# Multiscale Hodge Scattering Networks for Data Analysis 

Applied Mathematics Seminar
Florida International University
April 19, 2024

Naoki Saito
UC Davis TETRAPODS Institute of Data Science
Department of Mathematics, University of California, Davis

## Outline

Acknowledgment
Motivations
Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for $k$-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
Application II: Graph/Simplicial Complex Classification
Application III: Learning Molecular Dynamics
Summary \& Future Plan
References

## Outline

## Acknowledgment

Motivations<br>Higher-Order Graph Signals and Hodge Laplacians<br>Hierarchical Bipartitioning of Simplicial Complexes<br>Multiscale Overcomplete Dictionaries for $k$-Simplices<br>Scattering Transform on Simplicial Complexes<br>Application I: Simplicial Signal Classification<br>Application II: Graph/Simplicial Complex Classification<br>Application III: Learning Molecular Dynamics

Summary \& Future Plan

References

## Acknowledgment

- NSF Grants: DMS-1418779, DMS-1912747, CCF-1934568, DMS-2012266
- ONR Grants: N00014-16-1-2255, N00014-20-1-2381
- And my collaborators on this project:


Stefan Schonsheck (UCD $\rightarrow$ CA Office of Energy Infra. Safety)


Eugene Shvarts (UCD $\rightarrow$ Teleport, Inc.)

## Outline

[^0]References

## Higher-Order Graph Signals

Recently there has been great interest in analyzing and processing signals measured on higher-order networks.

- Data are sampled over $C_{k}$, oriented $k$-simplices of a graph, $k \in \mathbb{N}$ :
- For $k=0,1,2,3, \ldots$, these signals take values over nodes, edges, triangles, tetrahedra, ..., respectively.
- Examples: regional weather data, molecular chemistry, neuronal networks, social networks, discrete exterior calculus/geometry, ...



## Roadmap So Far

- We have developed the graph versions of the local cosine and wavelet packet dictionaries for analysis of graph signals sampled at nodes.
- All these are based on the hierarchical bipartitioning of either a primary graph $G$ or the so-called dual graph $G^{\star}$. $\Omega:=$ a domain to be hierarchically bipartitioned:

| Classical Basis Dict. | $\Omega$ | $\\|$ | Graph Basis Dict. | $\Omega$ |
| :---: | :---: | :---: | :---: | :---: |
| Hierarchical Block DCT | time axis | HGLET | $G$ |  |
| Local Cosine Transform | time axis | LP-HGLET | $G$ |  |
| Haar-Walsh Wavelet Packets | time/freq. axes | $\\|$ | GHWT/eGHWT | $G$ |
| Compactly-Supported Wavelet Packets | frequency axis | LP-NGWPS | $G^{\star}$ |  |
| Shannon Wavelet Packets | frequency axis | NGWPS | $G^{\star}$ |  |


| HGLET | $:=$ Hierarchical Graph Laplacian Eigen Transform [Irion-Saito (2014)]; |
| ---: | :--- |
| GHWT | $:=$ Generalized Haar-Walsh Transform [Irion-Saito (2014)]; |
| eGHWT | $:=$ extended GHWT [Saito-Shao (2022)]; |
| NGWPS | $:=$ Natural Graph Wavelet Packets [Cloninger-Li-Saito (2021)]; |
| LP-HGLET/NGWPS | $:=$ Lapped-HGLET/NGWPs [Li (2021)] |

Underlying Philosophy/Basso Continuo:
Split $\Longrightarrow$ "Organize" $\Longrightarrow$ Merge

## Outline

[^1]
## Representing Higher-Order Graphs

- A simplicial complex, $C$, represents a combinatorial description of a topological space that can be represented and handled by a computer.
- The $k$-simplices $C_{k} \subset C$ are typically captured by boundary matrices $B_{k-1}, B_{k}$ expressing adjacency and relative orientation of each $k$-simplex $\sigma$ with each $(k-1)$-simplex $\alpha$ or $(k+1)$-simplex $\beta$ respectively.
- The orientations may be given by the nature of the data, or need to be specified by the user.
$\left[B_{k-1}\right]_{\alpha \sigma}= \begin{cases}1 & \alpha, \sigma \text { have consistent orientation } \\ -1 & \alpha, \sigma \text { have inconsistent orientation }\left[B_{k}\right]_{\sigma \beta}=\left\{\begin{array}{ll}1 & \sigma, \beta \text { have consistent orientation } \\ 0 & \text { otherwise }\end{array}= \begin{cases}-1 & \sigma, \beta \text { have inconsistent orientation } \\ 0 & \text { otherwise }\end{cases} \right.\end{cases}$



