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Higher-Order Graph Signals

Recently there has been great interest in analyzing and processing signals
measured on higher-order networks.

• Data are sampled over 𝐶𝑘, oriented 𝑘-simplices of a graph, 𝑘 ∈ℕ:
• For 𝑘 = 0,1,2,3,… , these signals take values over nodes, edges,
triangles, tetrahedra, …, respectively.

• Examples: regional weather data, molecular chemistry, neuronal
networks, social networks, discrete exterior calculus/geometry, …

Flows around Madagascar
[Schaub et al. (2020)]

Gene expression
correlations [Govek et
al. (2019)]

Coauthorship graph [Ebli
et al. (2022)]
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Roadmap So Far

• We have developed the graph versions of the local cosine and wavelet packet
dictionaries for analysis of graph signals sampled at nodes.

• All these are based on the hierarchical bipartitioning of either a primary graph
𝐺 or the so-called dual graph 𝐺⋆. Ω∶= a domain to be hierarchically
bipartitioned:

Classical Basis Dict. Ω Graph Basis Dict. Ω

Hierarchical Block DCT time axis HGLET 𝐺
Local Cosine Transform time axis LP-HGLET 𝐺

Haar-Walsh Wavelet Packets time/freq. axes GHWT/eGHWT 𝐺

Compactly-Supported Wavelet Packets frequency axis LP-NGWPs 𝐺⋆

Shannon Wavelet Packets frequency axis NGWPs 𝐺⋆

HGLET ∶= Hierarchical Graph Laplacian Eigen Transform [Irion-Saito (2014)];

GHWT ∶= Generalized Haar-Walsh Transform [Irion-Saito (2014)];

eGHWT ∶= extended GHWT [Saito-Shao (2022)];

NGWPs ∶= Natural Graph Wavelet Packets [Cloninger-Li-Saito (2021)];

LP-HGLET/NGWPs ∶= Lapped-HGLET/NGWPs [Li (2021)]

Underlying Philosophy/Basso Continuo:
Split⟹ “Organize”⟹ Merge 7/46
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Representing Higher-Order Graphs

• A simplicial complex, 𝐶, represents a combinatorial
description of a topological space that can be represented
and handled by a computer.

• The 𝑘-simplices 𝐶𝑘 ⊂𝐶 are typically captured by boundary
matrices 𝐵𝑘−1, 𝐵𝑘 expressing adjacency and relative
orientation of each 𝑘-simplex 𝜎 with each (𝑘−1)-simplex
𝛼 or (𝑘+1)-simplex 𝛽 respectively.

• The orientations may be given by the nature of the data,
or need to be specified by the user.

[𝐵𝑘−1]𝛼𝜎 =

⎧⎪⎪
⎨
⎪⎪
⎩

1 𝛼,𝜎 have consistent orientation
−1 𝛼,𝜎 have inconsistent orientation
0 otherwise

[𝐵𝑘]𝜎𝛽 =

⎧⎪⎪
⎨
⎪⎪
⎩

1 𝜎,𝛽 have consistent orientation
−1 𝜎,𝛽 have inconsistent orientation
0 otherwise
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Hodge Laplacian

• The Hodge Laplacian (aka 𝑘-Laplacian) [see, e.g., L.-H. Lim:
SIAM Review (2020); M. T. Schaub et al.: Signal Process.
(2021)] provides a spectral decomposition for a signal
measured on 𝑘-simplices in a given simplicial complex.

• Since the 𝑘-Laplacian has both “upper” and “lower” parts,
we need a new notion of neighbors: two 𝑘-simplices are
adjacent if they either:
▶ have a (𝑘−1)-simplex in common as a face; or
▶ are both faces of some (𝑘+1)-simplex in the complex.

