Signal Ensemble Classification on Manifolds

Linh Lieu, Naoki Saito, and Julien van Hout

Department of Mathematics University of California, Davis

The 2nd Reunion Conference on Mathematics of Knowledge and Search Engines Lake Arrowhaed June 11, 2010

- 2 Problem Formulation
- Our Proposed Algorithm
- Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
 - 7 Conclusions and Future Plan
 - B References

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
- 7 Conclusions and Future Plan
- 8 References

- Raphy Coifman (Yale)
- Quyen Hyunh (NSWC)
- Yosi Keller (Bar-Ilan Univ., Israel)
- Stéphane Lafon (Google)
- Bradley Marchand (UC Davis \implies NSWC, Panama City, FL)
- Hrushikesh Mhaskar (Cal State LA)
- NSF
- ONR

- Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
- 7 Conclusions and Future Plan
- 8 References

Signal Ensemble Classification Problems

- We want to classify ensembles of signals, not individual signals.
- Examples include: Underwater object classification using sonar waveforms; Classification of video clips, ...

(a) Sonar Waveforms

(b) Video Clips of Digit Speaking Lips

• Let $X := \bigcup_{i=1}^{M} X^{i} \subset \mathbb{R}^{d}$ be a collection of M training ensembles. Each X^{i} consists of m_{i} individual signals, i.e., $X^{i} := \{\mathbf{x}_{1}^{i}, \ldots, \mathbf{x}_{m_{i}}^{i}\}$, and has a unique label among C possible labels. Let $m_{\star} := \sum_{i=1}^{M} m_{i}$. Let $Y := \bigcup_{j=1}^{N} Y^{j} \subset \mathbb{R}^{d}$ be a collection of test (i.e., unlabeled) ensembles where $Y^{j} := \{\mathbf{y}_{1}^{j}, \cdots, \mathbf{y}_{n_{j}}^{j}\}$. Our goal is to classify each Y^{j} to one of the possible C classes given the training ensembles X. This task is different from classifying each signal $\mathbf{y}_{k}^{j} \in Y$ individually.

- 2 Problem Formulation
- Our Proposed Algorithm
 - 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
- 7 Conclusions and Future Plan
- 8 References

• Training Stage (X is given)

- **(**) Preset a large enough initial dimension $1 \le s_0 \ll \min(d, m_\star)$.
- **2** Construct a low-dimensional embedding map $\Psi : \mathbb{R}^d \to \mathbb{R}^{s_0}$.
- So For i = 1 : M, construct a signature P^i using $\Psi(X^i)$.
- Obtermine the appropriate dimension 1 ≤ s ≤ s₀ and re-adjust each signature Pⁱ in Step 1.3.
- Test Stage (Now Y is fed)

 - 2 Construct a signature Q^j for each Y^j , j = 1 : N.
 - For j = 1: *N*, measure the distance $d(P^i, Q^j)$, and find $i_j := \arg \min_{1 \le i \le M} d(P^i, Q^j)$. Assign the label of X^{i_j} to Y^j . In other words, apply 1-nearest neighbor classifier with the base distance $d(\cdot, \cdot)$ in the reduced embedding space \mathbb{R}^s .

米田 とくほ とくほう

Signatures in the Reduced Embedding Space

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
- 7 Conclusions and Future Plan
- 8 References

Dimensionality Reduction/Low-Dimensional Embedding

- Many techniques, proposals, algorithms exist.
- In this talk, we only deal with
 - Classical Multidimensional Scaling (CMDS) \equiv PCA
 - Laplacian Eigenmap
 - Diffusion Map
- CMDS/PCA is a linear technique whereas LE/DM are nonlinear.

