Analysis of Neuronal Dendrite Patterns Using Graph Laplacians

Naoki Saito

Department of Mathematics University of California, Davis

Feb. 9, 2009

Outline

Motivations

2 Our Dataset

- Our Strategy
- 4 Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- References/Acknowledgment

Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- 7 References/Acknowledgment

Clustering Mouse Retinal Ganglion Cells ... 3D Data

Cells in Retina (from Hubel: Eye, Brain, and Vision, 1995)

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 5 / 40

A Typical Neuron (from Wikipedia)

Structure of a Typical Neuron

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 7 / 40

イロト イ伺ト イヨト イヨト

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 7 / 40

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 7 / 40

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 7 / 40

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 7 / 40

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!

¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

- Neuroscientists' Objective: To understand how structural / morphological properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality; how such properties change / evolve from newborn to adult
- Why mouse? \implies Great possibilities for genetic manipulation
- Data: 3D images of dendrites of RGCs via a confocal microscope
- State of the art: A manually intensive procedure using specialized software¹:
 - Trace and segment dendrite patterns from each 3D cube;
 - Extract geometric/morphological parameters (totally 14 such parameters);
 - Apply a conventional bottom-up "hierarchical clustering" algorithm
- The extracted morphological parameters include: somal size; dendritic field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, ...
- It takes half a day per cell with a lot of human interactions!
- ¹Neurolucida[®], MBF Bioscience

saito@math.ucdavis.edu (UC Davis)

3D Data

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 8 / 40

Long-term: Develop an efficient and automatic procedure from segmentation/tracing to morphological parameter extraction to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project → Tractography in Diffusion Tensor MRI, ...

Short-term: Develop algorithms for automatic morphological feature extraction and clustering

Long-term: Develop an efficient and automatic procedure from segmentation/tracing to morphological parameter extraction to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project \implies Tractography in Diffusion Tensor MRI, ...

Short-term: Develop algorithms for automatic morphological feature extraction and clustering

Long-term: Develop an efficient and automatic procedure from segmentation/tracing to morphological parameter extraction to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project \implies Tractography in Diffusion Tensor MRI, ...

Short-term: Develop algorithms for automatic morphological feature extraction and clustering

Clustering using Features Derived by Neurolucida®

IPAM 10 / 40

Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- 7 References/Acknowledgment

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida[®] (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma is represented as a sequence of points traced along its boundary (circular/ring shape)

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida[®] (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma is represented as a sequence of points traced along its boundary (circular/ring shape)

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida[®] (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma is represented as a sequence of points traced along its boundary (circular/ring shape)

- A sequence of 3D sample points along dendrite arbors obtained by Neurolucida[®] (requires intensive human interaction)
- Connectivity and branching information by the same software
- Each soma is represented as a sequence of points traced along its boundary (circular/ring shape)

 \implies Constructing a graph representing dendrite structures per RGC is very natural and simple! In fact, we constructed a tree (i.e., a connected graph without cycles/loops) by replacing the soma ring by a single vertex representing a center of the soma.

$\mathsf{Our}\;\mathsf{Dataset}\Longrightarrow\mathsf{Trees}$

saito@math.ucdavis.edu (UC Davis)

Graph Laplacians on Dendrites

IPAM 13 / 4

- Let G be a graph (in fact a tree) representing an RGC.
- Let $V = V(G) = \{v_1, \ldots, v_n\}$ where $v_k \in \mathbb{R}^3$, be a set of vertices representing sample points along dendrite arbors. *n* ranges between 565 and 24474 depending on the RGCs.
- Let E = E(G) = {e₁,..., e_m} be a set of edges where e_k = (v_i, v_j) represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some 1 ≤ i, j ≤ n. Note that |E(G)| = |V(G)| 1 since G is a tree.
- Let $d(v_k) = d_{v_k}$ be the degree of the vertex v_k . In our dataset,

 $\max_{130 \text{ cells}} \max_{k} d(v_k) = 8, \quad \min_{130 \text{ cells}} \max_{k} d(v_k) = 3.$

