 / 60



Numerical Examples

Example 2: Pedestrian Counts at the Intersections

(a) Graph signal (b) Approximation

Figure: (a) Pedestrian volume data measured at the street intersections. (b) The
results of our approximation experiments.
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Numerical Examples

Top 12 HGLET best basis vectors

(a) φ6
1,0 (b) φ5

1,0 (c) φ7
9,0 (d) φ5

1,73

(e) φ10
109,0 (f) φ9

97,0 (g) φ6
1,1 (h) φ7

8,0

(i) φ5
1,3 (j) φ8

0,0 (k) φ6
1,10 (l) φ5

1,2
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Numerical Examples

Top 12 VM-NGWP best basis vectors

(a) ψ4
0,2 (b) ψ3

1,22 (c) ψ3
1,75 (d) ψ1

1,1245

(e) ψ7
8,0 (f) ψ3

1,87 (g) ψ4
0,11 (h) ψ2

1,136

(i) ψ4
0,5 (j) ψ2

1,16 (k) ψ3
1,98 (l) ψ1

1,1660
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Numerical Examples

Observations from Examples 1 & 2

Basis vectors that behave like oriented edge detectors are
automatically generated in our dictionaries
NGWP outperformed the other dictionaries on piecewise smooth graph
signals (e.g., smooth histogram of street intersections)
eGHWT was the best performer on the non-smooth and localized
graph signals (e.g., pedestrian volume data)
Potential reason I: NGWPs are a direct generalization of the Shannon
wavelet packets, i.e., their “frequency” domain support is localized and
well controlled while the “time” domain support is not compact.
Potential reason II: eGHWT tends to have better performance with
oscillatory non-smooth signals in general compared to the other
transforms and can choose the best one from even larger set of
possible ONBs, i.e., 0.618 · (1.84)N [Saito-Shao, 2019; 2021].
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Summary

Summary

Lifted the classical multiscale basis dictionaries (i.e., Hierarchical
Block DCT and the Shannon Wavelet Packets) to the graph setting
(i.e., HGLET and NGWPs, respectively).
If an input graph is PN , then HGLET and NGWPs exactly reduce to
the HBDCT and the Shannon WPs, respectively.
Used the hierarchical bipartitioning of the primal graph G for HGLET
and the dual graph G⋆ for NGWPs where the nodes are the GL
eigenvectors and the edge weights represent the affinity between those
vectors, e.g., 1/dDAG(·, ·)
Used varimax rotation to make NGWP vectors well-localized on G.
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Summary

Summary . . .

Graph signal approximation experiments demonstrate an advantage of
a data-adaptive basis dictionary from which one can select the most
suitable basis for one’s task at hand!
These graph basis dictionaries can also be used for the classical signals
and images measured on the regular lattices. And they often
outperform the classical ones (with higher computational costs). Note
that N does not have to be dyadic unlike the classical cases.
Moreover, all the partitions used in the graph basis dictionaries are
data adaptive and not rigid like the classical basis dictionaries.
Separation of Geometry and Statistics of Data =⇒ PCA cannot do
this!!
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Summary

Future Plan
How can we reduce computational complexity of O(N 3)?

For certain problems, one may not need all the GL eigenvectors, in
particular, those corresponding to the large eigenvalues.
Consider integral operators (e.g., Green’s functions) on graphs, and
utilize the Fast Multipole Method [Saito (2008); Xue (2007)].

Truly generalize the Local Cosine Transform (LCT) for the graph
setting. H. Li (2021) constructed the graph version of the smooth
orthogonal projectors involving orthogonal folding and unfolding
operators and the graph basis dictionaries LP-HGLET and LP-NGWPs.
To be more effective, however, we need GL eigenvectors associated
with different boundary conditions than the usual Neumann conditions.
Should explore different cost functionals than the sparsity =⇒ Local
Discriminant Basis (LDB), Local Regression Basis (LRB), etc. [Saito
et al. (1995; 1997; 2002; . . . )]
How can we generalize our multiscale graph basis dictionaries to
directed graphs, higher-order networks, hypergraphs? =⇒ Hodge
Laplacians!!
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Please check our Julia codes on GitHub!!
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl

Split =⇒ “Organize” =⇒ Merge

Thank you very much for your attention!
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