## Hodge Laplacian

- The Hodge Laplacian (aka k-Laplacian) [see, e.g., L.-H. Lim: SIAM Review (2020); M. T. Schaub et al.: Signal Process. (2021)] provides a spectral decomposition for a signal measured on $k$-simplices in a given simplicial complex.
- Since the $k$-Laplacian has both "upper" and "lower" parts, we need a new notion of neighbors: two $k$-simplices are adjacent if they either:
- have a ( $k-1$ )-simplex in common as a face; or
- are both faces of some $(k+1)$-simplex in the complex.

Hodge Laplacian via Boundary Matrices

$$
L_{k}:=B_{k-1}^{\top} B_{k-1}+B_{k} B_{k}^{\top} ; \quad D_{k}:=\operatorname{diag}\left(L_{k}\right)
$$

## 2-Simplicial Path

$$
\begin{aligned}
& B_{0}=\left[\begin{array}{cccccccc}
-1 & -1 & 0 & 0 & & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & \ldots & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & & 0 & 0 & 0 \\
\vdots & & & & \ddots & & & \vdots \\
0 & 0 & 0 & 0 & & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & & 0 & 1 & 1
\end{array}\right] \quad L_{0}=B_{0} B_{0}^{\top}=\left[\begin{array}{cccccccc}
2 & -1 & -1 & 0 & & 0 & 0 & 0 \\
-1 & 3 & -1 & -1 & \ldots & 0 & 0 & 0 \\
-1 & -1 & 4 & -1 & & 0 & 0 & 0 \\
0 & -1 & -1 & 4 & & 0 & 0 & 0 \\
\vdots & & & & \ddots & & & \vdots \\
0 & 0 & 0 & 0 & & 4 & -1 & -1 \\
0 & 0 & 0 & 0 & \ldots & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & & -1 & -1 & 2
\end{array}\right] \\
& B_{1}=\left[\begin{array}{cccccc}
-1 & 0 & 0 & & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
-1 & -1 & 0 & & 0 & 0 \\
0 & 1 & 0 & & 0 & 0 \\
0 & -1 & 0 & & 0 & 0 \\
\vdots & & & \ddots & & \vdots \\
0 & 0 & 0 & & 0 & -1 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & & 0 & -1
\end{array}\right] \\
& B_{2}=O \\
& \begin{aligned}
L_{1} & =B_{0}^{\top} B_{0}+B_{1} B_{1}^{\top}=\left[\begin{array}{ccccccc}
3 & 0 & 0 & -1 & & 0 & 0 \\
0 & 3 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 4 & 0 & & 0 & 0 \\
-1 & 0 & 0 & 3 & & 0 & 0 \\
\vdots & & & & \ddots & & \vdots \\
0 & 0 & 0 & 0 & \ldots & 3 & 0 \\
0 & 0 & 0 & 0 & & 0 & 3
\end{array}\right] \\
L_{2} & =B_{1}^{\top} B_{1}=\left[\begin{array}{ccccc}
3 & 1 & 0 & \ldots & 0 \\
1 & 3 & 1 & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & 3 & 1 \\
0 & \ldots & 0 & 1 & 3
\end{array}\right] \text { symmetric tridiagonal Toeplitz! }
\end{aligned}
\end{aligned}
$$

## Hodge-Laplacian Eigenvectors


(a) $k=0$

山wwwwwwwhwwow
 $\Delta \omega W W W W W W W W W W W$ $\Delta \square W W W \omega / \mathbf{N}$ Whanowownowown


山wnwwwownowownow
 $\Delta \omega W W \omega W W W W W W W W$ $\Delta w w w h w w h w o w n d$




(c) $k=2$ (DST-I)

## Weighted and Normalized Hodge Laplacian

Weighted Graph Laplacian

$$
L_{0}=B_{0} D_{1} B_{0}^{\top}
$$

Random-Walk Normalization

$$
L_{0}^{\mathrm{rw}}=D_{0}^{-1} L_{0}
$$

Symmetric Normalization

$$
L_{0}^{\text {sym }}=D_{0}^{-1 / 2} L_{0} D_{0}^{-1 / 2}
$$

Weighted Hodge Laplacian

$$
L_{k}=\left(B_{k-1} D_{k}\right)^{\top} D_{k-1}^{-1}\left(B_{k-1} D_{k}\right)+B_{k} D_{k+1} B_{k}^{\top}
$$