- Let G be a graph (in fact a tree) representing an RGC.
- Let $V = V(G) = \{v_1, \ldots, v_n\}$ where $v_k \in \mathbb{R}^3$, be a set of vertices representing sample points along dendrite arbors. *n* ranges between 565 and 24474 depending on the RGCs.
- Let E = E(G) = {e₁,..., e_m} be a set of edges where e_k = (v_i, v_j) represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some 1 ≤ i, j ≤ n. Note that |E(G)| = |V(G)| 1 since G is a tree.
- Let $d(v_k) = d_{v_k}$ be the degree of the vertex v_k . In our dataset,

 $\max_{130 \text{ cells}} \max_k d(v_k) = 8, \quad \min_{130 \text{ cells}} \max_k d(v_k) = 3.$

- Let G be a graph (in fact a tree) representing an RGC.
- Let $V = V(G) = \{v_1, \ldots, v_n\}$ where $v_k \in \mathbb{R}^3$, be a set of vertices representing sample points along dendrite arbors. *n* ranges between 565 and 24474 depending on the RGCs.
- Let $E = E(G) = \{e_1, \ldots, e_m\}$ be a set of edges where $e_k = (v_i, v_j)$ represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some $1 \le i, j \le n$. Note that |E(G)| = |V(G)| 1 since G is a tree.

• Let $d(v_k) = d_{v_k}$ be the degree of the vertex v_k . In our dataset,

 $\max_{130 \text{ cells}} \max_k d(v_k) = 8, \quad \min_{130 \text{ cells}} \max_k d(v_k) = 3.$

- Let G be a graph (in fact a tree) representing an RGC.
- Let $V = V(G) = \{v_1, \ldots, v_n\}$ where $v_k \in \mathbb{R}^3$, be a set of vertices representing sample points along dendrite arbors. *n* ranges between 565 and 24474 depending on the RGCs.
- Let E = E(G) = {e₁,..., e_m} be a set of edges where e_k = (v_i, v_j) represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some 1 ≤ i, j ≤ n. Note that |E(G)| = |V(G)| 1 since G is a tree.
- Let $d(v_k) = d_{v_k}$ be the degree of the vertex v_k . In our dataset,

$$\max_{130 \text{ cells}} \max_{k} d(v_k) = 8, \quad \min_{130 \text{ cells}} \max_{k} d(v_k) = 3.$$

- Let G be a graph (in fact a tree) representing an RGC.
- Let $V = V(G) = \{v_1, \ldots, v_n\}$ where $v_k \in \mathbb{R}^3$, be a set of vertices representing sample points along dendrite arbors. *n* ranges between 565 and 24474 depending on the RGCs.
- Let $E = E(G) = \{e_1, \ldots, e_m\}$ be a set of edges where $e_k = (v_i, v_j)$ represents an edge (or line segment) connecting between adjacent vertices v_i, v_j for some $1 \le i, j \le n$. Note that |E(G)| = |V(G)| 1 since G is a tree.
- Let $d(v_k) = d_{v_k}$ be the degree of the vertex v_k . In our dataset,

$$\max_{130 \text{ cells}} \max_{k} d(v_k) = 8, \quad \min_{130 \text{ cells}} \max_{k} d(v_k) = 3.$$

Outline

Motivations

2 Our Dataset

Our Strategy

- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- 7 References/Acknowledgment

$$\begin{split} L(G) &:= D(G) - A(G) \\ D(G) &:= \text{diag}(d_{v_1}, \dots, d_{v_n}) \quad \text{the degree matrix} \\ A(G) &= (a_{ij}) \quad \text{the adjacency matrix where} \\ a_{ij} &:= \begin{cases} 1 & \text{if } v_i \sim v_j; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Step 2: Compute the eigenvalues of L(G);
Step 3: Construct features using these eigenvalues;
Step 4: Repeat the above steps for all the RGCs and feed these feature vectors to clustering algorithms.

