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Morphological Analysis of Dendritic Trees of Mouse’s
Retinal Ganglion Cells
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A Typical Neuron (from Wikipedia)
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A Real Dendritic Tree Encoded as a Graph
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Our Observation

While we were analyzing the morphological features of the dendritic trees
using the the eigenvalues and eigenfunctions of graph Laplacians defined
on such trees, we observed an interesting phase-transition or thresholding
phenomenon on their behavior.

(a) RGC #60 (b) RGC #100
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Our Observation . . .

We have observed that this value 4 is critical since:

the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Our Aim

We want to answer to the following questions:

Why do such phase transitions in graph Laplacian eigenvalues and
eigenfunctions occur in dendritic trees?

Why the eigenvalue 4 is the threshold?

What classes of graphs and trees reveal such a phenomenon?
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Graph Laplacians

Let G = (V ,E ) be a graph (in fact, a tree) representing a given dendritic
tree, with the vertex set V = V (G ) = {v1, . . . , vn} where vi represents the
3D coordinate of the ith sampled point of the dendritic tree, and the edge
set E = E (G ) = {e1, . . . , en−1} where ek represents an edge (or line
segment) connecting between adjacent vertices. Let d(vk) = dvk be the
degree of the vertex vk .
The Laplacian matrix (often called the combinatorial Laplacian matrix) of
a graph G = (V ,E ) is defined as

L(G ) := D(G )− A(G )

D(G ) := diag(dv1 , . . . , dvn) the degree matrix

A(G ) = (aij) the adjacency matrix where

aij :=

{
1 if vi ∼ vj ;

0 otherwise.
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Graph Laplacians . . .

Let |V (G )| = n, and let 0 = λ0(G ) ≤ λ1(G ) ≤ · · · ≤ λn−1(G ) be the
sorted eigenvalues of L(G ).

mG (λ) := the multiplicity of λ.

Let I ⊂ R be an interval of the real line. Then define
mG (I ) := #{λk(G ) ∈ I}.
Let f ∈ L2(V ). Then L(G )f (u) = duf (u)−

∑
v∼u

f (v), i.e., this is a

generalization of the finite difference approximation to the Laplacian.

After all, sines (cosines) are the eigenfunctions of the Laplacian on
the rectangular domain with Dirichlet (Neumann) boundary
condition. Moreover, many special functions, e.g., spherical
harmonics and Bessel functions are part of the Laplacian
eigenfunctions for the spherical and cylindrical,domains, respectively.

Hence, the eigenfunction expansion of data measured at the vertices
using the graph Laplacian eigenfunctions corresponds to Fourier (or
spectral) analysis of the data on that graph.
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Graph Laplacians . . .

Furthermore, the eigenvalues of L(G ) reflect various intrinsic
geometric and topological information about the graph including

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

However, eigenvalues of L(G ) cannot uniquely determine the graph G .
∼ Kac (1966): “Can one hear the shape of a drum?” =⇒ Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
An example of “isospectral” graphs (Tan, 1998; Fujii & Katsuda,
1999):
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Graph Laplacians . . .

However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), . . .

∃ some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)

Nothing prevents us from using the Laplacian spectra for
characterizing dendrite patterns!
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A Simple Yet Important Example: A Path Graph

L(G ) = D(G )− A(G )



1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


=



1
2

2

. . .

2
1


−



0 1
1 0 1

1 0 1

. . .
. . .

. . .

1 0 1
1 0


The eigenvectors of this matrix are exactly the DCT Type II basis vectors

used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).

λk = 2− 2 cos(πk/n) = 4 sin2(πk/2n), k = 0, 1, . . . , n − 1.

φk =
(
cos(πk(`+ 1

2)/n)
)
0≤`<n

, k = 0, 1, . . . , n − 1.
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A Starlike Tree

is a tree where there is only one vertex whose degree is larger than 2. We
analyze this class of trees first because the real dendritic trees are more
complicated.

