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Introduction

Introductory Comments

Hajime Urakawa (Emeritus Prof., Tohoku Univ.) said in 1999:

A long time ago, when I was a college student, I was told: “There is
good mathematics around Laplacians.” I engaged in mathematical
research and education for a long time, but after all, I was just walking
around “Laplacians,” which appear in all sorts of places under different
guises. When I reflect on the above proverb, however, I feel keenly that
it represents an aspect of the important truth. I was ignorant at that
time, but it turned out that “Laplacians” are one of the keywords to
understand the vast field of modern mathematics.

I second Prof. Urakawa’s opinion, and want to add: “There are good
applications around Laplacians too.”
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Excursion I: Laplacians on Rectangles in R2 Motivations

Motivations

I always felt frustrated to deal with data supported on an interval in 1D or
a rectangle in 2D/3D using Fourier series or its discrete counterpart, DFT.
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(b) Periodized Signal
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(c) |DFT of (b)|

Let fper be a periodized version of f with supp f = [0,1]. Then, the
expansion coefficients

{
ck = 〈

fper,e2πik·〉}
k∈Z of the Fourier series of a

periodic function fper(x) ∼∑
k ck e2πikx decay slowly , i.e., O(1/|k|) as

|k|→∞ if fper is discontinuous.
=⇒ This could happen even if f ∈C∞[0,1]!
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(b) Periodized Signal
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(c) |DFT of (b)|

Let fper be a periodized version of f with supp f = [0,1]. Then, the
expansion coefficients

{
ck = 〈

fper,e2πik·〉}
k∈Z of the Fourier series of a

periodic function fper(x) ∼∑
k ck e2πikx decay slowly , i.e., O(1/|k|) as

|k|→∞ if fper is discontinuous.

=⇒ This could happen even if f ∈C∞[0,1]!
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Excursion I: Laplacians on Rectangles in R2 Motivations

Motivations

I always felt frustrated to deal with data supported on an interval in 1D or
a rectangle in 2D/3D using Fourier series or its discrete counterpart, DFT.
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(b) Periodized Signal
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(c) |DFT of (b)|

Let fper be a periodized version of f with supp f = [0,1]. Then, the
expansion coefficients

{
ck = 〈

fper,e2πik·〉}
k∈Z of the Fourier series of a

periodic function fper(x) ∼∑
k ck e2πikx decay slowly , i.e., O(1/|k|) as

|k|→∞ if fper is discontinuous.
=⇒ This could happen even if f ∈C∞[0,1]!
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Excursion I: Laplacians on Rectangles in R2 Motivations

It is important to have fast decaying or sparse expansion coefficients
in many applications.
For example, slowly decaying expansion coefficients relative to Discrete
Cosine Transform (DCT) used in the JPEG standard degrade quality
of images:
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Excursion I: Laplacians on Rectangles in R2 Motivations

Wanted to develop a local image transform that generates faster
decaying expansion coefficients than block DCT used in JPEG without
using popular sliding window-based techniques
Wanted to fully incorporate the infrastructure provided by the JPEG
standard, e.g., the block DCT algorithm, the quantization method, the
file format, etc.
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Excursion I: Laplacians on Rectangles in R2 DCT & PHLST

Review of Fourier Cosine Series
Let Ω= (0,1)2 ⊂R2 and f ∈C 2(Ω) but not periodic: the periodically extended
version of f is discontinuous at ∂Ω.
Then the size of the complex Fourier coefficients ck of f decay as O(‖k‖−1), where
k = (k1,k2) ∈Z2.
Instead, expanding f into the Fourier cosine series gives rise to the decay rate
O(‖k‖−2) because it is equivalent to the complex Fourier series expansion of the
extended version of f via even reflection that is continuous at ∂Ω.
This is one of the main reasons why the JPEG adopts DCT instead of Discrete
Fourier Transform (DFT) or Discrete Sine Transform (DST)
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How about using Chebyshev polynomials? =⇒ Unfortunately, usual signals and
images are sampled on the equispaced grid points, not on the Chebyshev nodes.
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Excursion I: Laplacians on Rectangles in R2 DCT & PHLST

