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Higher-Order Graph Signals

Recently there has been great interest in analyzing and processing signals
measured on higher-order networks.

- Data are sampled over C,, oriented k-simplices of a graph, k € N:

- Fork=0,1,2,3,..., these signals take values over nodes, edges,
triangles, tetrahedra, ..., respectively.

- Examples: regional weather data, molecular chemistry, neuronal
networks, social networks, discrete exterior calculus/geometry, ...
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7 Gene expression
Flows around Madagascar correlations [Govek et Coauthorship graph [Ebli
[Schaub et al. (2020)] al. (2019)] et al. (2022)]
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Roadmap So Far

- We have developed the graph versions of the local cosine and wavelet packet

dictionaries for analysis of graph signals sampled at nodes.
- All these are based on the hierarchical bipartitioning of either a primary graph
G or the so-called dual graph G*. Q:= a domain to be hierarchically

bipartitioned:

Classical Basis Dict. Q H Graph Basis Dict.  Q
Hierarchical Block DCT time axis HGLET G
Local Cosine Transform time axis LP-HGLET G

Haar-Walsh Wavelet Packets time/freq. axes H GHWT/eGHWT G

Shannon Wavelet Packets

NGWPs G*

Compactly-Supported Wavelet Packets  frequency axis H LP-NGWPs G*

frequency axis

HGLET =

GHWT =

eGHWT =

NGWPs =
LP-HGLET/NGWPs =

Hierarchical Graph Laplacian Eigen Transform [Irion-Saito (2014)];
Generalized Haar-Walsh Transform [Irion-Saito (2014)];

extended GHWT [Saito-Shao (2022)];

Natural Graph Wavelet Packets [Cloninger-Li-Saito (2021)];
Lapped-HGLET/NGWPs [Li (2021)]

Underlying Philosophy/Basso Continuo:
Split = “Organize” = Merge
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Representing Higher-Order Graphs

- Asimplicial complex, C, represents a combinatorial
description of a topological space that can be represented
and handled by a computer.

- The k-simplices C, < C are typically captured by boundary
matrices By_y, By expressing adjacency and relative
orientation of each k-simplex o with each (k —1)-simplex
a or (k+1)-simplex B respectively.

- The orientations may be given by the nature of the data,
or need to be specified by the user.

1  a,0 have consistent orientation 1 o,B have consistent orientation
[Bi-1las = -1 a,0 have inconsistent orientation [Bilss =1 -1 o, have inconsistent orientation
0  otherwise 0  otherwise

T

- AV AV
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Hodge Laplacian

- The Hodge Laplacian (aka k-Laplacian) [see, e.g., L.-H. Lim:
SIAM Review (2020); M. T. Schaub et al.: Signal Process.
(2021)] provides a spectral decomposition for a signal
measured on k-simplices in a given simplicial complex.

- Since the k-Laplacian has both “upper” and “lower” parts,
we need a new notion of neighbors: two k-simplices are
adjacent if they either:

» have a (k—1)-simplex in common as a face; or
P are both faces of some (k +1)-simplex in the complex.

Hodge Laplacian via Boundary Matrices
Lk::B]Tc—lBk—l +BkB]Tc; Dk::diag(l,k)
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2-Simplicial Path
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Hodge-Laplacian Eigenvectors
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Weighted and Normalized Hodge Laplacian

Weighted Graph Laplacian Weighted Hodge Laplacian
Ly = ByD, B, Ly = (Bx_1Dy)'DiL| (By_1 D) +Bi Dy By
Random-Walk Normalization Random-Walk Normalization
I = 0 Ly LT = IDf Iy
Symmetric Normalization Symmetric Normalization
L;ym _ D0—1/2L0D0—1/2 Llscym _ D};l/szDlzl/z
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Bipartitioning Simplicial Complexes

- The graph Laplacian Lg" admits a Fiedler vector (i.e, the eigenvector ¢,
corresponding to the second smallest eigenvalue A,), whose sign
provides a bipartition of nodes (0-simplices) minimizing a relaxed
version of Normalized Cut.

- The Hodge Laplacian L* also admits a Fiedler vector whose sign
provides a bipartition of k-simplices minimizing a relaxed version of a
cut objective function related to the Normalized Cut.