イロト 不得下 イヨト イヨト

$$\begin{split} L(G) &:= D(G) - A(G) \\ D(G) &:= \text{diag}(d_{v_1}, \dots, d_{v_n}) \quad \text{the degree matrix} \\ A(G) &= (a_{ij}) \quad \text{the adjacency matrix where} \\ a_{ij} &:= \begin{cases} 1 & \text{if } v_i \sim v_j; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Step 2: Compute the eigenvalues of L(G);

Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and feed these feature vectors to clustering algorithms.

イロト 不得下 イヨト イヨト

$$\begin{split} L(G) &:= D(G) - A(G) \\ D(G) &:= \text{diag}(d_{v_1}, \dots, d_{v_n}) \quad \text{the degree matrix} \\ A(G) &= (a_{ij}) \quad \text{the adjacency matrix where} \\ a_{ij} &:= \begin{cases} 1 & \text{if } v_i \sim v_j; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Step 2: Compute the eigenvalues of L(G);

Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and feed these feature vectors to clustering algorithms.

イロン イ団と イヨン イヨン

$$\begin{split} L(G) &:= D(G) - A(G) \\ D(G) &:= \text{diag}(d_{v_1}, \dots, d_{v_n}) \quad \text{the degree matrix} \\ A(G) &= (a_{ij}) \quad \text{the adjacency matrix where} \\ a_{ij} &:= \begin{cases} 1 & \text{if } v_i \sim v_j; \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Step 2: Compute the eigenvalues of L(G);

Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and feed these feature vectors to clustering algorithms.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- 4 Why Graph Laplacians?
 - 5 Preliminary Results
- 6 Conclusions & Future Plans
- 7 References/Acknowledgment

Why Graph Laplacians?

• Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including

- connectivity or the number of separated components
- diameter (the maximum distance over all pairs of vertices)
- mean distance, . . .
- Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in unlocking a thousand secrets about graphs.

< □ > < □ > < □ > < □ >

• Eigenvectors of *L*(*G*) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

Why Graph Laplacians?

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in unlocking a thousand secrets about graphs.

• Eigenvectors of *L*(*G*) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

・ロト ・ 同ト ・ ヨト ・ ヨ

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

 Eigenvectors of L(G) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

・ロト ・ 同ト ・ ヨト ・ ヨ

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

• Eigenvectors of *L*(*G*) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

 Eigenvectors of L(G) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

 Eigenvectors of L(G) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

- Eigenvalues of *L*(*G*) reflect various intrinsic geometric information about the graph including
 - connectivity or the number of separated components
 - diameter (the maximum distance over all pairs of vertices)
 - mean distance, . . .
 - Fan Chung: Spectral Graph Theory, AMS, 1997

 Eigenvectors of L(G) also play a useful role to understand a graph (e.g., the discrete nodal domain theorem useful for grouping vertices; see Biyikoğlu, Leydold, & Stadler, LNM, Springer, 2007)

Aside: Graph Laplacian of a Line \Longrightarrow DCT Type II Basis

The eigenvectors of this matrix are exactly the DCT Type II basis vectors used for the JPEG image compression standard! (See e.g., Strang, SIAM Review, 1999).

• Let $f \in L^2(V)$. Then

$$L(G)f(u) = d_u f(u) - \sum_{v \sim u} f(v),$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- Eigenvalues of L(G) cannot uniquely determine the graph G.
 ~ Kac (1966): "Can one hear the shape of a drum?" ⇒ Gordon,
 Webb, & Wolpert (1992): "One cannot hear the shape of a drum."
- An example of "isospectral" graphs (Tan, 1998; Fujii & Katsuda, 1999):

• Let $f \in L^2(V)$. Then

$$L(G)f(u) = d_u f(u) - \sum_{v \sim u} f(v),$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

• Eigenvalues of L(G) cannot uniquely determine the graph G.