Review of Fourier Cosine Series
Let Ω= (0,1)2 ⊂R2 and f ∈C 2(Ω) but not periodic: the periodically extended
version of f is discontinuous at ∂Ω.
Then the size of the complex Fourier coefficients ck of f decay as O(‖k‖−1), where
k = (k1,k2) ∈Z2.
Instead, expanding f into the Fourier cosine series gives rise to the decay rate
O(‖k‖−2) because it is equivalent to the complex Fourier series expansion of the
extended version of f via even reflection that is continuous at ∂Ω.
This is one of the main reasons why the JPEG adopts DCT instead of Discrete
Fourier Transform (DFT) or Discrete Sine Transform (DST)
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How about using Chebyshev polynomials? =⇒ Unfortunately, usual signals and
images are sampled on the equispaced grid points, not on the Chebyshev nodes.
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Excursion I: Laplacians on Rectangles in R2 DCT & PHLST

Review of Polyharmonic Local Sine Transform

We now consider a decomposition f = u + v ∈C 2(Ω).
The u (or polyharmonic) component satisfies Laplace’s equation with
the Dirichlet boundary condition:

∆u = ∂2u

∂x2 + ∂2u

∂ y2 = 0 in Ω; u = f on ∂Ω.

The u component is solely represented by the boundary values of f via
the fast and highly accurate Dirichlet problem solver of Averbuch,
Israeli, & Vozovoi (1998).
The residual v = f −u vanishes on ∂Ω =⇒ The Fourier sine
coefficients of v decay as O(‖k‖−3) because ṽ , the odd extension of v
to Ω̃ := [−1,1]2, becomes a periodic C 1(Ω̃) function.
This is a multidimensional extension of the idea of Lanczos (1938).
In higher dimensions, harmonic functions are easier to deal with than
algebraic polynomials; See [Saito-Remy 2006] for the details.
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Excursion I: Laplacians on Rectangles in R2 DCT & PHLST
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Excursion I: Laplacians on Rectangles in R2 DCT & PHLST
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PHLST was a nice idea and published in a good journal, but . . .
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Excursion I: Laplacians on Rectangles in R2 Polyharmonic Local Cosine Transform

Polyharmonic Local Cosine Transform

Wanted to use DCT for fully utilizing the JPEG infrastructure
Wanted coefficients decaying faster than O(‖k‖−3)

To do so, we need to solve Poisson’s equation with the Neumann
boundary condition:

∆u = K in Ω; ∂νu = ∂ν f on ∂Ω,

where the constant source term K := 1

|Ω|
∫
∂Ω
∂ν f (x)dσ(x) is necessary

for the solvability of the Neumann problem, which forces us to use
Poisson’s equation instead of Laplace’s equation.
Then, the Fourier cosine coefficients of the residual decay as O(‖k‖−4)
because ṽ , the even extension of v to Ω̃ becomes a periodic C 2(Ω̃)
function thanks to ∂νv = 0 on ∂Ω.
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Excursion I: Laplacians on Rectangles in R2 Polyharmonic Local Cosine Transform

Computational Aspects of PHLCT

Wanted to achieve the PHLCT representation of f = u + v entirely in
the DCT domain, F =U +V , which turned out possible because:

1 an approximation of U can be computed using F0,0 (= the DC
component of F ) and those of the surrounding blocks; and

2 we can set V0,0 = F0,0.

Full mode PHLCT (FPHLCT) adds simple procedures in both the
encoder and the decoder parts of the JPEG Baseline method.
Partial mode PHLCT (PPHLCT) modifies only the decoder part of the
JPEG Baseline method: PPHLCT accepts the JPEG-compressed files!
Essentially, the JPEG tends to kill Fk for large k, but PPHLCT
replaces it by Uk , which is reasonable because Vk is expected to decay
quickly, i.e., Fk ≈Uk for large k.
No time to discuss the algorithmic details; see [Yamatani-Saito, 2006].
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Excursion I: Laplacians on Rectangles in R2 Numerical Experiments

Numerical Experiments

(a) JPEG, 23.61dB (b) FPHLCT, 24.19dB (c) PPHLCT, 23.97dB

Figure: Compressed at 0.15 bits/pixel. Numerical values indicate the Peak

Signal-to-Noise Ratio (PSNR) := 20log10

max
(x,y)∈Ω

| f (x, y)|

‖ f − f̃ ‖2
.
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Excursion I: Laplacians on Rectangles in R2 Numerical Experiments