Random-Walk Normalization

$$
L_{k}^{\mathrm{rw}}=D_{k}^{-1} L_{k}
$$

Symmetric Normalization

$$
L_{k}^{\text {sym }}=D_{k}^{-1 / 2} L_{k} D_{k}^{-1 / 2}
$$

## Outline

[^2]
## Bipartitioning Simplicial Complexes

- The graph Laplacian $L_{0}^{\mathrm{rw}}$ admits a Fiedler vector (i.e., the eigenvector $\boldsymbol{\phi}_{1}$ corresponding to the second smallest eigenvalue $\lambda_{1}$ ), whose sign provides a bipartition of nodes ( 0 -simplices) minimizing a relaxed version of Normalized Cut.
- The Hodge Laplacian $L_{k}^{\text {rw }}$ also admits a Fiedler vector whose sign provides a bipartition of $\boldsymbol{k}$-simplices minimizing a relaxed version of a cut objective function related to the Normalized Cut.
- Unlike $L_{0}^{\mathrm{rw}}$, however, the components of $\boldsymbol{\phi}_{0}$ of $L_{k}^{\mathrm{rw}}, k \geq 1$, may change their signs in general; hence $\phi_{1} \odot \operatorname{sign}\left(\phi_{0}\right)$ provides the Fiedler vector.
- Be careful about the multiplicity of 0 eigenvalues (aka the Betti number $=\#$ of " $\boldsymbol{k}$-dimensional holes")! $\Longrightarrow$ the Fiedler vector should be $\phi_{\beta_{k}+1} \odot \operatorname{sign}\left(\phi_{\beta_{k}}\right)$.
- Any other good bipartition method for simplicial complexes can be used for building our multiscale basis dictionaries.


## Hierarchical Bipartitioning



A synthetic simplicial complex with $k=2$. Successively bipartitioning the subcomplexes induced by prior partitions leads to finer, nicely localized domains, illustrated by piecewise-constant functions on the triangles. Proceeding left-to-right, each complex has been bipartitioned to one finer level.

## Outline

[^3]
## Hierarchical Graph Laplacian Eigen Transform (HGLET)

can be viewed as a generalization of the Hierarchical Block
DCT dictionary and be generated as follows [Irion-S. (2014)]:

1. Partition the graph into two subgraphs
2. Compute the graph Laplacian of each subgraph
3. Form an ONB for each subgraph via the eigensystem
4. Continue the above steps recursively until each subgraph becomes a single node

- The HGLET dictionary, i.e., resulting set of $\approx n\left(1+\log _{2} n\right)$ basis vectors, contains more than $O\left(1.5^{n}\right)$ ONBs $\Rightarrow$ the best basis and its relatives can be selected!
- The HGLET can be further generalized for $k$-simplices using the eigenvectors of the Hodge Laplacians via bipartitions, which we call $k$-HGLET
[S.-Schonsheck-Shvarts (2024)].


## The 2-HGLET Dictionary on the Triangle Complex

| $\nabla \nabla \nabla$ |
| :--- |
| $\nabla \nabla \nabla$ |
| $\nabla \nabla \nabla$ |
| $\nabla \nabla \nabla$ |
| $\nabla \nabla \nabla$ |
| $\nabla \nabla \nabla$ |

Each row represents one level of the bipartition

## Generalized Haar-Walsh Transform (GHWT)

is a generalization of the classical Haar-Walsh wavelet packet dictionary for the graph setting [Irion-S. (2014)]:

1. Recursively bipartition the graph via any method until each subgraph becomes a single node
2. Construct an ONB at the bottom/finest level using the standard basis of $\mathbb{R}^{n}$, which are scaling vectors at that level
3. Generate an ONB for the immediate upper level by the sum and difference operators, which become the scaling and the Haar vectors, respectively
4. Repeat this process until it reaches the top/coarsest level, which generates the scaling, Haar, and Walsh vectors at each level

- The GHWT dictionary, i.e., the resulting set of $\approx n\left(1+\log _{2} n\right)$ basis vectors, contains more than $O\left(1.5^{n}\right)$ ONBs $\Longrightarrow$ the best basis and its relatives can be selected!
- The GHWT can be further generalized for $\boldsymbol{k}$-simplices via recursive bipartitions, which we call k-GHWT [S.-Schonsheck-Shvarts (2024)].