- Unlike Lg”, however, the components of ¢, of L}", k = 1, may change
their signs in general; hence ¢, ©sign(¢,) provides the Fiedler vector.

- Be careful about the multiplicity of 0 eigenvalues (aka the Bett
number = # of “k-dimensional holes”) ! = the Fiedler vector should
be ¢y, ., ©sign(¢y, ).

- Any other good bipartition method for simplicial complexes can be
used for building our multiscale basis dictionaries.
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Hierarchical Bipartitioning

YVVVVV

A synthetic simplicial complex with k = 2. Successively bipartitioning
the subcomplexes induced by prior partitions leads to finer, nicely
localized domains, illustrated by piecewise-constant functions on
the triangles. Proceeding left-to-right, each complex has been
bipartitioned to one finer level.
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

can be viewed as a generalization of the Hierarchical Block
DCT dictionary and be generated as follows [Irion-S. (2014)]:

1. Partition the graph into two subgraphs

2. Compute the graph Laplacian of each subgraph

3. Form an ONB for each subgraph via the eigensystem

4. Continue the above steps recursively until each subgraph
becomes a single node

- The HGLET dictionary, i.e,, resulting set of = n(1 +1log, n)
basis vectors, contains more than O(1.5") ONBs = the
best basis and its relatives can be selected!
- The HGLET can be further generalized for k-simplices
using the eigenvectors of the Hodge Laplacians via
bipartitions, which we call k-HGLET
[S.-Schonsheck-Shvarts (2024)]. 18/46



The 2-HGLET Dictionary on the Triangle Complex
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Each row represents one level of the bipartition
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Generalized Haar-Walsh Transform (GHWT)

is a generalization of the classical Haar-Walsh wavelet packet dictionary for
the graph setting [Irion-S. (2014)]:

1.

Recursively bipartition the graph via any method until each subgraph
becomes a single node

Construct an ONB at the bottom/finest level using the standard basis
of R”, which are scaling vectors at that level

Generate an ONB for the immediate upper level by the sum and
difference operators, which become the scaling and the Haar vectors,
respectively

Repeat this process until it reaches the top/coarsest level, which
generates the scaling, Haar, and Walsh vectors at each level

- The GHWT dictionary, i.e,, the resulting set of = n(1 +log, ) basis

vectors, contains more than O(1.5") ONBs = the best basis and its
relatives can be selected!

- The GHWT can be further generalized for k-simplices via recursive

bipartitions, which we call k-GHWT [S.-Schonsheck-Shvarts (2024)]. 20/46



The Coarse-to-Fine GHWT Dictionary on the Triangle Complex
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the sign info
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The Fine-to-Coarse GHWT Dictionary on the Triangle Complex
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Approximation of the Coauthorship Complex

Ae————e5
. AN 7 A 160
Paper I, 100 citations Author A AN 10
SIS
N S
Paper 11, 50 citations Author B 100 50 \j:)Q D
14
Paper 111, 10 citations Author C' Ae—— @B B N
1-cochain
Paper 1V, 4 citations Author D 150 = 100 + 50 150 100 104

From Ebli et al. 2022

- The Coauthorship Complex (CC) [Patania et al. (2017); Elbi et al. (2022)]
can be created by linking papers, authors, and coauthors from the
Semantic Scholar Open Research Corpus.

- Each node represents an author, whose value is the total citation
number of publications of that author.

- Each k-simplex represents the coauthorship among (k + 1) authors,
whose value is the total citation number of the publications
coauthored by these (k +1) coauthors.

k 0 1 2 3 4 5
# of elements 352 1474 3285 5019 5559 4547

The size of k-simplices in the CC for k=0,1,...,5 23/46



Approximation of Coauthorship Complexes: k =0, 1

Approximation k=0

Approximation k=1
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The behavior of these plots may be explained by the following
Theorem (Sharon-Shkolnisky (2015))

For a fixed orthonormal basis {¢l};‘;01 and a parameter 0< 7 <2,

1flz
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Ir-rurl= L. where 1= [(5.00)
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Approximation of Coauthorship Complexes: k=2:5
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Building Scattering Networks on k-Simplices

- Want to generalize the scattering transform of Mallat to the
simplicial complex setting because we want to extract robust
features from data recorded on simplicial complexes.

