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“We ought to give greater attention and greater support to
unfashionable research. At any particular moment in the
history of science, the most important and fruitful ideas
are often lying dormant merely because they are unfash-
ionable.” — Freeman Dyson: “Unfashionable Pursuits,” Math.
Intell., vol.5, pp.47–54, 1983
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Motivations: Wavelets and Wavelet Packets

• For usual signals and images, wavelet transforms and their
generalization wavelet packet transforms have a proven track record of
success, e.g., JPEG 2000 Image Compression Standard.

• The Haar wavelet transform is the simplest among them; it
decomposes a given signal into translations and dilations of a
difference of blocky functions.

• The Walsh transform decomposes a given signal into more oscillatory
global square waves.

• The Haar-Walsh wavelet packet transform decomposes a given signal
into all sorts of local, global, and/or oscillatory blocky functions
(hence, it is a redundant transform).
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Motivations: Wavelets and Wavelet Packets …
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Motivations: Lifting the Haar-Walsh Wavelet Packets to Graphs

• Want to lift the Haar-Walsh wavelet packet transform to
the graph setting

• The Haar-Walsh wavelet transform is the most amenable
to graphs and networks among all the wavelets and
wavelet packets family due to its operational simplicity
(straightforward sum and difference computation)
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(d) Walsh vec. (𝑗 = 1)
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Generalized Haar-Walsh Transform (GHWT)

The GHWT is a true generalization of the classical Haar-Walsh Wavelet
Packet Transform, and generates a dictionary (i.e., a redundant set) of basis
vectors that are piecewise-constant on their support.

The algorithm using the Fiedler vectors can be summarized as follows
although any other graph partitioning algorithm can be used:
1. Generate a full recursive bipartitioning of the graph using Fiedler
vectors 𝜙𝑗

𝑘,1 of 𝐿rw(𝐺
𝑗
𝑘) ∶=𝐼 −𝐷

−1(𝐺𝑗
𝑘)𝑊(𝐺𝑗

𝑘), where 𝑘 = 0,…,𝐾 𝑗−1
indicates a region, 𝑗 = 0,…,𝑗max indicates a level (or scale),
𝑉 =𝑉0

0 =𝑉1
0 ∪𝑉1

1 =⋯

2. Generate an orthonormal basis for level 𝑗max (the finest level)⇒
scaling vectors on the single-node regions

3. Using the basis for level 𝑗max, generate an orthonormal basis for level
𝑗max−1 ⇒ scaling and Haar vectors

4. For 𝑗 = 𝑗max−1 ∶ −1 ∶ 1 Using the basis for level 𝑗, generate an
orthonormal basis for level 𝑗 −1 ⇒ scaling, Haar, and Walsh vectors
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GHWT on 𝑃6
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GHWT on 𝑃6

𝜓0
0,0 𝜓0

0,1 𝜓0
0,2 𝜓0

0,3 𝜓0
0,4 𝜓0

0,5
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0,0 𝜓1

0,1 𝜓1
0,2 𝜓1

1,0 𝜓1
1,1 𝜓1

1,2

𝜓2
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0,1 𝜓2
1,0 𝜓2

2,0 𝜓2
2,1 𝜓2

3,0

𝜓3
0,0 𝜓3

1,0 𝜓3
2,0 𝜓3

3,0 𝜓3
4,0 𝜓3

5,0
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Basis Vector & Coefficient Notation

GHWT basis vectors and coefficients are written as 𝜓𝑗
𝑘,𝑙 and

𝑐𝑗𝑘,𝑙, respectively, where 𝑗 and 𝑘 correspond to level and region
and 𝑙 is the tag.
• 𝑙 = 0 ⇒ scaling coefficient/basis vector
• 𝑙 = 1 ⇒ Haar coefficient/basis vector
• 𝑙 ≥ 2 ⇒ Walsh coefficient/basis vector
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(b) Haar vector
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Remarks

• For an unweighted path graph of dyadic length, this yields exactly a
dictionary of the conventional Haar-Walsh wavelet packets.