The Coarse-to-Fine GHWT Dictionary on the Triangle Complex


Each row represents one level of the bipartition; Color represents the sign info

The Fine-to-Coarse GHWT Dictionary on the Triangle Complex

|  |  |  |  |  | V 7 \% 7 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

Color represents the sign info; the red boxes correspond to the 2-Haar Basis

## Approximation of the Coauthorship Complex



From Ebli et al. 2022

- The Coauthorship Complex (CC) [Patania et al. (2017); Elbi et al. (2022)] can be created by linking papers, authors, and coauthors from the Semantic Scholar Open Research Corpus.
- Each node represents an author, whose value is the total citation number of publications of that author.
- Each $k$-simplex represents the coauthorship among $(k+1)$ authors, whose value is the total citation number of the publications coauthored by these $(k+1)$ coauthors.

| $k$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# of elements | 352 | 1474 | 3285 | 5019 | 5559 | 4547 |

The size of $k$-simplices in the CC for $k=0,1, \ldots, 5$

## Approximation of Coauthorship Complexes: $k=0,1$




The behavior of these plots may be explained by the following

## Theorem (Sharon-Shkolnisky (2015))

For a fixed orthonormal basis $\left\{\boldsymbol{\phi}_{l}\right\}_{l=0}^{n-1}$ and a parameter $\mathbf{0}<\boldsymbol{\tau}<2$,

$$
\left\|f-P_{m} f\right\|_{2} \leq \frac{|f|_{\tau}}{m^{\alpha}}, \quad \text { where }|f|_{\tau}:=\left(\sum_{l=0}^{n-1}\left|\left\langle f, \phi_{l}\right\rangle\right|^{\tau}\right)^{1 / \tau} \text { and } \alpha=\frac{1}{\tau}-\frac{1}{2} \text {. }
$$

## Approximation of Coauthorship Complexes: $k=2: 5$



$$
k=2
$$



$$
k=4
$$

Approximation $\kappa=3$


$k=5$

## Outline

[^4]
## Building Scattering Networks on $k$-Simplices

- Want to generalize the scattering transform of Mallat to the simplicial complex setting because we want to extract robust features from data recorded on simplicial complexes.
- Gao, Wolf, and Hirn (2021) proposed the Geometric Scattering for graphs ( 0 -simplices) using the diffusion wavelets of Coifman and Maggioni (2006).
- We propose to use our $k$-HGLET and $k$-GHWT dictionaries to build such scattering transforms/networks.
- Let the $k$-HGLET or $k$-GHWT dictionary vectors be arranged as $\Phi^{J}:=\left\{\Phi^{j}\right\}_{j=0}^{J}$ where each $\Phi^{j}$ is an ONB at scale (or level) $j$ with $j=0$ being the finest scale basis, composed of delta functions.
- In general, we have $j_{\max } \approx 1+\log _{2} n$ different levels but in practice, the features extracted by large $j$ values are not very descriptive, so we typically use the first $J\left(<j_{\max }\right)$ levels.


## Building Scattering Networks on $k$-Simplices ...

- Let $\boldsymbol{f} \in \mathbb{R}^{n}$ be a signal defined on $C_{k}$.
- We propose to compute the qth moment of the 0th and 1st scattering coefficients:

$$
\begin{equation*}
S^{0}(q):=\sum_{i=1}^{n} f[i]^{q}, S^{1}(q, j):=\sum_{i=1}^{n}\left|\Phi^{j} f[i]\right|^{q}, 0 \leq j \leq J ; 1 \leq q \leq Q \tag{1}
\end{equation*}
$$

and the 2nd-order scattering coefficients:

$$
\begin{equation*}
S^{2}\left(q, j, j^{\prime}\right):=\sum_{i=1}^{n}\left|\Phi^{j^{\prime}}\right| \Phi^{j} \boldsymbol{f}|[i]|^{q}, j=0 \leq j<j^{\prime} \leq J, 1 \leq q \leq Q . \tag{2}
\end{equation*}
$$

- And higher-order scattering coefficients can be computed similarly:

$$
\begin{equation*}
S^{m}\left(q, j^{(1)}, \ldots, j^{(m)}\right):=\sum_{i=1}^{n}\left|\Phi^{j^{(m)}}\right| \Phi^{j^{(m-1)}}|\cdots| \Phi^{j^{(1)}} \boldsymbol{f}|\cdots \|[i]|^{q} \tag{3}
\end{equation*}
$$

where $j=0 \leq j^{(1)}<\cdots<j^{(m)} \leq J$.