Notation

- Let X be the training data matrix, $X:=(\mathbf{x}_1,\ldots,\mathbf{x}_{m_\star})\in\mathbb{R}^{d imes m_\star}.$
- Let X
 [×] := X(I 11^T/m_{*}), i.e., the centered data matrix (the mean of the column vectors x
 [×] is subtracted from each column vector).
- Let $\Psi : \mathbb{R}^d \to \mathbb{R}^s$ be a low-dimensional embedding map.
- Let $\Psi(X) = (\Psi(\mathsf{x}_1), \dots, \Psi(\mathsf{x}_{m_\star})) \in \mathbb{R}^{s imes m_\star}$

Classical (Multidimensional) Scaling and PCA

• Define the similarity between \mathbf{x}_i and \mathbf{x}_j by the centered correlation

$$\alpha(\mathbf{x}_i,\mathbf{x}_j) := (\mathbf{x}_i - \bar{\mathbf{x}})^T (\mathbf{x}_j - \bar{\mathbf{x}}).$$

• Then, the classical scaling seeks the low-dimensional representation that preserves the pairwise similarities in X as well as possible by minimizing

$$J_{\rm CS}(\Psi) := \sum_{i,j} (\alpha(\mathbf{x}_i, \mathbf{x}_j) - \alpha(\Psi(\mathbf{x}_i), \Psi(\mathbf{x}_j)))^2 = \left\| \widetilde{X}^T \widetilde{X} - \Psi(\widetilde{X})^T \Psi(\widetilde{X}) \right\|_F^2$$

• We can find this map using the SVD of $\widetilde{X} = U\Sigma V^T$ as

$$\Psi(\widetilde{X}) = U_s^T \widetilde{X} = \Sigma_s V_s^T,$$

which is exactly the same as using the first *s* components of PCA!

• A drawback: too global and not incorporating local geometry

Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

- Incorporating local geometric information in \mathbb{R}^d for the embedding
- Define the proximity weight $w(\mathbf{x}_i, \mathbf{x}_j)$, e.g., $w_{\epsilon}(\mathbf{x}_i, \mathbf{x}_j) := e^{-\|\mathbf{x}_i \mathbf{x}_j\|^2/\epsilon^2}$.
- Now, seek Ψ that minimizes the following

$$J_{\mathrm{Lap}}(\Psi) := \sum_{i,j} \|\Psi(\mathbf{x}_i) - \Psi(\mathbf{x}_j)\|^2 w_{\epsilon}(\mathbf{x}_i, \mathbf{x}_j).$$

• This leads to the following optimization problem:

$$\min_{\Psi(X)\in\mathbb{R}^{s\times m_{\star}}} \operatorname{tr}\left(\Psi(X)L\Psi(X)^{T}\right) \quad \text{subject to } \Psi(X)D\Psi(X)^{T} = I,$$

where the matrices are defined as

$$W := (w_{\epsilon}(\mathbf{x}_i, \mathbf{x}_j)), \quad D := \operatorname{diag}\left(\sum_j w_{\epsilon}(\mathbf{x}_1, \mathbf{x}_j), \dots, \sum_j w_{\epsilon}(\mathbf{x}_{m_{\star}}, \mathbf{x}_j), \right)$$

The matrix L := D - W is called the (unnormalized) graph Laplacian.

Laplacian Eigenmaps ...

• This leads to the following generalized eigenvalue problem:

$$L\Psi(X)^T = D\Psi(X)^T \Lambda; \quad L \in \mathbb{R}^{m_\star imes m_\star}, \Lambda \in \mathbb{R}^{s imes s},$$

$$L_{\mathrm{rw}}\Psi_{\mathrm{rw}}(X)^{\mathsf{T}} = \Psi_{\mathrm{rw}}(X)^{\mathsf{T}}\Lambda_{\mathrm{rw}}; \quad L_{\mathrm{rw}} := D^{-1}L = I - D^{-1}W.$$

- $\Psi_{\mathrm{rw}}(X) \in \mathbb{R}^{s \times m_{\star}}$ is the Laplacian Eigenmap of X.
- Another possibility is:

 $L_{\rm sym} \Psi_{\rm sym}(X)^{T} = \Psi(X)_{\rm sym}^{T} \Lambda_{\rm sym}; \quad L_{\rm sym} := D^{-\frac{1}{2}} L D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}.$

• Both $L_{\rm rw}$ and $L_{\rm sym}$ are called the normalized graph Laplacians (rw = 'random walk'; sym = 'symmetric').

$$\Psi_{\mathrm{rw}}(X)=\Psi_{\mathrm{sym}}(X)D^{-rac{1}{2}},\quad\Lambda_{\mathrm{rw}}=\Lambda_{\mathrm{sym}}.$$

- Eigenvalues are sorted in increasing order; $L_{\rm rw} {f 1} = {f 0}$.
- A drawback: sensitive to sampling density on a manifold.

Diffusion Maps (Coifman & Lafon 2004–6)

- Focus on the normalized weighted adjacency matrix $A_{\rm rw} := D^{-1}W$.
- Interpret A_{rw} as the transition matrix of a random walk on X or the diffusion operator on X. A_{rw}^t = running the random walk t steps.
- Perform density invariant normalization on W, i.e., $\widetilde{W} := D^{-1}WD^{-1}$ first. Then, do the row-stochastic normalization, i.e., $\widetilde{A}_{rw} := \widetilde{D}^{-1}\widetilde{W}$ where \widetilde{D} is the degree matrix (diagonal) of \widetilde{W} .
- Finally perform the eigenanalysis:

$$\widetilde{A}_{\mathrm{rw}}\Psi_{\mathrm{DM}}(X)^{\mathsf{T}} = \Psi_{\mathrm{DM}}(X)^{\mathsf{T}}\Lambda_{\mathrm{DM}},$$

where the eigenvalues are sorted in decreasing order; $A_{rw} \mathbf{1} = \mathbf{1}$. • Diffusion map is defined as:

$$\Psi^t_{\mathrm{DM}}(X) := \Lambda^t_{\mathrm{DM}} \Psi_{\mathrm{DM}}(X).$$

• Relationship with the Laplacian eigenmap (if W is used in L_{rw}):

$$\Psi^1_{\mathrm{DM}}(X) = \Psi_{\mathrm{rw}}(X); \quad \Lambda_{\mathrm{DM}} = I - \Lambda_{\mathrm{rw}}.$$

- Can use SVD or symmetric eigenvalue solver for computing these embedding maps
- Choosing a good scale parameter *ϵ* for both LE and DM is not easy
 ⇒ *ϵ* = the mean of the *k*-nearest neighbor distances. But how to choose *k*? ⇒ Cross validation, etc.
- For DM, choosing t or when to stop the diffusion is another subtle question, which is quite dependent on ϵ and the decay of the eigenvalues.
- Choosing an appropriate value of s is yet another problem Elongated K-means algorithm:

G. SANGUINETTI, J. LAIDLER, AND N. D. LAWRENCE,

"Automatic determination of the number of clusters using spectral algorithms," *Proc. 15th IEEE Workshop on Machine Learning for Signal Processing*, pp55–60, 2005.

→ Ξ →

- For PCA, it is quite easy; simply the multiplication of U_s^T to Y.
- For LE/DM, it is more involved and the following geometric harmonics multiscale extension algorithm is necessary:
 S. Lafon, Y. Keller, R. R. Coifman, "Data fusion and multicue data matching by diffusion maps," *IEEE Trans. Pattern Anal. Machine Intell.*, vol.28, no.11, pp.1784–1797, 2006.