• Recursive Partitioning (RP) via Fiedler vectors costs 𝑂(𝑁2) in general.
• Given a recursive partitioning with 𝑂(log𝑁) levels, the computational
cost of expanding an input data into the GHWT is 𝑂(𝑁 log𝑁).

• We can select an orthonormal basis for the entire graph by taking the
union of orthonormal bases on disjoint regions.

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0
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Remarks …

• We can also reorder and regroup the vectors on each level of
the GHWT dictionary according to their type (scaling, Haar, or
Walsh).
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ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

Default dictionary: coarse-to-fine
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Remarks …

• We can also reorder and regroup the vectors on each level of
the GHWT dictionary according to their type (scaling, Haar, or
Walsh).

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Reordered & regrouped dictionary: fine-to-coarse
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Best-Basis Algorithms for GHWT

• Coifman and Wickerhauser (1992) developed the best-basis
algorithm as a means of selecting the basis from a dictionary of
wavelet packets that is “best” for approximation/compression.

• We generalize this algorithm for selecting the basis from the
GHWT dictionary in the bottom-up manner that is “best” for
approximation/compression.

• We require an appropriate cost functional𝒥, e.g.,

𝒥(𝑐𝑗𝑘) = ‖𝑐𝑗𝑘‖𝑝 ∶=
⎛
⎝

𝑁 𝑗
𝑘−1

∑
𝑙=0

|𝑐𝑗𝑘,𝑙|
𝑝⎞
⎠

1/𝑝

0 < 𝑝 ≤ 1,

to seek the sparsest representation of the input graph signal.

• For other tasks, e.g., classification and regression, see our own
work on Local Discriminant Basis, Local Regression Basis, Least
Statistically-Dependent Basis, …, all of which use different cost
functionals and can also be used in the graph setting.
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A Simple Example on 𝑃6

Consider a simple graph signal 𝑓= [2,−2,1,3,−1,−2]T ∈ ℝ6 on
𝐺 = 𝑃6. Note ‖𝑓‖1 = 11. Running the best-basis algorithm with
the ℓ1-norm minimization generates the following best bases:

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The GHWT c2f best basis: ‖ �̂�‖1 ≈ 8.28

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The GHWT f2c best basis: ‖ �̂�‖1 ≈ 7.84
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Motivation of developing eGHWT

• We want to complete the lifting of the Haar-Walsh wavelet
packets to the graph setting:

Regular Lattice ⊂ Graphs # Choosable Bases Costs
H-W Wavelet Packets¹ ⊂ GHWT² > (1.5)𝑁 𝑂(𝑁 log𝑁)

⋂ ⋂ ⋀
f

Adaptive H-W Tilings³ ⊂ eGHWT⁴ > 0.618 ⋅ (1.84)𝑁 𝑂(𝑁 log𝑁)

• The difference between these two could be huge: for 𝑁 = 1024,
eGHWT searches 10270 possible bases whereas GHWT does 10181
bases.

¹Coifman-Meyer (1989)
²Irion-Saito (2014)
³Thiele-Villemoes (1996)
⁴Saito-Shao (2019, 2022)
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Time-Frequency Adapted Haar-Walsh Tilings

• Thiele and Villemoes (1996) proposed an 𝑂(𝑁 log𝑁) algorithm
to search the best basis among much larger collection of
orthonormal bases than the conventional best-basis algorithm
due to Coifman and Wickerhauser (1992) can search.

• The essence of this algorithm is that at each step of the
recursive evaluation of the costs of subspaces, it compares the
cost of the parent subspace with not only its two children
subspaces partitioned in the “frequency” domain (like the
wavelet packets), but also its two children subspaces
partitioned in the “time” (or “space”) domain (like the local
cosines).