- However, to reduce the computational cost, we typically use $m \leq 3$.


## Building Scattering Networks on $k$-Simplices ...

- Gathering all of the moments $\leq Q$ and of orders $\leq M$ leads to a total of $Q \sum_{m=0}^{M}\binom{J+1}{m}$ features for a given signal; e.g. for $(J, M, Q)=(5,3,4)$, it's just 178 features/signal.
- The summations from $i=1$ to $i=n$ in (1)-(3) can be viewed as global pooling operations.
- In situations where node permutation invariance is not required, we can omit the these sums, which is no pooling. As a result, we are left with $n Q \sum_{m=0}^{M}\binom{J+1}{m}$ features for each signal.
- Finally, we sum the coefficients over each partition (i.e., region) at level $j$ and keep those local sums as feature vectors instead of not summing at all or summing all the regions of level $j$ in (1)-(3), which can be viewed as local pooling operations.
- We call our scattering networks as Multiscale Hodge Scattering Networks (MHSNs).


## Outline

[^5]
## Classification of Science News Articles

- Apply our MHSNs to article category classification using the Science News database.
- After some preprocessing, the Science News dataset contains 1042 scientific news articles classified into eight fields:
Anthropology; Astronomy; Behavioral Sciences; Earth Sciences; Life Sciences; Math/CS; Medicine; Physics.
- Each article is tagged with keywords from a pool of 1133 words. In this database, each article contains $2 \sim 5$ keywords (with/without counting their frequency of occurrence).
- We determine a simplicial complex from these keywords by 1) computing their word2vec embeddings based on Google's publicly available pre-trained model; and 2) generate a symmetric $K$-nearest neighbor graph of the embedded words and then generate $k$-simplices of the graph.
- A $k$-simplex corresponds to a combination of $(k+1)$ words.


## Generation of Simplicial Signals on $C_{k}$

Next, we define representations of each article as a signal on each $C_{k}$ as follows.

- First, for $k=0$ (i.e., a node-valued signal), we define the signal $\boldsymbol{f}_{0}$ to be one on the nodes representing their keywords and zero elsewhere.
- For $k \geq 1$ we define the signal $\boldsymbol{f}_{k}$ to be the simplex-wise average of the $\boldsymbol{f}_{0}$ signal.

$$
f_{0}[i]=\left\{\begin{array}{ll}
1 & \text { if keyword } i \text { occurs }  \tag{4}\\
0 & \text { Otherwise }
\end{array} ; f_{k}[i]=\frac{1}{k+1} \sum_{\substack{l \in V\left(\sigma_{i}\right) \\
\sigma_{i} \in C_{k}}} f_{0}[l],\right.
$$

where $V\left(\sigma_{i}\right)$ represents the set of nodes forming the $i$ th simplex $\sigma_{i} \in C_{k}$.

## Classification Results

- For each $k$, we did 10-fold cross validation: randomly split these 1042 signals into 10 groups; each group was used as a test set while the other 9 groups were used as a training set; and repeated this 10 times.
- Used $\ell^{2}$-regularized logistic regression provided by scikit-learn
- The parameters in the MHSNs were set as $(J, M, Q)=(5,3,4)$.
- The task is not necessarily easy: consider the article on 'star-nosed moles' titled "Snouts: A star is born in a very odd way," which belongs to Life Science, not Astronomy!

|  |  | Delta | Fourier | GSNs w. Diffusion Wavelets |  |  |  |  |  |  |  | $k$-HGLET |  |  |  |  | $k$-GHWT |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{k}$ | $\boldsymbol{n}$ | Basis | Basis | Dict. | GP | NP | Dict. | GP | LP | NP | Dict. | GP | LP | NP |  |  |  |  |  |  |
| 0 | 1133 | 35.238 | 35.238 | 60.952 | 32.381 | 87.619 | 81.905 | 32.381 | 88.571 | 87.619 | 80.952 | 32.381 | 87.619 | 87.619 |  |  |  |  |  |  |
| 1 | 6890 | 81.905 | 81.905 | 86.667 | 32.381 | 86.667 | 85.714 | 32.381 | 89.524 | 86.667 | 85.714 | 32.381 | 89.524 | 89.524 |  |  |  |  |  |  |
| 2 | 7243 | 76.19 | 76.19 | 86.667 | 32.381 | 88.571 | 85.714 | 32.381 | 88.571 | 88.571 | 88.571 | 32.381 | 89.524 | 88.571 |  |  |  |  |  |  |
| 3 | 4179 | 69.524 | 69.524 | 74.286 | 33.333 | 86.667 | 86.667 | 33.333 | 86.667 | 86.667 | 86.667 | 33.333 | 86.667 | 86.667 |  |  |  |  |  |  |
| 4 | 1740 | 45.714 | 45.714 | 68.571 | 35.238 | 81.905 | 73.333 | 35.238 | 81.905 | 81.905 | 81.905 | 33.333 | 81.905 | 81.905 |  |  |  |  |  |  |
| 5 | 560 | 33.333 | 33.333 | 39.048 | 34.286 | 73.333 | 60.952 | 33.333 | 73.333 | 73.333 | 60.952 | 34.286 | 73.333 | 73.333 |  |  |  |  |  |  |
| 6 | 98 | 32.381 | 32.381 | 32.381 | 34.286 | 62.857 | 39.048 | 35.238 | 62.857 | 62.857 | 62.857 | 35.238 | 62.857 | 60.952 |  |  |  |  |  |  |