(a) JPEG, 25.67dB (b) FPHLCT, 26.05dB (c) PPHLCT, 25.73dB

Figure: Compressed at 0.30 bits/pixel. Numerical values indicate the Peak
Signal-to-Noise Ratio (PSNR).
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Excursion I: Laplacians on Rectangles in R2 Helmholtz Equation

Problems with Oscillatory Textures

Solutions of the Laplace/Poisson equations quickly attenuate
oscillatory patterns at the boundary when evaluated at the inside of
the domain.
This leads to inefficient u + v decomposition for oscillatory patterns.
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(c) Residual v

Figure: The solution of Laplace’s equation may lead to an inefficient u + v
decomposition.
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Excursion I: Laplacians on Rectangles in R2 Helmholtz Equation

Using the Helmholtz Equation for Oscillatory Textures

The Helmholtz equation may rescue us:

∆u +k2u = 0 in Ω; ∂νu = ∂ν f on ∂Ω.
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Figure: The Helmholtz equation may lead to an efficient u + v decomposition.
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Excursion I: Laplacians on Rectangles in R2 Helmholtz Equation

Using the Helmholtz Equation for Oscillatory Textures . . .

Important to use k (the wavenumber parameter) that should be
estimated from the oscillatory patterns on ∂Ω.
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Figure: A wrong k may harm you.
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Excursion I: Laplacians on Rectangles in R2 Summary & References

Summary of Excursion I

Both the FPHLCT and PPHLCT algorithms were patented as “Data
Compression/Decompression Method, Program, and Device,” Japan Patent
# 4352110, Granted 8/7/09; US Patent # 8,059,903, Granted 11/15/11.

More extensive numerical experiments (see [Yamatani-Saito 2006]) indicate that
FPHLCT reduces the bit rates about 15% over JPEG whereas PPHLCT does
about 7% to achieve the same PSNR in the relatively low bit rate range.

PPHLCT is particularly useful because it accepts the files already compressed by
the JPEG standard.

Additional computational cost of both methods over JPEG is small: linearly
proportional to the number of pixels of an input image.

Using the Helmholtz equation with the Neumann boundary condition for u should
be investigated! Any collaborations?

In principle, the higher-order polyharmonic operators ∆p , p = 2,3, . . . can also be
used instead of the Laplacian; however, the case p > 2 turned out to be impractical
due to their requirement of higher-order boundary derivatives; see
[Zhao-Saito-Wang, 2008] for the biharmonic (p = 2) version of PHLST with the
decay rate O(‖k‖−5).
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Excursion I: Laplacians on Rectangles in R2 Summary & References

My Heroes in Excursion I

(a) P.-S. Laplace
(1749–1827)

(b) J.B.J. Fourier
(1768–1830)

(c) S.D. Poisson
(1781–1840)

(d) J.P.G.L.
Dirichlet
(1805–1859)

(e) H. von
Helmholtz
(1821–1894)

(f) Carl
Neumann
(1832–1925)

(g) Cornelius
Lanczos
(1893–1974)
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Excursion I: Laplacians on Rectangles in R2 Summary & References

References for Excursion I

K. Yamatani & N. Saito: “Improvement of DCT-based compression
algorithms using Poisson’s equation,” IEEE Trans. Image Process.,
vol.15, no.12, pp.3672–3689, 2006.
N. Saito & J.-F. Remy: “The polyharmonic local sine transform: A
new tool for local image analysis and synthesis without edge effect,”
Appl. Comp. Harm. Anal., vol.20, no.1, pp.41–73, 2006.
J. Zhao, N. Saito, & Y. Wang: “PHLST5: A practical and improved
version of polyharmonic local sine transform,” J. Math. Imaging Vis.,
vo..30, pp.23–41, 2008.
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Excursion II: Laplacians on Complicated Domains in Rd

Outline

1 Introduction

2 Excursion I: Laplacians on Rectangles in R2

3 Excursion II: Laplacians on Complicated Domains in Rd

4 Excursion III: Laplacians on Graphs

5 Summary
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

Motivations
Consider a bounded domain of general shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ need fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract and analyze geometric information about the domain
Ω =⇒ M. Kac: “Can one hear the shape of a drum?” (1966); spectral
geometry; shape clustering/classification.