- ~ Kac (1966): "Can one hear the shape of a drum?" \implies Gordon, Webb, & Wolpert (1992): "One cannot hear the shape of a drum."
- An example of "isospectral" graphs (Tan, 1998; Fujii & Katsuda, 1999):

• Let $f \in L^2(V)$. Then

$$L(G)f(u) = d_u f(u) - \sum_{v \sim u} f(v),$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- Eigenvalues of L(G) cannot uniquely determine the graph G.
 ∼ Kac (1966): "Can one hear the shape of a drum?" ⇒ Gordon, Webb, & Wolpert (1992): "One cannot hear the shape of a drum."
- An example of "isospectral" graphs (Tan, 1998; Fujii & Katsuda, 1999):

• Let $f \in L^2(V)$. Then

$$L(G)f(u) = d_u f(u) - \sum_{v \sim u} f(v),$$

i.e., this is a generalization of the finite difference approximation to the Laplace operator.

- Eigenvalues of L(G) cannot uniquely determine the graph G.
 ∼ Kac (1966): "Can one hear the shape of a drum?" ⇒ Gordon, Webb, & Wolpert (1992): "One cannot hear the shape of a drum."
- An example of "isospectral" graphs (Tan, 1998; Fujii & Katsuda, 1999):

• However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007), centipedes (Boulet, 2008),

- ∃ some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

• However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007), centipedes (Boulet, 2008),

- ∃ some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

• However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

- ∃ some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

• However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

- ∃ some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

• However, certain classes of graphs can be completely determined by their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007), centipedes (Boulet, 2008), ...

- ∃ some attempts to reconstruct graphs from their Laplacian spectra via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)
- Nothing prevents us from using the Laplacian spectra for characterizing dendrite patterns!

saito@math.ucdavis.edu (UC Davis)

IPAM 21 / 40

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let *I* ⊂ ℝ be an interval of the real line. Then define *m_G(I)* := #{λ_k(G) ∈ *I*}.
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

• • • • • • • • • • • • •

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- *m_G*(λ) := the multiplicity of λ.
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

・ロト ・ 同ト ・ ヨト ・ ヨ

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix $\Delta(G)$ of G represents "distances" among the vertices, i.e., $(\Delta(G))_{i,j}$ is the number of edges in a shortest path from vertex v_i to vertex v_j .

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

イロト イヨト イヨト イヨト

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let $I \subset \mathbb{R}$ be an interval of the real line. Then define $m_G(I) := \#\{\lambda_k(G) \in I\}.$
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

イロト イヨト イヨト イヨト

- Let |V(G)| = n, and let 0 = λ₀(G) ≤ λ₁(G) ≤ ··· ≤ λ_{n-1}(G) be the sorted eigenvalues of L(G).
- $m_G(\lambda) :=$ the multiplicity of λ .
- Let *I* ⊂ ℝ be an interval of the real line. Then define *m_G(I)* := #{λ_k(G) ∈ *I*}.
- A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a pendant vertex is called pendant neighbor.
- Let p(G) and q(G) be the number of pendant vertices and that of pendant neighbors, respectively.
- Let $S \subset V(G)$ be a nonempty subset of vertices of G.
- ∂S := {e = (u, v) ∈ E(G) | u ∈ S, v ∉ S}, which is called the boundary of S.
- The distance matrix Δ(G) of G represents "distances" among the vertices, i.e., (Δ(G))_{i,j} is the number of edges in a shortest path from vertex v_i to vertex v_j.

イロト イヨト イヨト イヨト

• The isoperimetric number of G is defined as

$$i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \left| \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right\},$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

- The Wiener index² W(G) of a graph G is the sum of the entries in the upper triangular part of the distance matrix $\Delta(G)$.
- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

²proposed by Harry Wiener of Brooklyn College in 1947 □ → 〈♂ → 〈 ≥ → 〈 ≥ → ∠ ≥ → ≥ saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 23 / 40 • The isoperimetric number of G is defined as

$$i(G) := \inf \left\{ \frac{|\partial S|}{|S|} \left| \emptyset \neq S \subset V, |S| \leq \frac{n}{2} \right\},$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

- The Wiener index² W(G) of a graph G is the sum of the entries in the upper triangular part of the distance matrix Δ(G).
- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

²proposed by Harry Wiener of Brooklyn College in 1947 • • • • • • • • • • • • • •

• The isoperimetric number of G is defined as

$$i(G) := \inf \left\{ rac{|\partial S|}{|S|} \left| \emptyset
eq S \subset V, \, |S| \leq rac{n}{2}
ight\},$$

which is closely related to the conductance of a graph, i.e., how fast a random walk on G converges to a stationary distribution.