Hodge Laplacian via Boundary Matrices
𝐿𝑘 ∶=𝐵T

𝑘−1𝐵𝑘−1+𝐵𝑘𝐵
T
𝑘; 𝐷𝑘 ∶=diag(𝐿𝑘)

10/46



2-Simplicial Path

𝐵0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 −1 0 0 0 0 0
1 0 −1 −1 … 0 0 0
0 1 1 0 0 0 0
0 0 0 1 0 0 0
⋮ ⋱ ⋮
0 0 0 0 −1 −1 0
0 0 0 0 … 1 0 −1
0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝐵1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 0 0 0 0
1 0 0 … 0 0
−1 −1 0 0 0
0 1 0 0 0
0 −1 0 0 0
⋮ ⋱ ⋮
0 0 0 0 −1
0 0 0 … 0 1
0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝐵2 =𝑂

𝐿0 =𝐵0𝐵T0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

2 −1 −1 0 0 0 0
−1 3 −1 −1 … 0 0 0
−1 −1 4 −1 0 0 0
0 −1 −1 4 0 0 0
⋮ ⋱ ⋮
0 0 0 0 4 −1 −1
0 0 0 0 … −1 3 −1
0 0 0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝐿1 =𝐵T0𝐵0+𝐵1𝐵
T
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

3 0 0 −1 0 0
0 3 0 0 … 0 0
0 0 4 0 0 0
−1 0 0 3 0 0
⋮ ⋱ ⋮
0 0 0 0 … 3 0
0 0 0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

𝐿2 =𝐵T1𝐵1 =

⎡
⎢⎢⎢⎢⎢
⎣

3 1 0 … 0
1 3 1 ⋱ ⋮
0 1 ⋱ ⋱ 0
⋮ ⋱ ⋱ 3 1
0 … 0 1 3

⎤
⎥⎥⎥⎥⎥
⎦

symmetric tridiagonal Toeplitz!
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Hodge-Laplacian Eigenvectors

(a) 𝑘 = 0 (b) 𝑘 = 1 (c) 𝑘 = 2 (DST-I)
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Weighted and Normalized Hodge Laplacian

Weighted Graph Laplacian

𝐿0 = 𝐵0𝐷1𝐵T
0

Random-Walk Normalization

𝐿rw0 =𝐷−1
0 𝐿0

Symmetric Normalization

𝐿sym0 =𝐷−1/2
0 𝐿0𝐷

−1/2
0

Weighted Hodge Laplacian

𝐿𝑘 = (𝐵𝑘−1𝐷𝑘)T𝐷−1
𝑘−1(𝐵𝑘−1𝐷𝑘)+𝐵𝑘𝐷𝑘+1𝐵T

𝑘

Random-Walk Normalization

𝐿rw𝑘 =𝐷−1
𝑘 𝐿𝑘

Symmetric Normalization

𝐿sym𝑘 =𝐷−1/2
𝑘 𝐿𝑘𝐷

−1/2
𝑘
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Bipartitioning Simplicial Complexes

• The graph Laplacian 𝐿rw0 admits a Fiedler vector (i.e., the eigenvector 𝜙1

corresponding to the second smallest eigenvalue 𝜆1), whose sign
provides a bipartition of nodes (0-simplices) minimizing a relaxed
version of Normalized Cut.

• The Hodge Laplacian 𝐿rw𝑘 also admits a Fiedler vector whose sign
provides a bipartition of 𝑘-simplices minimizing a relaxed version of a
cut objective function related to the Normalized Cut.

• Unlike 𝐿rw0 , however, the components of 𝜙0 of 𝐿rw𝑘 , 𝑘 ≥ 1, may change
their signs in general; hence 𝜙1⊙ sign(𝜙0) provides the Fiedler vector.

• Be careful about the multiplicity of 0 eigenvalues (aka the Betti
number = # of “𝑘-dimensional holes”) ! ⟹ the Fiedler vector should
be 𝜙𝛽𝑘+1⊙ sign(𝜙𝛽𝑘).

• Any other good bipartition method for simplicial complexes can be
used for building our multiscale basis dictionaries.