• Lindberg and Villemoes (2000) extended this algorithm for 2D
signals and got quite good compression/approximation of
various digital images.
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The eGHWT best-basis algorithm

1. Given the c2f GHWT dictionary, add fictitious leaves to the bottom of
the tree so that all the leaves are in pair

2. Proceed upward as the GHWT to make it a completely balanced tree
3. Adjust the tag 𝑙 and region index 𝑘 of each 𝜓𝑗

𝑘,𝑙 accordingly. 0 will be
assigned as the expansion coefficients of an input graph signal relative
to the newly added basis vectors due to those fictitious leaves:

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5 ψ0
0,6 ψ0

0,7

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

0,3 ψ1
1,0 ψ1

1,1 ψ1
1,2 ψ1

1,3

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

1,1 ψ2
2,0 ψ2

2,1 ψ2
3,0 ψ2

3,1

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0 ψ3
6,0 ψ3

7,0

4. Apply the Thiele-Villemoes algorithm on this modified binary tree
5. Restrict the support of the best basis vectors selected from this
balanced tree to the original nodes⟹ the best basis we want!
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Graphical Illustration with 𝑓= [2,−2,1,3,−1,−2]T on 𝑃6
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eGHWT vs GHWT f2c best bases for 𝑓= [2,−2,1,3,−1,−2]T on 𝑃6

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(a) The GHWT f2c best basis: ‖ �̂�‖1 ≈ 7.84

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The eGHWT best basis: ‖ ̂𝑓‖1 ≈ 7.45
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The Lindberg-Villemoes Algorithm (2D) via eGHWT

(a) Barbara (b) Relative ℓ2 approximation error

(a) The original Barbara image of size 512×512 pixels; (b) Relative ℓ2
approximation errors by various graph bases
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(a) Haar, PSNR = 24.50dB (b) GHWT c2f, PSNR = 23.51dB

(c) GHWT f2c, PSNR = 25.27dB (d) eGHWT, PSNR = 27.78dB

Approximations of the Barbara image using various bases using only
3.125% of coefficients (online viewing is recommended for the
details)
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(a) Haar (b) GHWT c2f

(c) GHWT f2c (d) eGHWT

Zoom up around face

27 / 62



(a) Haar (b) GHWT c2f

(c) GHWT f2c (d) eGHWT

Zoom up around left leg
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Graph Signal Compression

• Vehicular traffic volume data over 8 peak-hours at intersections
in the street network of Toronto (𝑁 = 2275 nodes and 𝑀 =3381
edges) are used for comparing the performance of various
graph bases

• Edge weights = 1/the Euclidean distances between the nodes
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Relative ℓ2 approximation error of the Toronto traffic data; GHWT-c2f
≡ Graph Walsh for this example
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(a) Haar (b) GHWT c2f = Walsh

(c) GHWT f2c (d) eGHWT

Comparing nine most significant basis vectors 33 / 62



Outline

Motivations

The Generalized Haar-Walsh Transform (GHWT)

The extended GHWT (eGHWT)

Applications
Graph Signal Compression
Matrix Data Analysis

Generalization to Simplicial Complexes

Summary

References
34 / 62



Matrix Data Analysis

• We often encounter data in the form of a matrix, e.g., a term-document
matrix; a questionnaire; multiple sensor measurements; …

• For example, look at the following Science News database where
▶ Rows→ preselected words
▶ Columns→ articles from 8 fields: Anthropology; Astronomy;

Behavioral Sciences; Earth Sciences; Life Sciences; Math & CS;
Medicine; Physics

▶ 𝑎𝑖𝑗 → the relative frequency of word 𝑖 appears in article 𝑗 ⇒ all
column sums are 1

Science News database (1153×1042) 35 / 62



Matrix Data Analysis …

1. View matrix data as a bipartite graph and apply the
spectral co-clustering to recursively partition the rows
and the columns simultaneously

2. Analyze column vectors of the input matrix using the
GHWT dictionary based on the row partitions and extract
the best basis for handling columns as a whole, which we
call the row best basis

3. Analyze row vectors of the input matrix using the GHWT
dictionary based on the column partitions and extract the
best basis for handling rows as a whole, which we call the
column best basis

4. Expand the input matrix w.r.t. the tensor product of the
row and column best bases

5. Analyze the expansion coefficients for a variety of tasks,
e.g., compression, classification, regression, etc.
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Spectral Co-Clustering (Dhillon, 2001)¹

• Given a matrix 𝐴 ∈ ℝ𝑁𝑟×𝑁𝑐
≥0 (e.g., a term-document matrix), the rows and

columns are viewed as the two sets of nodes in a bipartite graph.
• 𝑎𝑖𝑗 denotes the edge weight between the 𝑖th row and the 𝑗th column.