Let S(n1, n2, . . . , nk) be a starlike tree that has k(≥ 3) paths (i.e.,
branches) emanating from the center vertex v1.
Let the ith branch have ni vertices excluding v1.
Let n1 ≥ n2 ≥ · · · ≥ nk .

The total number of vertices: n = 1 +
k∑

i=1

ni .

(a) S(2, 2, 1, 1, 1, 1) (b) S(n1, 1, 1, 1, 1, 1, 1, 1) a.k.a. comet
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Known Results on Starlike Trees

We proved (in 2010) the largest eigenvalue for a comet is always
larger than 4. However, we found that more general results had been
already proven.

K. Ch. Das (2007) proved the following results.

λmax = λn−1 < k + 1 +
1

k − 1

2 + 2 cos

(
2π

2nk + 1

)
≤ λn−2 ≤ 2 + 2 cos

(
2π

2n1 + 1

)
On the other hand, Grone and Merris (1994) proved the following
lower bound for a general graph G with at least one edge:

λmax ≥ max
1≤j≤n

d(vj) + 1.
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Our Own New Results on Starlike Trees

Corollary (S-W 2011)

A starlike tree has exactly one graph Laplacian eigenvalue greater than or
equal to 4. The equality holds if and only if the starlike tree is
K1,3 = S(1, 1, 1), which is also known as a claw.

Theorem (S-W 2011, N-S-W 2011)

Let φn−1 = (φ1,n−1, · · · , φn,n−1)T, where φj ,n−1 is the value of the
eigenfunction corresponding to the largest eigenvalue λn−1 at the vertex
vj , j = 1, . . . , n. Then, the absolute value of this eigenfunction at the
central vertex v1 cannot be exceeded by those at the other vertices, i.e.,

|φ1,n−1| > |φj ,n−1|, j = 2, . . . , n.
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Why Is the Eigenvalue 4 Critical on Starlike Trees?

The eigenvalue equation along each branch, say, the first branch
containing n1 vertices, leads to the following recursion formula:

φj+1 + (λ− 2)φj + φj−1 = 0, j = 2, . . . , n1

with the appropriate boundary condition.

Consider its characteristic equation r2 + (λ− 2)r + 1 = 0.
Then, the general solution can be written as φj = Ar j−2

1 + Br j−2
2 ,

j = 2, . . . , n1 + 1, where r1, r2 are the roots of the characteristic
equation, and A,B are appropriate constants derived from the
boundary condition.

The determinant of the characteristic equation is

D(λ) := (λ− 2)2 − 4 = λ(λ− 4).

Hence if 0 ≤ λ < 4, then r1, r2 ∈ C, which give us the oscillatory
solution, while if λ > 4, we can show r1 < −1 < r2 < 0, which lead to
the more concentrated solution.
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Our Observation via Numerical Experiments

Unfortunately, actual dendritic trees are not starlike.

However, our numerical computations and data analysis indicate that:

0 ≤
#{j ∈ (1, n) | d(vj) 	 2} −mG ([4,∞))

n
≤ 0.047

for each cell where n = |V (G )|.
We can define the starlikeliness S`(T ) of a given tree G = T as
follows:

S`(T ) := 1−
#{j ∈ (1, n) | d(vj) 	 2} −mT ([4,∞))

n
.
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Zoom Up of Some RGCs

(a) RGC #100; S`(T ) = 1 (b) RGC #155; S`(T ) = 0.953 � 1

saito@math.ucdavis.edu (UC Davis) λ > 4 ICIAM 11 23 / 32



Our Observation and Questions

Theorem (N-S-W 2011)

For any tree T of finite volume, we have

0 ≤ mT ([4,∞)) ≤ #{j ∈ (1, n) | d(vj) 	 2}

and each eigenfunction corresponding to λ ≥ 4 has its largest component
(in the absolute value) on the vertices whose degree are larger than 2.

Questions

Is there any tree whose graph Laplacian has an exact eigenvalue 4?

If so, what kind of trees are they?