(a) Ω⊂Rd (b) M. Kac (1914–1984)
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

Data Analysis on a Complicated Domain
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

3D Hippocampus Shape Analysis (Courtesy: F. Beg)
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

Climate Data Analysis: Continent (Courtesy: T. DelSole)
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FIG. 5. The first three Laplacian eigenfunctions over land on a 5◦×5◦ regular grid. The patterns are orthogonal

with respect to an area weighted inner product and normalized such that the area averaged square equals one.
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Excursion II: Laplacians on Complicated Domains in Rd Motivations

Climate Data Analysis: Ocean (Courtesy: T. DelSole)
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FIG. 9. The first three Laplacian eigenfunctions over the ocean on a 5◦× 5◦ regular grid. The patterns are

orthogonal with respect to an area weighted inner product and normalized such that the area averaged square

equals one.
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Excursion II: Laplacians on Complicated Domains in Rd Laplacian Eigenfunctions

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L := −∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.
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Excursion II: Laplacians on Complicated Domains in Rd Laplacian Eigenfunctions

Laplacian Eigenfunctions . . .Why?

Why not analyze (and synthesize) an object of interest defined or measured
on an irregular domain Ω using genuine basis functions tailored to the
domain instead of the basis functions developed for rectangles, tori, balls,
etc.?

After all, sines (and cosines) are the eigenfunctions of the Laplacian on a
rectangular domain (e.g., an interval in 1D) with Dirichlet (and Neumann)
boundary condition.

Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via separation of
variables) for the spherical, cylindrical, and spheroidal domains, respectively.

Laplacian eigenfunctions (LEs) allow us to perform spectral analysis of data
measured at more general domains or even on graphs and networks =⇒
Generalization of Fourier analysis!

The above statement needs to be interpreted very carefully due to the
domain properties; e.g., quantum scars, LE localizations, . . .
=⇒ see Excursion III.
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Excursion II: Laplacians on Complicated Domains in Rd Laplacian Eigenfunctions

Laplacian Eigenfunctions . . . Some Facts & Difficulties

Analysis of L is difficult due to its unboundedness, etc.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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Excursion II: Laplacians on Complicated Domains in Rd Integral Operators Commuting with Laplacians

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

(a) G. Frobenius (1849–1917) (b) B. Friedman (1915–1966)
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Excursion II: Laplacians on Complicated Domains in Rd Integral Operators Commuting with Laplacians

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel is
called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y) by
the fundamental solution of the Laplacian:

K (x , y) =


−1

2 |x − y | if d = 1,
− 1

2π log |x − y | if d = 2,
|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Excursion II: Laplacians on Complicated Domains in Rd Integral Operators Commuting with Laplacians

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫
Ω

K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)

The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:∫
∂Ω

K (x , y)
∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫
∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y), ∀x ∈ ∂Ω,

where ϕ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Excursion II: Laplacians on Complicated Domains in Rd Integral Operators Commuting with Laplacians

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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Excursion II: Laplacians on Complicated Domains in Rd Integral Operators Commuting with Laplacians

Corollary (NS 2005, 2008)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Excursion II: Laplacians on Complicated Domains in Rd Some Examples

A Real Challenge: Kernel matrix is of 387924×387924.
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Excursion II: Laplacians on Complicated Domains in Rd Some Examples

First 25 Basis Functions via the FMM-based algorithm
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Excursion II: Laplacians on Complicated Domains in Rd Applications

General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.

. . .
Due to the time constraint, I will only talk about one application.
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Statistical Image Analysis; Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
Contains 143 faces
Extracted left & right eye regions
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Energy Distribution over Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Excursion II: Laplacians on Complicated Domains in Rd Applications

Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Excursion II: Laplacians on Complicated Domains in Rd Summary & References

Summary of Excursion II

Our approach using the commuting integral operators

Allows object-oriented signal/image analysis & synthesis

Can get fast-decaying expansion coefficients (less Gibbs effect)

Can naturally extend the basis functions outside of the initial domain

Can extract geometric information of a domain through eigenvalues

Can decouple geometry/domain information and statistics of data

Is closely related to the von Neumann-Krĕın Laplacian, yet is distinct

Can use Fast Multipole Methods to speed up the computation, which is the
key for higher dimensions/large domains