¹I. S. Dhillon: “Co-clustering documents and words using Bipartite Spectral
Graph Partitioning,” Proc. 7th ACM SIGKDD, pp. 269–274, 2001. 37 / 62
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Spectral Co-Clustering (Dhillon, 2001) …

• Then, matrices associated with this bipartite graph can be
written as:

𝑊=[𝑂 𝐴
𝐴T 𝑂] weighted adjacency matrix

𝐷= [𝐷𝑟 𝑂
𝑂 𝐷𝑐

] 𝐷𝑟 ∶=diag(𝐴1)
𝐷𝑐 ∶=diag(𝐴T1) degree matrix

𝐿∶=𝐷−𝑊 = [ 𝐷𝑟 −𝐴
−𝐴T 𝐷𝑐

] (unnormalized) graph Laplacian

𝐿rw ∶=𝐷−1𝐿 = 𝐼 −𝐷−1𝑊 random-walk normalized
graph Laplacian
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Spectral Co-Clustering (Dhillon, 2001) …

• The Fiedler vector of 𝐿rw bipartitions the bipartite graph:

𝜙1 = [𝐷
−1/2
𝑟 𝑢1

𝐷−1/2
𝑐 𝑣1

],

where 𝑢1 and 𝑣1 are the second left and right singular
vectors of �̃� = 𝐷−1/2

𝑟 𝐴𝐷−1/2
𝑐 .

• The rows and the columns are partitioned simultaneously.
• This also allows the analysis of rows and columns on an
equal footing, i.e., we can see not only which columns are
similar but also which rows are closely related to a
specific group of columns, etc.
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An Example: Science News Dataset …
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Matrix Partitioning à la Dhillon (2001)
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Matrix Partitioning à la Dhillon (2001)
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Matrix Partitioning à la Dhillon (2001)
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Term-Document Matrix Analysis

Dataset: the Science News database (1153×1042)

• Rows→ preselected words
• Columns→ articles from 8
fields: Anthropology; Astronomy;
Behavioral Sciences; Earth
Sciences; Life Sciences; Math &
CS; Medicine; Physics

• 𝑎𝑖𝑗 → the relative frequency of
word 𝑖 appears in article 𝑗 ⇒ all
column sums are 1

• GHWT/eGHWT best basis vectors
for rows analyze meaningful
groupings of words while those
for columns do the same for
documents

Science News database (original
order)
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Term-Document Matrix Analysis

Dataset: the Science News database (1153×1042)

• Rows→ preselected words
• Columns→ articles from 8
fields: Anthropology; Astronomy;
Behavioral Sciences; Earth
Sciences; Life Sciences; Math &
CS; Medicine; Physics

• 𝑎𝑖𝑗 → the relative frequency of
word 𝑖 appears in article 𝑗 ⇒ all
column sums are 1

• GHWT/eGHWT best basis vectors
for rows analyze meaningful
groupings of words while those
for columns do the same for
documents

Science News database
(reordered rows and columns)
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Example: Science News Dataset
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The best basis coefficient are all 0's
after this line; in fact the best basis turns
out to be essentially the canonical basis
in this case. The sparsity is 10.1%

Decay of the expansion
coefficients w.r.t. Haar basis,
Walsh basis, and GHWT best
basis. The vertical line denotes
the percentage of nonzero
entries in the matrix (10.1%).

• Cost functional: 1-norm

• Total number of
orthonormal bases
searched: > 10370

• 62.3% of the Haar
coefficients and 100% of the
Walsh coefficients must be
kept to achieve perfect
reconstruction, compared to
10.1% for the GHWT best
basis

⇒ The Haar and Walsh bases
could not efficiently capture
the underlying structure of
this Science News dataset
under the current matrix
partitioning strategy!
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Example: Science News Dataset

• Since the sparsity was used as the cost functional, the best
basis is in fact almost the canonical basis; the fine scale
information was too much emphasized, which may be sensitive
to ‘noise’.