15/46



Hierarchical Bipartitioning

A synthetic simplicial complex with 𝑘 = 2. Successively bipartitioning
the subcomplexes induced by prior partitions leads to finer, nicely
localized domains, illustrated by piecewise-constant functions on
the triangles. Proceeding left-to-right, each complex has been
bipartitioned to one finer level.

16/46
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

can be viewed as a generalization of the Hierarchical Block
DCT dictionary and be generated as follows [Irion-S. (2014)]:

1. Partition the graph into two subgraphs
2. Compute the graph Laplacian of each subgraph
3. Form an ONB for each subgraph via the eigensystem
4. Continue the above steps recursively until each subgraph
becomes a single node

• The HGLET dictionary, i.e., resulting set of ≈𝑛(1+ log2𝑛)
basis vectors, contains more than 𝑂(1.5𝑛) ONBs⟹ the
best basis and its relatives can be selected!

• The HGLET can be further generalized for 𝑘-simplices
using the eigenvectors of the Hodge Laplacians via
bipartitions, which we call 𝑘-HGLET
[S.-Schonsheck-Shvarts (2024)]. 18/46



The 2-HGLET Dictionary on the Triangle Complex

Each row represents one level of the bipartition
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Generalized Haar-Walsh Transform (GHWT)

is a generalization of the classical Haar-Walsh wavelet packet dictionary for
the graph setting [Irion-S. (2014)]:

1. Recursively bipartition the graph via any method until each subgraph
becomes a single node

2. Construct an ONB at the bottom/finest level using the standard basis
of ℝ𝑛, which are scaling vectors at that level

3. Generate an ONB for the immediate upper level by the sum and
difference operators, which become the scaling and the Haar vectors,
respectively

4. Repeat this process until it reaches the top/coarsest level, which
generates the scaling, Haar, and Walsh vectors at each level

• The GHWT dictionary, i.e., the resulting set of ≈𝑛(1+ log2𝑛) basis
vectors, contains more than 𝑂(1.5𝑛) ONBs⟹ the best basis and its
relatives can be selected!

• The GHWT can be further generalized for 𝑘-simplices via recursive
bipartitions, which we call 𝑘-GHWT [S.-Schonsheck-Shvarts (2024)]. 20/46



The Coarse-to-Fine GHWT Dictionary on the Triangle Complex

Each row represents one level of the bipartition; Color represents
the sign info
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The Fine-to-Coarse GHWT Dictionary on the Triangle Complex

Color represents the sign info; the red boxes correspond to the
2-Haar Basis
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Approximation of the Coauthorship Complex

From Ebli et al. 2022

• The Coauthorship Complex (CC) [Patania et al. (2017); Elbi et al. (2022)]
can be created by linking papers, authors, and coauthors from the
Semantic Scholar Open Research Corpus.

• Each node represents an author, whose value is the total citation
number of publications of that author.

• Each 𝑘-simplex represents the coauthorship among (𝑘+1) authors,
whose value is the total citation number of the publications
coauthored by these (𝑘+1) coauthors.

𝑘 0 1 2 3 4 5
# of elements 352 1474 3285 5019 5559 4547

The size of 𝑘-simplices in the CC for 𝑘 = 0,1,…,5 23/46



Approximation of Coauthorship Complexes: 𝑘 = 0,1

𝑘 = 0 𝑘 = 1

The behavior of these plots may be explained by the following

Theorem (Sharon-Shkolnisky (2015))
For a fixed orthonormal basis {𝜙𝑙}

𝑛−1
𝑙=0 and a parameter 0 < 𝜏 < 2,

‖𝑓−𝑃𝑚𝑓‖2 ≤
|𝑓|𝜏
𝑚𝛼 , where |𝑓|𝜏 ∶=(

𝑛−1
∑
𝑙=0

|⟨𝑓,𝜙𝑙⟩|
𝜏)

1/𝜏
and 𝛼 =

1
𝜏
−
1
2
.
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Approximation of Coauthorship Complexes: 𝑘 = 2 ∶ 5

𝑘 = 2 𝑘 = 3

𝑘 = 4 𝑘 = 5
25/46
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Building Scattering Networks on 𝑘-Simplices

• Want to generalize the scattering transform of Mallat to the
simplicial complex setting because we want to extract robust
features from data recorded on simplicial complexes.