Many things to do:
- Examine further our boundary conditions for specific geometry in higher
dimensions; e.g., analysis on S2 leads to Clifford Analysis
- Examine the relationship with the Volterra operators in Rd , d ≥ 2 (Lidskĭı;
Gohberg-Krĕın)
- Integral operators commuting with polyharmonic operators (−∆)p , p ≥ 2
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Excursion II: Laplacians on Complicated Domains in Rd Summary & References

My Heroes in Excursion II

(a) George
Green
(1793–1841)

(b) Lord
Rayleigh
(1842–1919)

(c) H.K.H.
Weyl
(1885–1955)

(d) J. von
Neumann
(1903–1957)

(e) Mark G.
Krĕın
(1907–1989)

(f) M. Kac
(1914–1984)

(g) V. Lidskĭı
(1924–2008)

(h) I. Gohberg
(1928–2009)

(i) V. Rokhlin
(1952–)

(j) L. Greengard
(1958–)
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Excursion II: Laplacians on Complicated Domains in Rd Summary & References

References for Excursion II

Laplacian Eigenfunction Resource Page http://www.math.ucdavis.edu/˜saito/lapeig/:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
All the talk slides of the minisymposia on Laplacian Eigenfunctions at:
ICIAM 2007, Zürich; SIAM Imaging Science Conference 2008, San Diego;
IPAM 2009; SIAM Annual Meeting 2013, San Diego; and the other related
recent minisymposia.

The following articles are available at http://www.math.ucdavis.edu/˜saito/publications/:

N. Saito: “Data analysis and representation using eigenfunctions of Laplacian
on a general domain,” Applied & Computational Harmonic Analysis, vol. 25,
no. 1, pp. 68–97, 2008.
L. Hermi & N. Saito: “On Rayleigh-type formulas for a non-local boundary
value problem associated with an integral operator commuting with the
Laplacian,” Applied & Computational Harmonic Analysis, accepted for
publication, 2016.
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Excursion III: Laplacians on Graphs

Outline

1 Introduction

2 Excursion I: Laplacians on Rectangles in R2

3 Excursion II: Laplacians on Complicated Domains in Rd

4 Excursion III: Laplacians on Graphs

5 Summary
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Excursion III: Laplacians on Graphs Motivations

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Excursion III: Laplacians on Graphs Motivations

Fourier/wavelet analysis/synthesis have been ‘crown jewels’ for data
sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful!
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Excursion III: Laplacians on Graphs Motivations

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego
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Excursion III: Laplacians on Graphs Motivations

A Biological Example: Retinal Ganglion Cells
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Excursion III: Laplacians on Graphs Motivations

Mouse’s RGC as a Graph

saito@math.ucdavis.edu (UC Davis) Three Excursions GGAM Colloquium 58 / 79



Excursion III: Laplacians on Graphs Motivations

Can we hear the shape of dendritic trees?
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Definitions and Notation

Let G be an undirected graph.
V =V (G) = {v1, . . . , vn} is the set of vertices (or nodes).
For simplicity, we often use 1, . . . ,n instead of v1, . . . , vn .
E = E(G) = {e1, . . . ,em} is the set of edges, where ek = (i , j ) represents
an edge (or line segment) connecting between adjacent vertices i , j for
some 1 ≤ i , j ≤ n.
W =W (G) ∈Rn×n is the weight matrix , where wi j denotes the edge
weight between vertices i and j .

1 2 3

45

w12 w23

w34

w45

w35

w24
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph

The adjacency matrix W =W (G) = (wi j ) ∈Rn×n , n = |V |, for an
unweighted graph G consists of the following entries:

wi j :=
{

1 if i ∼ j ;

0 otherwise.

Another typical way to define its entries is based on the similarity of
information at nodes i and j :

wi j := exp(−dist(i , j )2/ε2)

where dist(·, ·) is an appropriate distance measure (i.e., metric) defined
in V , and ε> 0 is an appropriate scale parameter. This leads to a
weighted graph.
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph . . .

The degree matrix D = D(G) = diag(d1, . . . ,dn) ∈Rn×n is a diagonal
matrix whose entries are:

di :=
n∑

j=1
wi j .

