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Clustering Mouse Retinal Ganglion Cells . . . 3D Data
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Cells in Retina (from Hubel: Eye, Brain, and Vision, 1995)
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A Typical Neuron (from Wikipedia)
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Clustering Mouse’s Retinal Ganglion Cells

Neuroscientists’ Objective: To understand how structural /
morphological properties of mouse retinal ganglion cells (RGCs) relate
to the cell types and their functionality; how such properties change /
evolve from newborn to adult

Why mouse? =⇒ Great possibilities for genetic manipulation

Data: 3D images of dendrites of RGCs via a confocal microscope
State of the art: A manually intensive procedure using specialized
software1:

Trace and segment dendrite patterns from each 3D cube;
Extract geometric/morphological parameters (totally 14 such
parameters);
Apply a conventional bottom-up “hierarchical clustering” algorithm

The extracted morphological parameters include: somal size; dendritic
field size; total dendrite length; branch order; mean internal branch
length; branch angle; mean terminal branch length, . . .

It takes half a day per cell with a lot of human interactions!
1Neurolucida R©, MBF Bioscience
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3D Data
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Our Goal

Long-term: Develop an efficient and automatic procedure from
segmentation/tracing to morphological parameter extraction
to clustering and classification to assist neuroscientists

Segmentation/tracing is a tough but high-return project
=⇒ Tractography in Diffusion Tensor MRI, . . .

Short-term: Develop algorithms for automatic morphological feature
extraction and clustering
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Clustering using Features Derived by Neurolucida R©
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Our Dataset

consists of 130 RGCs each of which in turn consists of

A sequence of 3D sample points along dendrite arbors obtained by
Neurolucida R© (requires intensive human interaction)

Connectivity and branching information by the same software

Each soma is represented as a sequence of points traced along its
boundary (circular/ring shape)

=⇒ Constructing a graph representing dendrite structures per RGC is very
natural and simple! In fact, we constructed a tree (i.e., a connected graph
without cycles/loops) by replacing the soma ring by a single vertex
representing a center of the soma.
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Our Dataset =⇒ Trees
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Our Dataset =⇒ Trees . . .

Let G be a graph (in fact a tree) representing an RGC.

Let V = V (G ) = {v1, . . . , vn} where vk ∈ R3, be a set of vertices
representing sample points along dendrite arbors. n ranges between
565 and 24474 depending on the RGCs.

Let E = E (G ) = {e1, . . . , em} be a set of edges where ek = (vi , vj)
represents an edge (or line segment) connecting between adjacent
vertices vi , vj for some 1 ≤ i , j ≤ n. Note that |E (G )| = |V (G )| − 1
since G is a tree.

Let d(vk) = dvk
be the degree of the vertex vk . In our dataset,

max
130 cells

max
k

d(vk) = 8, min
130 cells

max
k

d(vk) = 3.

In principle, we should consider the weighted graph with weights
wek

:= ‖vi − vj‖−1. But for simplicity, we only consider the
unweighted graphs/trees here. (One could justify this by resampling
the dendrite coordinates with a uniform sampling rate.)
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Our Strategy

Step 1: Construct the Laplacian matrix (often called the
combinatorial Laplacian matrix)

L(G ) := D(G )− A(G )

D(G ) := diag(dv1 , . . . , dvn) the degree matrix

A(G ) = (aij) the adjacency matrix where

aij :=

{
1 if vi ∼ vj ;

0 otherwise.

Step 2: Compute the eigenvalues of L(G );

Step 3: Construct features using these eigenvalues;

Step 4: Repeat the above steps for all the RGCs and feed these
feature vectors to clustering algorithms.
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Why Graph Laplacians?

Eigenvalues of L(G ) reflect various intrinsic geometric information
about the graph including

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

Eigenvectors of L(G ) also play a useful role to understand a graph
(e.g., the discrete nodal domain theorem useful for grouping vertices;
see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 18 / 40



Why Graph Laplacians?