• Gao, Wolf, and Hirn (2021) proposed the Geometric Scattering
for graphs (0-simplices) using the diffusion wavelets of Coifman
and Maggioni (2006).

• We propose to use our 𝑘-HGLET and 𝑘-GHWT dictionaries to
build such scattering transforms/networks.

• Let the 𝑘-HGLET or 𝑘-GHWT dictionary vectors be arranged as
Φ𝐽 ∶={Φ𝑗}𝐽𝑗=0 where each Φ

𝑗 is an ONB at scale (or level) 𝑗 with
𝑗 = 0 being the finest scale basis, composed of delta functions.

• In general, we have 𝑗max ≈ 1+ log2𝑛 different levels but in
practice, the features extracted by large 𝑗 values are not very
descriptive, so we typically use the first 𝐽(< 𝑗max) levels.

27/46



Building Scattering Networks on 𝑘-Simplices …

• Let 𝑓 ∈ ℝ𝑛 be a signal defined on 𝐶𝑘.
• We propose to compute the 𝑞th moment of the 0th and 1st scattering
coefficients:

𝑆0(𝑞) ∶=
𝑛
∑
𝑖=1

𝑓[𝑖]𝑞, 𝑆1(𝑞,𝑗) ∶=
𝑛
∑
𝑖=1

|Φ𝑗𝑓[𝑖]|𝑞 , 0 ≤ 𝑗 ≤ 𝐽;1 ≤ 𝑞 ≤𝑄, (1)

and the 2nd-order scattering coefficients:

𝑆2 (𝑞,𝑗, 𝑗′) ∶=
𝑛
∑
𝑖=1

|Φ𝑗 ′ |Φ𝑗𝑓| [𝑖]|
𝑞
, 𝑗 = 0 ≤ 𝑗 < 𝑗′ ≤ 𝐽, 1 ≤ 𝑞 ≤𝑄. (2)

• And higher-order scattering coefficients can be computed similarly:

𝑆𝑚 (𝑞, 𝑗(1),…,𝑗(𝑚)) ∶=
𝑛
∑
𝑖=1

|Φ𝑗(𝑚)
|Φ𝑗(𝑚−1)

|⋯|Φ𝑗(1)𝑓|⋯|| [𝑖]|
𝑞
, (3)

where 𝑗 = 0 ≤ 𝑗(1) <⋯< 𝑗(𝑚) ≤ 𝐽.
• However, to reduce the computational cost, we typically use 𝑚≤3.
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Building Scattering Networks on 𝑘-Simplices …

• Gathering all of the moments ≤𝑄 and of orders ≤𝑀 leads to a
total of 𝑄∑𝑀

𝑚=0 (
𝐽+1
𝑚 ) features for a given signal; e.g. for

(𝐽,𝑀,𝑄) = (5,3,4), it’s just 178 features/signal.

• The summations from 𝑖 = 1 to 𝑖 = 𝑛 in (1)–(3) can be viewed as
global pooling operations.

• In situations where node permutation invariance is not
required, we can omit the these sums, which is no pooling. As a
result, we are left with 𝑛𝑄∑𝑀

𝑚=0 (
𝐽+1
𝑚 ) features for each signal.

• Finally, we sum the coefficients over each partition (i.e., region)
at level 𝑗 and keep those local sums as feature vectors instead
of not summing at all or summing all the regions of level 𝑗 in
(1)–(3), which can be viewed as local pooling operations.