Article category classification accuracy for $10-\mathrm{NN}$ graph of the Science News dataset for different simplex degrees. GP, LP, NP imply: global, local, no pooling, respectively. The best performer for each $k$ is indicated in bold orange while the bold blue numbers are the best among all $k$ 's.

## Outline

```
Acknowledgment
Motivations
Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for k-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
```

Application II: Graph/Simplicial Complex Classification

Application III: Learning Molecular Dynamics

Summary \& Future Plan

## References

## Graph/Simplicial Complex Classification

- Can we predict a label or a category of a social or chemical graph based on a training set of similar graphs with different configurations (e.g., different number of nodes, edges, etc.)?
- Due to a great variety of graph sizes, we only use the global pooling version of our MHSNs.
- Use a Support Vector Machine with a radial basis function kernel for classifying the features that MHSNs generated.
- Focus on the nodes $k=0$ and the edges $k=1$.
- For $k=0$, the input signal of a given graph is its eccentricity and clustering coefficient of each vertex as used in the Geometric Scattering of Gao et al.
- For $k=1$, the input signal of a given graph is the number of nonzero off-diagonal components of the Hodge Laplacians ( $\approx$ "degree" of each edge) and the average vertex degree of the head and tail nodes of each edge.


## Classification Results

| Graph | Node Scattering | Edge Scattering | Combo | GS-SVM | GCN | UGT | DGCNN | GAT | GFN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Collab | 70.84 | 78.34 | 80.39 | 79.94 | 79.0 | 77.84 | 73.76 | 75.8 | 81.5 |
| DD | 60.67 | 68.72 | 72.71 | - | - | 80.23 | 79.37 | - | 79.37 |
| IMDB-B | 72.70 | 70.6 | 73.10 | 71.2 | 74.0 | 77.04 | 70.03 | 70.5 | 73.4 |
| IMDB-M | 44.40 | 47.13 | 49.67 | 48.73 | 51.9 | 53.6 | 47.83 | 47.8 | 51.8 |
| MUTAG | 85.78 | 86.31 | 85.78 | 83.50 | 85.60 | 80.23 | 79.37 | 89.4 | 85.83 |
| PROTEINS | 73.57 | 73.03 | 75.35 | 74.11 | 76.0 | 78.53 | 75.54 | 74.7 | 76.46 |
| PTC | 62.85 | 67.71 | 68.28 | 63.94 | 64.20 | 69.63 | 58.59 | 66.7 | 66.6 |

Comparison of graph classification accuracy with various methods. The best and the 2nd best performers for each dataset is indicated in blue and orange, respectively.
GS-SVM := Geometric Scattering with SVM [Gao et al. (2019)];
GCN := Graph Convolution Networks [Kipf-Welling (2016)];
UGT := Universal Graph Transformers [Nguyen et al. (2022)];
DGCNN := Dynamic Graph CNN [Wang et al. (2018)];
GAT := Graph Attention Networks [Veličković et al. (2017)];
GFN := Graph Feature Networks [Chen et al. (2019)]
$\Rightarrow$ Our MHSNs achieved quite competitive results with only a small fraction of the learnable parameters as the next table indicates!