- The Wiener index² W(G) of a graph G is the sum of the entries in the upper triangular part of the distance matrix Δ(G).
- The Wiener index of a molecular graph has been used in chemical applications because it may exhibit a good correlation with physical and chemical properties (e.g., the boiling point, density, viscosity, surface tension, ...) of the corresponding molecule/material.

IPAM 23 / 40

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...

- $m_G(0)$ is equal to the number of connected components of G.
- The number of pendant neighbors of G is bounded as:

 $p(G) - m_G(1) \le q(G) \le m_G(2, n],$

where the second inequality holds if G is connected and satisfies 2q(G) < n.

• For $n \ge 4$, the isoperimetric number i(G) satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - \lambda_1(G)\right) \lambda_1(G)}.$$

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...

- $m_G(0)$ is equal to the number of connected components of G.
- The number of pendant neighbors of G is bounded as:

$$p(G)-m_G(1)\leq q(G)\leq m_G(2,n],$$

where the second inequality holds if G is connected and satisfies 2q(G) < n.

• For $n \ge 4$, the isoperimetric number i(G) satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - \lambda_1(G)\right) \lambda_1(G)}.$$

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...

- $m_G(0)$ is equal to the number of connected components of G.
- The number of pendant neighbors of G is bounded as:

$$p(G) - m_G(1) \leq q(G) \leq m_G(2, n],$$

where the second inequality holds if G is connected and satisfies 2q(G) < n.

• For $n \ge 4$, the isoperimetric number i(G) satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - \lambda_1(G)\right) \lambda_1(G)}.$$

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}$$

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), ...

- $m_G(0)$ is equal to the number of connected components of G.
- The number of pendant neighbors of G is bounded as:

$$p(G) - m_G(1) \leq q(G) \leq m_G(2, n],$$

where the second inequality holds if G is connected and satisfies 2q(G) < n.

• For $n \ge 4$, the isoperimetric number i(G) satisfies

$$i(G) < \sqrt{\left(2 \max_{v \in V(G)} d_v - \lambda_1(G)\right) \lambda_1(G)}.$$

$$W(G) = \sum_{k=1}^{n-1} \frac{n}{\lambda_k}.$$

Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- 7 References/Acknowledgment

Features Used in Our Experiments

Feature 1: $(p(G) - m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)|;

Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);

Feature 4:

 $: √(2 \max_{v \in V(G)} d_v - \lambda_1(G)) \lambda_1(G), i.e., the upper bound of the isoperimetric number$ *i*(*G*).

 We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.

• Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.

Features Used in Our Experiments

Feature 1: $(p(G) - m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;

Feature 2: The normalized Wiener index W(G)/|V(G)|;

- Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);
- Feature 4: $\sqrt{(2 \max_{v \in V(G)} d_v \lambda_1(G)) \lambda_1(G)}$, i.e., the upper bound of the isoperimetric number i(G).
- We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.
- Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.
- Feature 1: $(p(G) m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;
- Feature 2: The normalized Wiener index W(G)/|V(G)|;
- Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);
- Feature 4: $\sqrt{(2 \max_{v \in V(G)} d_v \lambda_1(G)) \lambda_1(G)}$, i.e., the upper bound of the isoperimetric number i(G).
- We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.
- Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.

- Feature 1: $(p(G) m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;
- Feature 2: The normalized Wiener index W(G)/|V(G)|;
- Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);
- Feature 4: $\sqrt{(2 \max_{v \in V(G)} d_v \lambda_1(G)) \lambda_1(G)}$, i.e., the upper bound of the isoperimetric number i(G).
- We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.
- Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.