• We call our scattering networks as Multiscale Hodge Scattering
Networks (MHSNs).
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Classification of Science News Articles

• Apply our MHSNs to article category classification using the
Science News database.

• After some preprocessing, the Science News dataset contains
1042 scientific news articles classified into eight fields:
Anthropology; Astronomy; Behavioral Sciences; Earth Sciences;
Life Sciences; Math/CS; Medicine; Physics.

• Each article is tagged with keywords from a pool of 1133 words.
In this database, each article contains 2 ∼ 5 keywords
(with/without counting their frequency of occurrence).

• We determine a simplicial complex from these keywords by 1)
computing their word2vec embeddings based on Google’s
publicly available pre-trained model; and 2) generate a
symmetric 𝐾-nearest neighbor graph of the embedded words
and then generate 𝑘-simplices of the graph.

• A 𝑘-simplex corresponds to a combination of (𝑘+1) words. 31/46



Generation of Simplicial Signals on 𝐶𝑘

Next, we define representations of each article as a signal on
each 𝐶𝑘 as follows.

• First, for 𝑘 = 0 (i.e., a node-valued signal), we define the
signal 𝑓0 to be one on the nodes representing their
keywords and zero elsewhere.

• For 𝑘 ≥ 1 we define the signal 𝑓𝑘 to be the simplex-wise
average of the 𝑓0 signal.

𝑓0[𝑖] =
⎧
⎨
⎩

1 if keyword 𝑖 occurs

0 Otherwise
; 𝑓𝑘[𝑖] =

1
𝑘+1

∑
𝑙∈𝑉(𝜎𝑖)
𝜎𝑖∈𝐶𝑘

𝑓0[𝑙],

(4)
where 𝑉(𝜎𝑖) represents the set of nodes forming the 𝑖th
simplex 𝜎𝑖 ∈ 𝐶𝑘.

32/46



Classification Results

• For each 𝑘, we did 10-fold cross validation: randomly split these 1042
signals into 10 groups; each group was used as a test set while the
other 9 groups were used as a training set; and repeated this 10 times.

• Used ℓ2-regularized logistic regression provided by scikit-learn
• The parameters in the MHSNs were set as (𝐽 ,𝑀,𝑄) = (5,3,4).
• The task is not necessarily easy: consider the article on ‘star-nosed
moles’ titled “Snouts: A star is born in a very odd way,” which belongs
to Life Science, not Astronomy!

Delta Fourier GSNs w. Diffusion Wavelets 𝑘-HGLET 𝑘-GHWT
𝑘 𝑛 Basis Basis Dict. GP NP Dict. GP LP NP Dict. GP LP NP
0 1133 35.238 35.238 60.952 32.381 87.619 81.905 32.381 88.571 87.619 80.952 32.381 87.619 87.619
1 6890 81.905 81.905 86.667 32.381 86.667 85.714 32.381 89.524 86.667 85.714 32.381 89.524 89.524
2 7243 76.19 76.19 86.667 32.381 88.571 85.714 32.381 88.571 88.571 88.571 32.381 89.524 88.571
3 4179 69.524 69.524 74.286 33.333 86.667 86.667 33.333 86.667 86.667 86.667 33.333 86.667 86.667
4 1740 45.714 45.714 68.571 35.238 81.905 73.333 35.238 81.905 81.905 81.905 33.333 81.905 81.905
5 560 33.333 33.333 39.048 34.286 73.333 60.952 33.333 73.333 73.333 60.952 34.286 73.333 73.333
6 98 32.381 32.381 32.381 34.286 62.857 39.048 35.238 62.857 62.857 62.857 35.238 62.857 60.952

Article category classification accuracy for 10-NN graph of the Science News dataset
for different simplex degrees. GP, LP, NP imply: global, local, no pooling, respectively.
The best performer for each 𝑘 is indicated in bold orange while the bold blue
numbers are the best among all 𝑘’s. 33/46
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Graph/Simplicial Complex Classification

• Can we predict a label or a category of a social or chemical
graph based on a training set of similar graphs with different
configurations (e.g., different number of nodes, edges, etc.)?