- Gao, Wolf, and Hirn (2021) proposed the Geometric Scattering
for graphs (0-simplices) using the diffusion wavelets of Coifman
and Maggioni (2006).

- We propose to use our k-HGLET and k-GHWT dictionaries to
build such scattering transforms/networks.

- Let the k-HGLET or k-GHWT dictionary vectors be arranged as
(D1:={d>i}§:0 where each @ is an ONB at scale (or level) j with
Jj =0 being the finest scale basis, composed of delta functions.

- In general, we have j.. = 1+log, n different levels but in
practice, the features extracted by large j values are not very

descriptive, so we typically use the first J(< jmax) levels.
27/46



Building Scattering Networks on k-Simplices ..

- Let feR” be a signal defined on C,.

- We propose to compute the gth moment of the 0th and 7st scattering
coefficients:

(@)=Y 1117 $'a. =Y |l 05 <fi1=q=Q, (1)

i=1

and the 2nd-order scattering coefficients:

1, j=0<j<j<J,1=q=<Q. ()

8%(q,j,J) =)
i=1
- And higher-order scattering coefficients can be computed similarly:

™ (g, .., ™) := i (3)

(m) | (m 1)

fo -

wherej=0<jM <. <jm <.
- However, to reduce the computational cost, we typically use m < 3.
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Building Scattering Networks on k-Simplices ...

- Gathering all of the moments < Q and of orders < M leads to a
total of Q¥ M_, ("+1) features for a given signal; e.g. for
(J,M,Q) =(5,3,4), it's just 178 features/signal.

- The summations from i =1to i =n in (1)-(3) can be viewed as
global pooling operations.

- In situations where node permutation invariance is not
required, we can omit the these sums, which is no pooling. As a
result, we are left with nQXM_, ('*1) features for each signal.

m
- Finally, we sum the coefficients over each partition (i.e., region)
at level j and keep those local sums as feature vectors instead
of not summing at all or summing all the regions of level j in
(1)-(3), which can be viewed as local pooling operations.

- We call our scattering networks as Multiscale Hodge Scattering
Networks (MHSNSs).
29/46
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Classification of Science News Articles

- Apply our MHSNSs to article category classification using the
Science News database.

- After some preprocessing, the Science News dataset contains
1042 scientific news articles classified into eight fields:
Anthropology; Astronomy; Behavioral Sciences; Earth Sciences;
Life Sciences; Math/CS; Medicine; Physics.

- Each article is tagged with keywords from a pool of 1133 words.
In this database, each article contains 2 ~ 5 keywords
(with/without counting their frequency of occurrence).

- We determine a simplicial complex from these keywords by 1)
computing their word2vec embeddings based on Google’s
publicly available pre-trained model; and 2) generate a
symmetric K-nearest neighbor graph of the embedded words
and then generate k-simplices of the graph.

- A k-simplex corresponds to a combination of (k + 1) words. 31/46



Generation of Simplicial Signals on C,

Next, we define representations of each article as a signal on
each C;. as follows.

- First, for k =0 (i.e., a node-valued signal), we define the
signal f, to be one on the nodes representing their
keywords and zero elsewhere.

- For k=1 we define the signal f, to be the simplex-wise
average of the f, signal.

Fili 1 if keyword i occurs £l 1 Y £,1l]
1| = H l|=-—- ’
0 0 Otherwise ¢ k+1 ey °
D'iECk
(4)

where V(g;) represents the set of nodes forming the ith

simplex g; € Cy..
32/46



Classification Results

For each k, we did 10-fold cross validation: randomly split these 1042
signals into 10 groups; each group was used as a test set while the
other 9 groups were used as a training set; and repeated this 10 times.

Used ¢2-reqularized logistic regression provided by scikit-learn

- The parameters in the MHSNs were set as (J,M,Q) = (5,3,4).

- The task is not necessarily easy: consider the article on ‘star-nosed
moles’ titled “Snouts: A star is born in a very odd way,” which belongs
to Life Science, not Astronomy!