- Feature 1: $(p(G) m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;
- Feature 2: The normalized Wiener index W(G)/|V(G)|;
- Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);
- Feature 4: $\sqrt{(2 \max_{v \in V(G)} d_v \lambda_1(G)) \lambda_1(G)}$, i.e., the upper bound of the isoperimetric number i(G).
- We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.

• Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.

- Feature 1: $(p(G) m_G(1))/|V(G)|$ as a lower bound of the number of the pendant neighbors q(G) with the normalization by n = |V(G)|;
- Feature 2: The normalized Wiener index W(G)/|V(G)|;
- Feature 3: $m_G(4,\infty)/|V(G)|$, i.e., the number of eigenvalues of L(G)larger than 4 (normalized);
- Feature 4: $\sqrt{(2 \max_{v \in V(G)} d_v \lambda_1(G)) \lambda_1(G)}$, i.e., the upper bound of the isoperimetric number i(G).
- We normalized Features 1, 2, 3, by n = |V(G)| because we wanted to make features less dependent on the number of samples or how the dendrite arbors are sampled. Of course, the number of vertices itself could be a feature although it may not be a decisive one.
- Feature 4 was not explicitly normalized because the isoperimetric number *i*(*G*) itself is a normalized quantity in terms of number of vertices.

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G) m_G(1)$ is, the more likely for the RGC to have spines.

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G) m_G(1)$ is, the more likely for the RGC to have spines.

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G) m_G(1)$ is, the more likely for the RGC to have spines.

⁽a) RGC #60; *F*₁ large

- Feature 1 was used because the number of pendant neighbors seems to be strongly related to the so-called spines, short protrusions from the dendrite arbors.
- Hence, we expect that the larger this lower bound $p(G) m_G(1)$ is, the more likely for the RGC to have spines.

- Feature 3, the normalized version of $m_G(4,\infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth bell-shaped curve that ranges over [0, 4] and the sudden burst above the value 4.

- Feature 3, the normalized version of $m_G(4,\infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth bell-shaped curve that ranges over [0, 4] and the sudden burst above the value 4.

- Feature 3, the normalized version of $m_G(4,\infty)$, was used because of the following observation:
- The eigenvalue distribution of each RGC consists of a smooth bell-shaped curve that ranges over [0, 4] and the sudden burst above the value 4.

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

(a) RGC #100;
$$\lambda_{1141} = 3.9994$$

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

(a) RGC #100;
$$\lambda_{1141} = 3.9994$$

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around branches.

(b) RGC #100; $\lambda_{1142} = 4.3829$

(a) RGC #100; $\lambda_{1141} = 3.9994$

IPAM 29 / 40

Recap: Clustering using Features Derived by Neurolucida®

IPAM 30 / 40

Results: Scatter Plot; Feature 1 vs Feature 2

IPAM 31 / 40

Results: Scatter Plot; Feature 3 vs Feature 4

IPAM 32 / 40

• Cluster 6 RGCs separate themselves quite well from the other RGC clusters.

• In fact, the sparse and distributed dendrite patterns such as those in Clusters 6 and 10 are located below the major axis of the point clouds in the $F_1 - F_2$ scatter plot and above the major axis of the point clouds in the $F_3 - F_4$ scatter plot. \implies the dendrite patterns belonging to Cluster 6 and 10 have smaller number of spines and smaller Wiener indices compared to the other denser dendrite patterns such as Clusters 1 to 5.

• Considerable feature variability in Clusters 7 and 8.

- Cluster 6 RGCs separate themselves quite well from the other RGC clusters.
- In fact, the sparse and distributed dendrite patterns such as those in Clusters 6 and 10 are located below the major axis of the point clouds in the $F_1 F_2$ scatter plot and above the major axis of the point clouds in the $F_3 F_4$ scatter plot. \implies the dendrite patterns belonging to Cluster 6 and 10 have smaller number of spines and smaller Wiener indices compared to the other denser dendrite patterns such as Clusters 1 to 5.
- Considerable feature variability in Clusters 7 and 8.