• Due to a great variety of graph sizes, we only use the global
pooling version of our MHSNs.

• Use a Support Vector Machine with a radial basis function
kernel for classifying the features that MHSNs generated.

• Focus on the nodes 𝑘 = 0 and the edges 𝑘 = 1.

• For 𝑘 = 0, the input signal of a given graph is its eccentricity and
clustering coefficient of each vertex as used in the Geometric
Scattering of Gao et al.

• For 𝑘 = 1, the input signal of a given graph is the number of
nonzero off-diagonal components of the Hodge Laplacians (≈
“degree” of each edge) and the average vertex degree of the
head and tail nodes of each edge. 35/46



Classification Results

Graph Node Scattering Edge Scattering Combo GS-SVM GCN UGT DGCNN GAT GFN
Collab 70.84 78.34 80.39 79.94 79.0 77.84 73.76 75.8 81.5
DD 60.67 68.72 72.71 - - 80.23 79.37 - 79.37

IMDB-B 72.70 70.6 73.10 71.2 74.0 77.04 70.03 70.5 73.4
IMDB-M 44.40 47.13 49.67 48.73 51.9 53.6 47.83 47.8 51.8
MUTAG 85.78 86.31 85.78 83.50 85.60 80.23 79.37 89.4 85.83
PROTEINS 73.57 73.03 75.35 74.11 76.0 78.53 75.54 74.7 76.46

PTC 62.85 67.71 68.28 63.94 64.20 69.63 58.59 66.7 66.6

Comparison of graph classification accuracy with various methods. The best and the
2nd best performers for each dataset is indicated in blue and orange, respectively.
GS-SVM := Geometric Scattering with SVM [Gao et al. (2019)];
GCN := Graph Convolution Networks [Kipf-Welling (2016)];
UGT := Universal Graph Transformers [Nguyen et al. (2022)];
DGCNN := Dynamic Graph CNN [Wang et al. (2018)];
GAT := Graph Attention Networks [Veličković et al. (2017)];
GFN := Graph Feature Networks [Chen et al. (2019)]

⟹ Our MHSNs achieved quite competitive results with only a
small fraction of the learnable parameters as the next table
indicates! 36/46



Classification Results …

Hodge Scattering + SVM UGT GFN
Graph Accuracy # Param Accuracy # Param Accuracy # Param
Collab 80.39 256 77.84 866,746 81.50 68,754
DD 72.71 256 80.23 76,928 79.37 68,754

IMDB-B 73.10 256 77.04 55,508 73.40 68,754
IMDB-M 49.67 256 53.60 48,698 51.80 68,818
MUTAG 85.78 256 80.23 4,178 85.83 68,818
PROTEINS 75.35 256 78.53 1,878 76.46 68,818

PTC 68.28 256 69.63 12,038 66.60 68,818

Comparison of classification Networks in accuracy and number of parameters

Collab := A scientific collob dataset of 5K graphs [Yanardag-Vishwanathan (2015)]
DD := 1,178 proteins (as graphs) [Dobson-Doig (2003)]
IMDB-B := 1K graphs from IMDB on two genres (Action/Romance)
[Yanardag-Vishwanathan (2015)]
IMDB-M := 1.5K graphs from IMDB on three genres (Comedy/Romance/Sci-Fi)
[Yanardag-Vishwanathan (2015)]
MUTAG := 188 nitroaromatic compounds [Debnath et al. (1991)]
PROTEINS := 1,113 proteins (as graphs) [Borgwardt et al. (2005)]
PTC := 344 chemical compounds (as graphs) [Toivonen et al. (2003)] 37/46
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Learning Molecular Dynamics

• Want to predict potential energy surface of a molecule given
some registrations of the molecule and its energies