• We are interested in the medium scale information in this
database, e.g., clustering structures both in words (rows) and
articles (cols).

• Hence, we weight the coefficients in the GHWT dictionary:

𝑐𝑗𝑘,𝑙 ← 𝑐𝑗𝑘,𝑙 ⋅ (supp(𝐺
0
0)/supp(𝐺

𝑗
𝑘))

𝛼

= 𝑐𝑗𝑘,𝑙 ⋅ (𝑁/𝑁 𝑗
𝑘)

𝛼

where 𝛼 ≥ 0 is chosen empirically to make the magnitude of the
finer coefficients bigger, which discourages the best-basis
algorithm to select fine scale subgraphs.

• See also Coifman-Leeb (2016); Ankenman-Leeb (2018) for such
weighting scheme and its relation to the Earth Mover’s Distance.
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Example: Science News Dataset
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The number of nonzero entries of
the original term-document
matrix whose sparsity is 10.1%

Decay of the expansion
coefficients w.r.t. Haar basis,
Walsh basis, and GHWT best
basis. The vertical line denotes
the percentage of nonzero
entries in the matrix (10.1%).

• Cost functional: 1-norm
• 𝛼row = 1.0,𝛼col = 0.15
• This best basis is less
sparse than before, and is
between the Haar and the
Walsh bases, i.e., well
captures information on
intermediate scales.
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Example: Science News Dataset
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The row best basis vectors at
𝑗 = 4.
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Example: Science News Dataset

The histograms of the article
categories (1 to 8) of the
expansion coefficients of column
vectors w.r.t. those 9 row best
basis vectors.

• For example, the positive
components of the 6th basis
vector correspond to the
following words: earthquake,
down, california, dioxide, deep,

warm, el, southern, crust, valley,

once, geologist, bottom, tsunami,

oxide, fault, antarctica, warning,

tsunamis, prediction, greenhouse

• On the other hand, the negative
components of that vector
correspond to: temperature, ice,

sea, layer, flow, around, survey,

coast, warming, quake, past, nino,

global, seismologist, cycle, cold,

slow, recent, plate, thickness,

meter, japan, forecast

• Clearly, this basis vector is
checking if a given article is in
Category 4 (Earth Sciences).
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Example: Science News Dataset

Column Best Basis (Coarse-to-Fine) Partition Pattern
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The column best basis (c2f)
partition pattern. The block
indicated by a red circle
corresponding to (𝑗,𝑘) = (4,5).

The column best basis vectors
with (𝑗,𝑘) = (4,5) whose supports
are 51 articles; 48 among 51
indicate ‘Astronomy’.
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Example: Science News Dataset
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The expansion coefficients of row
vectors w.r.t. the column best
basis vector 𝜓4,col

5,0 = the indicator
vector of 51 articles.

• The 3 nonzero components in 𝜓4,col
5,0

that are not in ‘Astronomy’
correspond to the following articles:
• “Old Glory, New Glory: The
Star-Spangled Banner gets some
tender loving care” (Anthropology: on the
preservation of the Star-Spangled Banner (flag)
using the space-age technology);
• “Snouts: A star is born in a very
odd way” (Life Sciences: on star-nosed moles);
• “Gravity tugs at the center of a
priority battle” (Math & CS: on the
priority war on the discovery of gravity between
Newton, Halley, and Hooke).

• The expansion coefficients > 0.05 in
the left figure correspond to the
following words: year, university,
time, team, system, light, earth,
star, planet, finding, astronomer,
universe, galaxy, object, ray,
telescope, orbit, mass, hole, dust,
black, distance, disk, infrared
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Example: Science News Dataset

Column Best Basis (Coarse-to-Fine) Partition Pattern
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The column best basis (c2f)
partition pattern. The block
indicated by a red circle
corresponding to (𝑗,𝑘) = (4,14).

The column best basis vectors
with (𝑗,𝑘) = (4,14) whose
supports are 62; 56 among 62
indicate ‘Medical Sciences’.
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Example: Science News Dataset
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vectors w.r.t. the column basis
vector 𝜓4,col

14,0 = the indicator
vector of 62 articles.