- Cluster 6 RGCs separate themselves quite well from the other RGC clusters.
- In fact, the sparse and distributed dendrite patterns such as those in Clusters 6 and 10 are located below the major axis of the point clouds in the $F_1 F_2$ scatter plot and above the major axis of the point clouds in the $F_3 F_4$ scatter plot. \implies the dendrite patterns belonging to Cluster 6 and 10 have smaller number of spines and smaller Wiener indices compared to the other denser dendrite patterns such as Clusters 1 to 5.
- Considerable feature variability in Clusters 7 and 8.

- Cluster 6 RGCs separate themselves quite well from the other RGC clusters.
- In fact, the sparse and distributed dendrite patterns such as those in Clusters 6 and 10 are located below the major axis of the point clouds in the $F_1 F_2$ scatter plot and above the major axis of the point clouds in the $F_3 F_4$ scatter plot. \implies the dendrite patterns belonging to Cluster 6 and 10 have smaller number of spines and smaller Wiener indices compared to the other denser dendrite patterns such as Clusters 1 to 5.
- Considerable feature variability in Clusters 7 and 8.

Cluster 1 vs Cluster 6 ...

(日) (同) (三) (三)

Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
 - 7 References/Acknowledgment

- Demonstrated the usefulness of the eigenvalues of graph Laplacians for dendrite pattern analysis although the results are still preliminary.
- Observed a global-to-local phase transition phenomenon of the eigenvalues and eigenfunctions of such dendrite patterns \implies leads to a theorem?
- Investigate the resampling of dendrite arbor samples.
- Analyze the features derived by Neurolucida[®]: are they derivable from the Laplacian eigenvalues?
- Compare the cost of features derivable by directly analyzing a graph with that by Laplacian eigenvalues (e.g., features related to *i*(*G*)).

- Impose the Dirichlet boundary condition on the terminal nodes \implies eigenvalue problems of a graph with boundary; the discrete Dirichlet problem; the Faber-Krahn inequality, ...
- Solve Poisson's equation with mixed boundary condition ⇐ the mean exit time u(x) of particles released at a point x inside a bounded domain driven by Brownian motion is the solution of Poisson's equation Δu = −1 satisfying the zero Dirichlet boundary condition.
- Investigate metric (or quantum) graphs.
- Investigate how to model dendrite pattern generation and evolution, e.g., percolation on trees.

Outline

Motivations

2 Our Dataset

- 3 Our Strategy
- Why Graph Laplacians?
- 5 Preliminary Results
- 6 Conclusions & Future Plans
- References/Acknowledgment

References

- Laplacian Eigenfunction Resource Page http://www.math.ucdavis.edu/~saito/lapeig/ contains
 - All the talk slides of the previous minisymposia "Laplacian Eigenfunctions and Their Applications," which Mauro Maggioni, Xiaoming Huo, and I organized for ICIAM 2007 (Zürich) and SIAM Imaging Conference 2008 (San Diego); and
 - My Course Note (elementary) on "Laplacian Eigenfunctions: Theory, Applications, and Computations"
- The following articles are available at http://www.math.ucdavis.edu/~saito/publications/
 - N. Saito and E. Woei: "Analysis of neuronal dendrite patterns using eigenvalues of graph Laplacian," *Japan SIAM Letter*, vol. 1, pp. 13–16, 2009, Invited paper.
 - N. Saito: "Data analysis and representation using eigenfunctions of Laplacian on a general domain," *Applied & Computational Harmonic Analysis*, vol. 25, no. 1, pp. 68–97, 2008.

イロト 不得下 イヨト イヨト

- Ernest Woei (UCD, Math)
- Linh Lieu (UCD, Math)
- Leo Chalupa (UCD, Neurobiology)
- Julie Coombs (UCD, Neurobiology)
- NSF
- ONR

Thank you very much for your attention!