• The Revised Molecular Dynamics 17 (rMD17) dataset [Bowman et
al., 2022)] contains 100,000 structures and associated energies
of various molecules based on molecular dynamics simulation

• Used Aspirin (21 atoms = C9H8O4) and Paracetamol (20 atoms =
C8H9NO2) as molecules

• Selected five sets of 1,000 snapshots of the structures/energies
per molecule

• In each of five sets, 800 snapshots are used for training and 200
for test

• Support vector regression (SVR) with Gaussian radial basis
functions is used as a regression method on the computed
MHSN features
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Learning Molecular Dynamics: Results

Diff+SVR HGLET+SVR GHWT+SVR
SchNet PaiNN SO3Net I SO3Net II

Feature Type Node Edge Both Node Edge Both Node Edge Both
Aspirin

MAE 4.856 3.132 3.267 4.884 3.135 3.285 4.928 3.075 3.225 13.5 3.8 3.8 2.6
RMSE 6.181 4.144 4.314 6.215 4.129 4.407 6.213 4.123 4.316 18.3 5.9 5.7 3.8

# Parameters 924 3784 4708 924 3784 4708 924 3784 4708 ∼ 432k ∼ 341k ∼ 283k ∼ 341k
Paracetamol

MAE 4.609 2.715 2.795 4.723 2.643 2.710 4.748 2.624 2.699 8.4 2.1 2.2 1.4
RMSE 5.860 3.418 4.116 5.964 3.338 3.424 5.961 3.299 3.408 11.2 2.9 3.0 1.9

# Parameters 924 3784 4444 924 3784 4444 924 3784 4444 ∼432k ∼ 341k ∼283k ∼341k

Comparison of the performance of our MHSNs and the other
state-of-the-art GNNs for nuclear energy prediction. We report the accuracy
via Mean Absolute Error (MAE) and RMSE (Root Mean Square Error) as well as
the number of trainable parameters in each network
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Summary

• Developed the multiscale higher-order graph signal basis
dictionaries for simplicial complexes: the 𝑘-HGLET dictionary
and the 𝑘-GHWT dictionary for signals sampled on edges, faces,
etc.

• Proposed the multiscale Hodge scattering networks based on
these dictionaries

• Demonstrated their competitiveness in: classification of signals
on 𝑘-simplices (the Science News article categorization);
classification of graphs (of different sizes, different topology,
etc.); and learning potential energy surface of molecules

• These dictionary coefficients and scattering coefficients should
provide explicit interpretation (e.g., scale, frequency, position,
etc.) of their importance for a given task.
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Future Plan

• Develop tools to visualize and interpret important basis vectors for
signals on simplicial complexes including graph embedding methods

• Develop the simplicial complex version of the Natural Graph Wavelet
Packets (Cloninger-Li-Saito, 2021) where bipartitioning is done on the
dual domain where the nodes are the global eigenvectors

• Implement Local Discriminant Basis (LDB), Local Regression Basis
(LRB), etc. [Saito et al. (1995; 1997; 2002; …)], for simplicial signals

• Reduce computational complexity of 𝑂(𝑁3) for the 𝑘-HGLET:
▶ For certain problems, one may not need all the GL eigenvectors, in

particular, those corresponding to the large eigenvalues.
▶ Consider integral operators (e.g., Green’s functions) on graphs, and utilize

the Fast Multipole Method [Saito (2008); Xue (2007)]
• Truly generalize the Local Cosine Transform (LCT) for the graph setting.
H. Li (2021) constructed the node version of the smooth orthogonal
projectors involving orthogonal folding and unfolding operators and
the graph basis dictionaries, but we need proper boundary conditions
at the partition locations.
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Please check our Julia codes on GitHub!!
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl

https://github.com/UCD4IDS/MultiscaleSimplexSignalTransforms.jl

Split⟹ “Organize”⟹ Merge

Thank you very much for your attention!
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