Eigenvalues of L(G ) reflect various intrinsic geometric information
about the graph including

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

Eigenvectors of L(G ) also play a useful role to understand a graph
(e.g., the discrete nodal domain theorem useful for grouping vertices;
see Bıyıkoğlu, Leydold, & Stadler, LNM, Springer, 2007)

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 18 / 40



Why Graph Laplacians?

Eigenvalues of L(G ) reflect various intrinsic geometric information
about the graph including

connectivity or the number of separated components
diameter (the maximum distance over all pairs of vertices)
mean distance, . . .
Fan Chung: Spectral Graph Theory, AMS, 1997

is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.

Eigenvectors of L(G ) also play a useful role to understand a graph
(e.g., the discrete nodal domain theorem useful for grouping vertices;
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Aside: Graph Laplacian of a Line =⇒ DCT Type II Basis

L(G ) =



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1


The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).
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Some Properties of Graph Laplacians

Let f ∈ L2(V ). Then

L(G )f (u) = duf (u)−
∑
v∼u

f (v),

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
Eigenvalues of L(G ) cannot uniquely determine the graph G .
∼ Kac (1966): “Can one hear the shape of a drum?” =⇒ Gordon,
Webb, & Wolpert (1992): “One cannot hear the shape of a drum.”
An example of “isospectral” graphs (Tan, 1998; Fujii & Katsuda,
1999):
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Some Properties of Graph Laplacians . . .

However, certain classes of graphs can be completely determined by
their Laplacian spectra: starlike trees (Omidi & Tajbakhsh, 2007),
centipedes (Boulet, 2008), . . .

∃ some attempts to reconstruct graphs from their Laplacian spectra
via combinatorial optimization (e.g., Comellas & Diaz-Lopez, 2008)

Nothing prevents us from using the Laplacian spectra for
characterizing dendrite patterns!
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Some Notations and Definitions

Let |V (G )| = n, and let 0 = λ0(G ) ≤ λ1(G ) ≤ · · · ≤ λn−1(G ) be the
sorted eigenvalues of L(G ).

mG (λ) := the multiplicity of λ.

Let I ⊂ R be an interval of the real line. Then define
mG (I ) := #{λk(G ) ∈ I}.
A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a
pendant vertex is called pendant neighbor.

Let p(G ) and q(G ) be the number of pendant vertices and that of
pendant neighbors, respectively.

Let S ⊂ V (G ) be a nonempty subset of vertices of G .

∂S := {e = (u, v) ∈ E (G ) | u ∈ S , v /∈ S}, which is called the
boundary of S .

The distance matrix ∆(G ) of G represents “distances” among the
vertices, i.e., (∆(G ))i ,j is the number of edges in a shortest path from
vertex vi to vertex vj .
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Some Notations and Definitions

The isoperimetric number of G is defined as

i(G ) := inf

{
|∂S |
|S |

∣∣∣∣ ∅ 6= S ⊂ V , |S | ≤ n

2

}
,

which is closely related to the conductance of a graph, i.e., how fast a
random walk on G converges to a stationary distribution.

The Wiener index2 W (G ) of a graph G is the sum of the entries in
the upper triangular part of the distance matrix ∆(G ).

The Wiener index of a molecular graph has been used in chemical
applications because it may exhibit a good correlation with physical
and chemical properties (e.g., the boiling point, density, viscosity,
surface tension, . . . ) of the corresponding molecule/material.

2proposed by Harry Wiener of Brooklyn College in 1947
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Some Basic Theorems

See Chung (1997), Merris (1994), Mohar (1992), Urakawa (2002), . . .

mG (0) is equal to the number of connected components of G .

The number of pendant neighbors of G is bounded as:

p(G )−mG (1) ≤ q(G ) ≤ mG (2, n],

where the second inequality holds if G is connected and satisfies
2q(G ) < n.

For n ≥ 4, the isoperimetric number i(G ) satisfies

i(G ) <

√(
2 max

v∈V (G)
dv − λ1(G )

)
λ1(G ).