Delta ‘ Fourier
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32381
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81.905
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85.714
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[/8%88]
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39.048
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62.857
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32381
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881866]
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89.524
89.524
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81.905
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87.619
89.524
88.571
86.667
81.905
73.333
60.952

Article category classification accuracy for 10-NN graph of the Science News dataset
for different simplex degrees. GP, LP, NP imply: global, local, no pooling, respectively.
The best performer for each k is indicated in bold orange while the bold blue
numbers are the best among all k's.
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Graph/Simplicial Complex Classification

- Can we predict a label or a category of a social or chemical
graph based on a training set of similar graphs with different
configurations (e.g., different number of nodes, edges, etc.)?

- Due to a great variety of graph sizes, we only use the global
pooling version of our MHSNs.

- Use a Support Vector Machine with a radial basis function
kernel for classifying the features that MHSNs generated.

- Focus on the nodes k =0 and the edges k =1.

- For k=0, the input signal of a given graph is its eccentricity and
clustering coefficient of each vertex as used in the Geometric
Scattering of Gao et al.

- For k=1, the input signal of a given graph is the number of
nonzero off-diagonal components of the Hodge Laplacians (=
“degree” of each edge) and the average vertex degree of the
head and tail nodes of each edge. 35/46



Classification Results

Graph Node Scattering Edge Scattering Combo | GS-SVM  GCN ~ UGT  DGCNN  GAT  GFN
Collab 70.84 78.34 80.39 | 7994 790 77.84 7376 758 815
DD 60.67 68.72 7271 = = 80.23 79.37 - 7937
IMDB-B 72.70 70.6 73.10 712 740 77.04 7003 705 734
IMDB-M 44.40 47.13 49.67 48.73 519 53.6 4783 478 518
MUTAG 85.78 86.31 85.78 83.50 8560 8023 7937 89.4 8583
PROTEINS 73.57 73.03 75.35 7411 760 7853 7554 747 76.46
PTC 62.85 67.71 68.28 | 6394 6420 69.63 5859 667 66.6

Comparison of graph classification accuracy with various methods. The best and the
2nd best performers for each dataset is indicated in blue and orange, respectively.
GS-SVM := Geometric Scattering with SVM [Gao et al. (2019)];

GCN := Graph Convolution Networks [Kipf-Welling (2016)];

UGT := Universal Graph Transformers [Nguyen et al. (2022)];

DGCNN := Dynamic Graph CNN [Wang et al. (2018)];

GAT := Graph Attention Networks [Velickovic et al. (2017)];

GFN := Graph Feature Networks [Chen et al. (2019)]

= Our MHSNs achieved quite competitive results with only a
small fraction of the learnable parameters as the next table
indicates! 36/46



Classification Results ...

Hodge Scattering + SVM

Graph Accuracy ‘ # Param
Collab 80.39 256
DD 72.71 256
IMDB-B 73.10 256
IMDB-M 49.67 256
MUTAG 85.78 256
PROTEINS 75.35 256
PTC 68.28 256

UGT
Accuracy | # Param
77.84 866,746
80.23 76,928
77.04 55,508
53.60 48,698
80.23 4,178
78.53 1,878
69.63 12,038

GFN
Accuracy | # Param
81.50 68,754
79.37 68,754
73.40 68,754
51.80 68,818
85.83 68,818
76.46 68,818
66.60 68,818

Comparison of classification Networks in accuracy and number of parameters

Collab := A scientific collob dataset of 5K graphs [Yanardag-Vishwanathan (2015)]
DD := 1,178 proteins (as graphs) [Dobson-Doig (2003)]
IMDB-B := 1K graphs from IMDB on two genres (Action/Romance)

[Yanardag-Vishwanathan (2015)]

IMDB-M := 1.5K graphs from IMDB on three genres (Comedy/Romance/Sci-Fi)

[Yanardag-Vishwanathan (2015)]

MUTAG := 188 nitroaromatic compounds [Debnath et al. (1991)]
PROTEINS := 1113 proteins (as graphs) [Borgwardt et al. (2005)]

PTC := 344 chemical compounds (as graphs) [Toivonen et al. (2003)]