How about simple connected graphs instead of trees?
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Our Conjecture and Questions . . .

It turned out that Guo proved the following theorem:

Theorem (Guo 2006)

Let T be a tree with n vertices. Then,

λj(T ) ≤
⌈

n

n − j

⌉
, j = 0, . . . , n − 1,

and the equality holds iff a) j 6= 0; b) n − j divides n; and c) T is spanned
by n − j vertex disjoint copies of K

1, j
n−j

.

This implies that if n = 4m, there is an eigenvalue exactly equal to 4
at j = 3m, i.e., λ3m = 4, and this tree consists of m copies of K1,3:
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Our Conjecture and Questions . . .
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Can a simple connected graph have the exact eigenvalue 4?

The answer is clear Yes: a regular finite lattice graph in Rd , d > 1
has repeated eigenvalue 4.
The eigenvalues and the corresponding eigenfunctions of a graph
representing the regular finite lattice of size n × n × · · · × n = nd are

λj1,...,jd = 4
d∑

i=1

sin2

(
jiπ

2n

)

φj1,...,jd (x1, . . . , xd) =
d∏

i=1

cos

(
jiπ(xi + 1

2)

n

)
,

where ji , xi ∈ Z/nZ for each i ; see Burden and Hedstrom: “The
distribution of the eigenvalues of the discrete Laplacian,” BIT, vol.12,
pp.475–488, 1972.
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Hence, determining mG (4) of this lattice graph is equivalent to finding
the integer solution (j1, . . . , jd) ∈ (Z/nZ)d to the following equation:

d∑
i=1

sin2

(
jiπ

2n

)
= 1.

For d = 2, it is easy to show that mG (4) = n − 1.

For d = 3, mG (4) behaves in a much more complicated manner,
which is deeply related to number theory.

We expect that more complicated situations occur for d > 3.
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Summary

We completely understood why the eigenvalue 4 plays a role of
threshold for the phase transition phenomenon for starlike trees.

We proved that the eigenfunction corresponding to the largest
eigenvalue (≥ 4) reveals the concentration/localization phenomenon
for starlike trees.

For more general trees, the above statements are yet to be proved.

However, we proved that the number of the eigenvalues greater than
or equal to 4 is bounded from above by the number of vertices whose
degree is larger than 2 for any tree.

We also identified the unique class of trees (i.e., concatenations of
claws) whose members have the exact eigenvalue 4.

We also showed that there exist many graphs (not trees) that have
the exact eigenvalue 4 (e.g., finite lattice graphs).

A finite lattice graph with d ≥ 2, have repeated eigenvalue 4 and the
corresponding eigenfunctions reveal quite peculiar features; ∃ still
many things to understand and prove!!

saito@math.ucdavis.edu (UC Davis) λ > 4 ICIAM 11 30 / 32



Outline

1 Motivations

2 Graph Laplacians

3 Analysis of Starlike Trees

4 Results

5 Summary

6 References/Acknowledgment

saito@math.ucdavis.edu (UC Davis) λ > 4 ICIAM 11 31 / 32



References, etc.

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains

All the talk slides of the previous minisymposia “Laplacian
Eigenfunctions and Their Applications, ” which I co-organized for
ICIAM 2007 (Zürich) and SIAM Imaging Conference 2008 (San Diego);
A Link to the recent workshop on “Laplacian eigenvalues and
eigenfunctions: Theory, application, computation,” Feb. 2009, at
Institute for Pure and Applied Mathematics (IPAM), UCLA;
My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations.”

NS is co-organizing a minisymposium on “Harmonic Analysis on
Graphs and Networks: Theory and Applications” at ICIAM 2011
(Vancouver, Canada). Please come to the afternoon session today!

The following article is available at
http://www.math.ucdavis.edu/˜saito/publications/

N. Saito and E. Woei: “On the phase transition phenomenon of graph
Laplacian eigenfunctions on trees,” RIMS Kokyuroku, vol.1743, 2011.
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