## Classification Results ...

|  | Hodge Scattering + SVM |  | UGT |  | GFN |  |
| :---: | :---: | :---: | :---: | ---: | :---: | :---: |
| Graph | Accuracy | \# Param | Accuracy | \# Param | Accuracy | \# Param |
| Collab | 80.39 | 256 | 77.84 | 866,746 | 81.50 | 68,754 |
| DD | 72.71 | 256 | 80.23 | 76,928 | 79.37 | 68,754 |
| IMDB-B | 73.10 | 256 | 77.04 | 55,508 | 73.40 | 68,754 |
| IMDB-M | 49.67 | 256 | 53.60 | 48,698 | 51.80 | 68,818 |
| MUTAG | 85.78 | 256 | 80.23 | 4,178 | 85.83 | 68,818 |
| PROTEINS | 75.35 | 256 | 78.53 | 1,878 | 76.46 | 68,818 |
| PTC | 68.28 | 256 | 69.63 | 12,038 | 66.60 | 68,818 |

Comparison of classification Networks in accuracy and number of parameters
Collab := A scientific collob dataset of 5K graphs [Yanardag-Vishwanathan (2015)] DD := 1,178 proteins (as graphs) [Dobson-Doig (2003)] IMDB-B := 1 K graphs from IMDB on two genres (Action/Romance) [Yanardag-Vishwanathan (2015)] IMDB-M := 1.5K graphs from IMDB on three genres (Comedy/Romance/Sci-Fi)
[Yanardag-Vishwanathan (2015)] MUTAG := 188 nitroaromatic compounds [Debnath et al. (1991)] PROTEINS := 1,113 proteins (as graphs) [Borgwardt et al. (2005)] PTC := 344 chemical compounds (as graphs) [Toivonen et al. (2003)]

## Outline

```
Acknowledgment
Motivations
Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for k-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
Application II: Graph/Simplicial Complex Classification
```

Application III: Learning Molecular Dynamics

Summary \& Future Plan

References

## Learning Molecular Dynamics

- Want to predict potential energy surface of a molecule given some registrations of the molecule and its energies
- The Revised Molecular Dynamics 17 (rMD17) dataset [Bowman et al., 2022)] contains 100,000 structures and associated energies of various molecules based on molecular dynamics simulation
- Used Aspirin (21 atoms $=\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ ) and Paracetamol (20 atoms = $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$ ) as molecules
- Selected five sets of 1,000 snapshots of the structures/energies per molecule
- In each of five sets, 800 snapshots are used for training and 200 for test
- Support vector regression (SVR) with Gaussian radial basis functions is used as a regression method on the computed MHSN features


## Learning Molecular Dynamics: Results

|  | Diff+SVR |  |  | HGLET+SVR |  |  | GHWT+SVR |  |  | SchNet | PainN | SO3Net I | SO3Net II |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feature Type | Node | Edge | Both | Node | Edge | Both | Node | Edge | Both |  |  |  |  |
| Aspirin |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAE | 4.856 | 3.132 | 3.267 | 4.884 | 3.135 | 3.285 | 4.928 | 3.075 | 3.225 | 13.5 | 3.8 | 3.8 | 2.6 |
| RMSE | 6.181 | 4.144 | 4.314 | 6.215 | 4.129 | 4.407 | 6.213 | 4.123 | 4.316 | 18.3 | 5.9 | 5.7 | 3.8 |
| \# Parameters | 924 | 3784 | 4708 | 924 | 3784 | 4708 | 924 | 3784 | 4708 | $\sim 432 \mathrm{k}$ | ~ 341 k | ~ 283k | ~ 341 k |
| Paracetamol |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MAE | 4.609 | 2.715 | 2.795 | 4.723 | 2.643 | 2.710 | 4.748 | 2.624 | 2.699 | 8.4 | 2.1 | 2.2 | 1.4 |
| RMSE | 5.860 | 3.418 | 4.116 | 5.964 | 3.338 | 3.424 | 5.961 | 3.299 | 3.408 | 11.2 | 2.9 | 3.0 | 1.9 |
| \# Parameters | 924 | 3784 | 4444 | 924 | 3784 | 4444 | 924 | 3784 | 4444 | ~432k | $\sim 341 \mathrm{k}$ | $\sim 283 \mathrm{k}$ | ~341k |

Comparison of the performance of our MHSNs and the other state-of-the-art GNNs for nuclear energy prediction. We report the accuracy via Mean Absolute Error (MAE) and RMSE (Root Mean Square Error) as well as the number of trainable parameters in each network

## Outline

```
Acknowledgment
Motivations
Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for k-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
Application II: Graph/Simplicial Complex Classification
Application III: Learning Molecular Dynamics
```

Summary \& Future Plan

References

## Summary

- Developed the multiscale higher-order graph signal basis dictionaries for simplicial complexes: the $k$-HGLET dictionary and the $k$-GHWT dictionary for signals sampled on edges, faces, etc.
- Proposed the multiscale Hodge scattering networks based on these dictionaries
- Demonstrated their competitiveness in: classification of signals on $k$-simplices (the Science News article categorization); classification of graphs (of different sizes, different topology, etc.); and learning potential energy surface of molecules
- These dictionary coefficients and scattering coefficients should provide explicit interpretation (e.g., scale, frequency, position, etc.) of their importance for a given task.