Note that the above definition works for both unweighted and
weighted graphs.
The transition matrix P = P (G) = (pi j ) ∈Rn×n consists of the following
entries:

pi j := wi j /di if di 6= 0.

pi j represents the probability of a random walk from i to j in one
step:

∑
j pi j = 1, i.e., P is row stochastic .

W T =W , PT 6= P , P = D−1W .
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph . . .

Let G be an undirected graph. Then, we can define several Laplacian
matrices of G:

L(G) := D −W Unnormalized

Lrw(G) := In −D−1W = In −P = D−1L Normalized

Lsym(G) := In −D− 1
2 W D− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric .
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Functions/Vectors Defined on a Graph
Let f ∈L2(V ) ≡Rn . Then

(L f )i = di fi −
n∑

j=1
wi j f j =

n∑
j=1

wi j
(

fi − f j
)

.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

(Lrw f )i = fi −
n∑

j=1
pi j f j = 1

di

n∑
j=1

wi j
(

fi − f j
)

.

(Lsym f )i = fi − 1√
di

n∑
j=1

wi j√
d j

f j = 1√
di

n∑
j=1

wi j

 fi√
di

− f j√
d j

 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive
semi-definite matrices).
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians?

We already know the usefulness of Laplacian eigenvalues and
eigenfunctions for general domains in Rd via Excursion II.
The graph Laplacian eigenvalues reflect various intrinsic geometric and
topological information about the graph including connectivity or the
number of separated components; diameter; mean distance, . . .
Fan Chung: Spectral Graph Theory, Amer. Math. Soc., 1997, says:
“This monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.”
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

Why Graph Laplacian Eigenfunctions?

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering , which can be
viewed as an application of the discrete version of the Courant Nordal
Domain Theorem.
Less studied than graph Laplacian eigenvalues
In this talk, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Excursion III: Laplacians on Graphs Basics of Graph Theory: Graph Laplacians

A Simple Yet Important Example: A Path Graph



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1


︸ ︷︷ ︸

L(G)

=



1
2

2

. . .
2

1


︸ ︷︷ ︸

D(G)

−



0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0


︸ ︷︷ ︸

W (G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0,1, . . . ,n −1.
φk (`) = cos

(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. For a general graph,
however, the notion of frequency is not well defined.
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Excursion III: Laplacians on Graphs Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues

In this review part, we only consider undirected and unweighted
graphs and their unnormalized Laplacians L(G) = D(G)−W (G). Let
|V (G)| = n, |E(G)| = m.
It is a good exercise to see how the statements change for Lrw, Lsym.
Can show that L(G) is positive semi-definite.
Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalue by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) := #{λk (G) ∈ I }.
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Excursion III: Laplacians on Graphs Graph Laplacian Eigenvalues

Graph Laplacian matrices of the same graph are permutation-similar .
In fact, graphs G1 and G2 are isomorphic iff there exists a permutation
matrix Q such that

L(G2) =QTL(G1)Q.

rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. Easy to check that L(G) becomes mG (0)
diagonal blocks.
The eigenspace corresponding to the zero eigenvalues is spanned by
the indicator vectors of each connected component, which are called
the Perron vectors due to the Perron-Frobenius Theorem.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected.
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) := λ1(G), viewing it as a quantitative measure of connectivity.
The corresponding eigenvector is called the Fiedler vector, which is
used to bipartition G.
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Excursion III: Laplacians on Graphs Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior
of the eigenvalues of graph Laplacians defined on dendritic trees.

(a) RGC #100

(b) Eigenvalues of RGC #100
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Excursion III: Laplacians on Graphs Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon . . .

We have observed that this value 4 is critical since:
the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Excursion III: Laplacians on Graphs Localization Phenomena of Eigenvectors
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Excursion III: Laplacians on Graphs Localization Phenomena of Eigenvectors

We know why such localization/phase transition occurs =⇒ See our
article for the detail: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries
around graph Laplacian eigenvalue 4,” Linear Algebra & Its Applications,
vol. 438, no. 8, pp. 3231–3246, 2013. The key was the discriminant of a
quadratic equation.
Any physiological consequence? Importance of branching vertices?
Many such eigenvector localization phenomena have been reported:
Anderson localization, scars in quantum chaos, . . .
See also an interesting related work for more general setting and for
application in numerical linear algebra: I. Krishtal, T. Strohmer, & T.
Wertz: “Localization of matrix factorizations,” Foundations of Comp. Math.,
vol. 15, no. 4, pp. 931–951, 2015.
Our point is that eigenvectors corresponding to high eigenvalues are quite
sensitive to topology and geometry of the underlying domain and cannot
really be viewed as high frequency oscillations unless the underlying graph is
a simple unweighted path or cycle.
Hence, one must be very careful to develop an analog of the
Littlewood-Paley theory for general graphs!
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Even on a simple path, if edges are unequally weighted, localization can occur!