• Out of these 6 anomalies, 3 are in
‘Life Sciences’, i.e., not really
surprising. The remaining 3
anomalies are:
• “In Silico Medicine: Computer
simulations aid drug development
and medical care” (Math & CS);
• “Beyond Virtual Vaccinations:
Developing a digital immune system
in bits and bytes” (Math & CS);
• “Paleopathological Puzzles:
Researchers unearth ancient medical
secrets” (Anthropology).

• The expansion coefficients > 0.05 in
the left figure correspond to the
following words: year, university,
study, scientist, people, cell,
group, disease, system, drug,
protein, brain, human, blood,
patient, test, immune, virus,
strain, infection, vaccine,
antibody, hiv, infected, aids,
amyloid
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𝜅-GHWT

• Recently there has been great interest in analyzing and processing
signals measured on higher-order networks.

• Data are sampled over 𝐶𝜅, oriented 𝜅-simplices of a graph, 𝜅 ∈ℕ:
• For 𝜅 = 0,1,2,3,… , these signals take values over nodes, edges,
triangles, tetrahedra, …, respectively.

• The GHWT has been further generalized for 𝜅-simplices via recursive
bipartitions, which we call 𝜅-GHWT [S.-Schonsheck-Shvarts (2024)]

• Recursive bipartitions are done by the Fiedler vectors of Hodge
Laplacians (generalization of graph Laplacians)

Flows around Madagascar
[Schaub et al. (2020)]

Gene expression
correlations [Govek et
al. (2019)]

Coauthorship graph [Ebli
et al. (2022)] 53 / 62



The Coarse-to-Fine GHWT Dictionary on the Triangle Complex

Each row represents one level of the bipartition; Color represents
the sign info
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The Fine-to-Coarse GHWT Dictionary on the Triangle Complex

Color represents the sign info; the red boxes correspond to the
2-Haar Basis
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Applications of 𝜅-GHWT

• Combined with the scattering transform, we proposed the Multiscale
Hodge Scattering Networks [S.-Schonsheck-Shvarts (2024)]

• Application includes: Classification of Science News articles; graph
classification; potential energy prediction in molecular dynamics
simulation, …

• Our results indicate that MHSNs provide comparable results with those
by the state-of-the-art GNNs with up to a two-order of magnitude
reduction in number of learnable parameters.

• We strongly believe that our success here comes from the structure
and organization of our multiscale basis dictionaries that are
conveniently arranged in terms of scales, locations, and frequencies.

• We also proposed how to extract explainable features from scattering
transform coefficients [S.-Weber (2025)].

• No time to show these today, so please check our preprints:
arXiv:2311.10270 [cs.LG] and arXiv:2502.05722 [cs.LG]!
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Summary

• The eGHWT best-basis algorithm searches over an
immense number of orthonormal bases, much more than
the conventional GHWT best-basis algorithm does.

• When selected using an appropriate cost functional, the
eGHWT best basis outperforms the graph Haar/Walsh
bases, the conventional GHWT best basis.

• Graph signal compression and denoising demonstrate an
advantage of a data-adaptive basis dictionary from which
one can select the most suitable basis for one’s task at
hand!

• Combining the spectral co-clustering and GHWT leads to a
powerful tool to analyze matrix data, e.g., term-document
matrices, microarray data, etc.
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Future Plan

• Explore different cost functionals than the sparsity⟹
Local Discriminant Basis (LDB) and Local Regression Basis
(LRB) of Saito and Coifman for classification and
regression problems.

• Investigate the use of eGHWT for operator compression in
numerical analysis (in collaboration with Raphy Coifman
and Pei-Chun Su)

• What to do if your input data is of tensor form, i.e.,
𝐴 = (𝑎𝑖𝑗𝑘) ∈ ℝ𝐼×𝐽×𝐾? ⟹ a tripartite graph (a.k.a. 3-uniform
hypergraph)!
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Please check our Julia codes on GitHub!!
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl

https://github.com/UCD4IDS/MultiscaleSimplexSignalTransforms.jl

Split⟹ “Organize”⟹ Merge

Thank you very much for your attention!
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