## Future Plan

- Develop tools to visualize and interpret important basis vectors for signals on simplicial complexes including graph embedding methods
- Develop the simplicial complex version of the Natural Graph Wavelet Packets (Cloninger-Li-Saito, 2021) where bipartitioning is done on the dual domain where the nodes are the global eigenvectors
- Implement Local Discriminant Basis (LDB), Local Regression Basis (LRB), etc. [Saito et al. (1995; 1997; 2002; ...)], for simplicial signals
- Reduce computational complexity of $O\left(N^{3}\right)$ for the $\boldsymbol{k}$-HGLET:
- For certain problems, one may not need all the GL eigenvectors, in particular, those corresponding to the large eigenvalues.
- Consider integral operators (e.g., Green's functions) on graphs, and utilize the Fast Multipole Method [Saito (2008); Xue (2007)]
- Truly generalize the Local Cosine Transform (LCT) for the graph setting. H. Li (2021) constructed the node version of the smooth orthogonal projectors involving orthogonal folding and unfolding operators and the graph basis dictionaries, but we need proper boundary conditions at the partition locations.


## Outline

```
Acknowledgment
Motivations
Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for k-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
Application II: Graph/Simplicial Complex Classification
Application III: Learning Molecular Dynamics
Summary & Future Plan
```

References

## References

The following articles (and the other related ones) are available at https://www.math.ucdavis.edu/~saito/publications/

- J. Irion \& N. Saito: "Hierarchical graph Laplacian eigen transforms," JSIAM Letters, vol. 6, pp. 21-24, 2014.
- J. Irion \& N. Saito: "The generalized Haar-Walsh transform," in Proc. 2014 IEEE Workshop on Statistical Signal Processing, pp. 472-475, 2014.
- J. Irion \& N. Saito: "Applied and computational harmonic analysis on graphs and networks," in Wavelets and Sparsity XVI, Proc. SPIE 9597, \#95971F, 2015.
- J. Irion \& N. Saito: "Efficient approximation and denoising of graph signals using the multiscale basis dictionaries,", IEEE Trans. Signal Inform. Process. Netw., vol. 3, no. 3, pp. 607-616, 2017.
- A. Cloninger, H. Li, \& N. Saito: "Natural graph wavelet packet dictionaries," J. Fourier Anal. Appl., vol. 27, Article \#41, 2021.
- N. Saito \& Y. Shao: "eGHWT: The extended Generalized Haar-Walsh Transform," J. Math. Imaging, Vis., vol. 64, no. 3, pp. 261-283, 2022.
- N. Saito, S. Schonsheck, \& E. Shvarts: "Multiscale transforms for signals on simplicial complexes," Sampling Theory, Signal Processing, and Data Analysis, vol. 22, no. 1, Article \#2, 2024.
- N. Saito, S. Schonsheck, \& E. Shvarts: "Multiscale Hodge scattering networks for data analysis," arXiv:2311.10270 [cs.LG], 2024.

Please check our Julia codes on GitHub!! https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl https://github.com/UCD4IDS/MultiscaleSimplexSignalTransforms.jl

$$
\text { Split } \Longrightarrow \text { "Organize" } \Longrightarrow \text { Merge }
$$

Thank you very much for your attention!


[^0]:    Acknowledgment

    Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

[^1]:    Acknowledgment

    ## Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

    ## References

[^2]:    Acknowledgment

    ## Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

    ## References

[^3]:    Acknowledgment

    Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

    ## References

[^4]:    Acknowledgment

    Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

    References

[^5]:    Acknowledgment

    Motivations

    Higher-Order Graph Signals and Hodge Laplacians

    Hierarchical Bipartitioning of Simplicial Complexes

    Multiscale Overcomplete Dictionaries for $k$-Simplices

    Scattering Transform on Simplicial Complexes

    Application I: Simplicial Signal Classification

    Application II: Graph/Simplicial Complex Classification

    Application III: Learning Molecular Dynamics

    Summary \& Future Plan

    References