A simple yet weighted path

We want to control such eigenvector localizations by ourselves rather than dictated
by the topology and geometry of the graphs!
This led us to the development of the multiscale basis dictionaries on graphs; see
my papers with Jeff Irion and the 2016 newsletter of our department.
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Excursion III: Laplacians on Graphs Summary & References

Summary of Excursion III

Laplacian eigenfunctions can be nicely defined on a graph G.
They allow us to perform spectral analysis of data recorded on V (G).
However, these eigenfunctions reveal nontrivial traits (e.g.,
localization) depending on topology and edge weights of G.
Hence, one cannot make exact parallel analogy between the Laplacian
eigenbasis and the Fourier basis unless G is a path or a cycle.
What about integral operators commuting with graph Laplacian
matrices? =⇒ some functions of the distance matrix of G seem like
good candidates
Lots of things to do: analysis of directed graphs; dealing with graph
connection Laplacian (e.g., edge weights are group transformations
while vertices represent transformed images); further development of
wavelet packet basis dictionaries on matrices and tensors; . . .
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My Heroes/Heroine in Excursion III

(a) F.G. Frobenius
(1849–1917)

(b) Oskar Perron
(1880–1975)

(c) Richard Courant
(1888–1972)

(d) Miroslav Fiedler
(1926–2015)

(e) Hajime Urakawa
(1946–)

(f) Fan R.K. Chung
Graham (1949–)
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References for Excursion III

My MAT 280 Course Slides on “Harmonic Analysis on Graphs and Networks”
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using eigenvalues of
graph Laplacians,” Japan SIAM Letters, vol. 1, pp. 13–16, 2009.
N. Saito & E. Woei: “On the phase transition phenomenon of graph Laplacian
eigenfunctions on trees,” RIMS Kôkyûroku, vol. 1743, pp. 77–90, 2011.
Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries around graph Laplacian
eigenvalue 4,” Linear Algebra & Its Applications, vol. 438, no. 8, pp. 3231–3246,
2013.
J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” JSIAM
Letters, vol. 6, pp. 21–24, 2014.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” Proc. 2014 IEEE
Workshop on Statistical Signal Processing, pp. 488–491, 2014.
J. Irion & N. Saito: “Applied and computational harmonic analysis on graphs and
networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper # 95971F, 2015.
J. Irion & N. Saito: “Efficient approximation and denoising of graph signals using
the multiscale basis dictionaries,” IEEE Trans. Signal and Inform. Process. Netw.,
accepted for publication, 2016.
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Outline

1 Introduction

2 Excursion I: Laplacians on Rectangles in R2

3 Excursion II: Laplacians on Complicated Domains in Rd

4 Excursion III: Laplacians on Graphs

5 Summary
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Summary

Overall Summary

Through my own work and effort, I realized how right Prof. Urakawa
was about his impression on the proverb “There is good mathematics
around Laplacians.”
Laplacians are connected to lots of interesting mathematics: Fourier
analysis, spectral geometry, spectral graph theory, isoperimetric
inequalities, Toeplitz operators, PDEs, potential theory, stochastic
processes, almost-periodic functions, . . .
Laplacians are also useful and being used in many applications!
How to naturally order/sort Laplacian eigenfunctions? =⇒ Not by the
size of the corresponding eigenvalues, but by something else!
Want to study more about Laplacians on manifolds, i.e.,
Laplace-Beltrami operators!
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Summary

Thank you very much for your attention!

This talk is dedicated to my four mentors:

(a) Yves F. Meyer
(1939–)

(b) Ronald R.
Coifman (1941–)

(c) Gregory
Beylkin (1953–)

(d) David L.
Donoho (1957–)
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