Let G be a tree. Then

W (G ) =
n−1∑
k=1

n

λk
.
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Features Used in Our Experiments

Feature 1: (p(G )−mG (1))/|V (G )| as a lower bound of the number of
the pendant neighbors q(G ) with the normalization by
n = |V (G )| ;

Feature 2: The normalized Wiener index W (G )/|V (G )| ;

Feature 3: mG (4,∞)/|V (G )|, i.e., the number of eigenvalues of L(G )
larger than 4 (normalized) ;

Feature 4:
√(

2 maxv∈V (G) dv − λ1(G )
)
λ1(G ), i.e., the upper bound of

the isoperimetric number i(G ).

We normalized Features 1, 2, 3, by n = |V (G )| because we wanted to
make features less dependent on the number of samples or how the
dendrite arbors are sampled. Of course, the number of vertices itself
could be a feature although it may not be a decisive one.

Feature 4 was not explicitly normalized because the isoperimetric
number i(G ) itself is a normalized quantity in terms of number of
vertices.
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Features Used in Our Experiments . . .

Feature 1 was used because the number of pendant neighbors seems
to be strongly related to the so-called spines, short protrusions from
the dendrite arbors.

Hence, we expect that the larger this lower bound p(G )−mG (1) is,
the more likely for the RGC to have spines.

(a) RGC #60; F1 large (b) RGC #100; F1 small
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Features Used in Our Experiments . . .

Feature 3, the normalized version of mG (4,∞), was used because of
the following observation:

The eigenvalue distribution of each RGC consists of a smooth
bell-shaped curve that ranges over [0, 4] and the sudden burst above
the value 4.

(a) RGC #60 (b) RGC #100
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Features Used in Our Experiments . . .

We have observed that this value 4 is critical since:

the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around branches.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Recap: Clustering using Features Derived by Neurolucida R©

saito@math.ucdavis.edu (UC Davis) Graph Laplacians on Dendrites IPAM 30 / 40



Results: Scatter Plot; Feature 1 vs Feature 2

Figure: A scatter plot of the normalized lower bounds of the number of the
pendant neighbors vs the normalized Wiener indices.
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Results: Scatter Plot; Feature 3 vs Feature 4

Figure: A scatter plot of the normalized number of the eigenvalues larger than 4
vs the upper bounds of the isoperimetric numbers.
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Interpretation of the Results

Cluster 6 RGCs separate themselves quite well from the other RGC
clusters.

In fact, the sparse and distributed dendrite patterns such as those in
Clusters 6 and 10 are located below the major axis of the point clouds
in the F1 − F2 scatter plot and above the major axis of the point
clouds in the F3 − F4 scatter plot. =⇒ the dendrite patterns
belonging to Cluster 6 and 10 have smaller number of spines and
smaller Wiener indices compared to the other denser dendrite patterns
such as Clusters 1 to 5.

Considerable feature variability in Clusters 7 and 8.
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Cluster 1 vs Cluster 6 . . .

(a) Cluster 1 (b) Cluster 6
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Conclusions & Future Plans

Demonstrated the usefulness of the eigenvalues of graph Laplacians
for dendrite pattern analysis although the results are still preliminary.

Observed a global-to-local phase transition phenomenon of the
eigenvalues and eigenfunctions of such dendrite patterns =⇒ leads to
a theorem?

Investigate the resampling of dendrite arbor samples.

Analyze the features derived by Neurolucida R©: are they derivable
from the Laplacian eigenvalues?

Compare the cost of features derivable by directly analyzing a graph
with that by Laplacian eigenvalues (e.g., features related to i(G )).
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Future Plans . . .

Impose the Dirichlet boundary condition on the terminal nodes =⇒
eigenvalue problems of a graph with boundary; the discrete Dirichlet
problem; the Faber-Krahn inequality, . . .

Solve Poisson’s equation with mixed boundary condition ⇐= the
mean exit time u(x) of particles released at a point x inside a bounded
domain driven by Brownian motion is the solution of Poisson’s
equation ∆u = −1 satisfying the zero Dirichlet boundary condition.

Investigate metric (or quantum) graphs.

Investigate how to model dendrite pattern generation and evolution,
e.g., percolation on trees.
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