37/46



Acknowledgment

Motivations

Higher-Order Graph Signals and Hodge Laplacians
Hierarchical Bipartitioning of Simplicial Complexes
Multiscale Overcomplete Dictionaries for k-Simplices
Scattering Transform on Simplicial Complexes
Application I: Simplicial Signal Classification
Application II: Graph/Simplicial Complex Classification
Application Ill: Learning Molecular Dynamics
Summary & Future Plan

References

38/46



Learning Molecular Dynamics

- Want to predict potential energy surface of a molecule given
some registrations of the molecule and its energies

- The Revised Molecular Dynamics 17 (rMD17) dataset [Bowman et
al., 2022)] contains 100,000 structures and associated energies
of various molecules based on molecular dynamics simulation

- Used Aspirin (21 atoms = C4Hgz0,) and Paracetamol (20 atoms =
CgHoNO,) as molecules

- Selected five sets of 1,000 snapshots of the structures/energies
per molecule

- In each of five sets, 800 snapshots are used for training and 200
for test

- Support vector regression (SVR) with Gaussian radial basis
functions is used as a regression method on the computed

MHSN features
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Learning Molecular Dynamics: Results

Diff+SVR HGLET+SVR GHWT+SVR .
Feature Type } Node [ Edge [ Both } Node | Edge [ Both } Node | Edge [ Both }SChNEt I ‘SOZ&NetI ‘ SOELES(
Aspirin
MAE 4.856 3.132 3267 | 4.884 3.135 3.285 | 4928 3.075 3.225 135 3.8 3.8 2.6
RMSE 6.181 4144 4314 | 6215 4129 4.407 | 6.213 4123 4316 18.3 59 5.7 3.8
# Parameters | 924 3784 4708 | 924 3784 4708 | 924 3784 4708 | ~ 432k | ~ 341k | ~ 283k ~ 341k
Paracetamol
MAE 4.609 2.715 2795 | 4.723 2.643 2710 | 4.748 2.624 2.699 8.4 21 22 1.4
RMSE 5860 3.418 4.116 | 5964 3.338 3.424 | 5961 3.299 3.408 11.2 29 3.0 19
# Parameters | 924 3784 4444 924 3784 4444 924 3784 4444 | ~432k | ~ 341k ~283k ~341k

Comparison of the performance of our MHSNs and the other
state-of-the-art GNNs for nuclear energy prediction. We report the accuracy
via Mean Absolute Error (MAE) and RMSE (Root Mean Square Error) as well as
the number of trainable parameters in each network
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Summary

- Developed the multiscale higher-order graph signal basis
dictionaries for simplicial complexes: the k-HGLET dictionary
and the k-GHWT dictionary for signals sampled on edges, faces,
etc.

- Proposed the multiscale Hodge scattering networks based on
these dictionaries

- Demonstrated their competitiveness in: classification of signals
on k-simplices (the Science News article categorization);
classification of graphs (of different sizes, different topology,
etc.); and learning potential energy surface of molecules

- These dictionary coefficients and scattering coefficients should
provide explicit interpretation (e.g., scale, frequency, position,
etc.) of their importance for a given task.
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Future Plan

- Develop tools to visualize and interpret important basis vectors for
signals on simplicial complexes including graph embedding methods

- Develop the simplicial complex version of the Natural Graph Wavelet
Packets (Cloninger-Li-Saito, 2021) where bipartitioning is done on the
dual domain where the nodes are the global eigenvectors

- Implement Local Discriminant Basis (LDB), Local Regression Basis
(LRB), etc. [Saito et al. (1995; 1997; 2002; ...)], for simplicial signals

- Reduce computational complexity of O(N?) for the k-HGLET:

» For certain problems, one may not need all the GL eigenvectors, in
particular, those corresponding to the large eigenvalues.

» Consider integral operators (e.g., Green’s functions) on graphs, and utilize
the Fast Multipole Method [Saito (2008); Xue (2007)]

- Truly generalize the Local Cosine Transform (LCT) for the graph setting.
H. Li (2021) constructed the node version of the smooth orthogonal
projectors involving orthogonal folding and unfolding operators and
the graph basis dictionaries, but we need proper boundary conditions

at the partition locations.
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Please check our Julia codes on GitHub!!
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl

https://github.com/UCD4IDS/MultiscaleSimplexSignalTransforms.jl

Split = “Organize” = Merge

Thank you very much for your attention!
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