Acknowledgment

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
 - Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
 - 7 Conclusions and Future Plan

8 References

- Originated from the Monge-Kantorovich optimal transport problem
- Used successfully in image retrieval from large databases, image registration and warping, etc.
- Y. RUBNER, C. TOMASI, AND L. J. GUIBAS, "The Earth Mover's Distance as a metric for image retrieval," *Intern. J. Comput. Vision*, vol.40, no.2, pp.99–121, 2000.
- S. HAKER, L. ZHU, A. TANNENBAUM, AND S. ANGENENT, "Optimal mass transport for registration and warping," *Intern. J. Comput. Vision*, vol.60, no.3, pp.225–240, 2004.
- More robust (for our classification problems) than the Hausdorff distance (HD) between two ensembles $\Psi(X^i)$, $\Psi(Y^j)$ in the reduced embedding space, which was used by Lafon-Keller-Coifman.

$$d_{\mathcal{H}}(\Psi(X^{i}),\Psi(Y^{j})) := \max\left(\max_{\mathbf{y}\in\Psi(Y^{j})}\min_{\mathbf{x}\in\Psi(X^{i})}\|\mathbf{x}-\mathbf{y}\|, \max_{\mathbf{x}\in\Psi(X^{i})}\min_{\mathbf{y}\in\Psi(Y^{j})}\|\mathbf{x}-\mathbf{y}\|\right)$$

Earth Mover's Distance (EMD) ...

Let $P = \{(\mathbf{x}_1, p_1), \dots, (\mathbf{x}_m, p_m)\}$ and $Q = \{(\mathbf{y}_1, q_1), \dots, (\mathbf{y}_n, q_n)\}$ be two signatures characterizing two classes or objects of interest. $\mathbf{x}_i, \mathbf{y}_j \in \mathbb{R}^s$ are cluster centers and p_i, q_j are populations (or mass) of the corresponding clusters. Then, the Earth Mover's Distance (EMD) is defined by

$$\operatorname{EMD}(P,Q) := \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} c_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij}},$$

where

- c_{ij} is the cost of moving one unit mass from the *i*th cluster in P to the *j*th cluster in Q. A typical example: c_{ij} = ¹/₂ ||**x**_i **y**_j||².
- *f_{ij}* ≥ 0: the optimal flow between two distributions that minimizes the total cost ∑^m_{i=1}∑ⁿ_{j=1} *f_{ij}c_{ij}*, subject to the following constraints:

•
$$\sum_{i=1}^{m} f_{ij} \leq q_j, j = 1, ..., n;$$

- $\sum_{j=1}^{n} f_{ij} \leq p_i, i = 1, ..., m;$
- $\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = \min\{\sum_{i=1}^{m} p_i, \sum_{j=1}^{n} q_j\}.$

Signatures in the Reduced Embedding Space (again)

saito@math.ucdavis.edu (UC Davis)

SERC2010 21 / 33

Acknowledgment

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)

6 Numerical Experiments

- Underwater Object Classification
- Video Clip Classification

7 Conclusions and Future Plan

8 References

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- Numerical ExperimentsUnderwater Object Classification
 - Video Clip Classification
 - 7 Conclusions and Future Plan
 - 8 References

Underwater Object Classification

- Sonar waveforms in the acoustic scattering experiments were collected in a fresh water pond at Naval Surface Warfare Center (NSWC), Panama City, FL.
- Three experiments on different days were performed. Each time, there were two objects in the pond.
 - C1: Buried Al cylinder; S1: Fe Sphere filled with air
 - 2 C2: Proud Al cylinder; S2: Fe Sphere filled with silicone oil
 - **③** C3: Shorter proud Al cylinder; S3 = S2
- Source: frequency 20kHz; sinusoidal shape; 0.2msec duration
- Received waveforms were sampled at rate 500kHz

Underwater Object Classification ...

- Our objective is to classify objects according to their material compositions independent of shapes, sizes, buried or proud.
- Each data point is in ℝ^{17×600}; The number of data points in C1, C2, C3, S1, S2, S3 are 8, 8, 16, 32, 32, 32, respectively.
- Pick one of these 6 ensembles as a test ensemble Y = Y¹ whereas the other 5 ensembles are used as training ensembles X = U⁵_{i=1} Xⁱ. Then do the classification of Y.
- Repeat this process 5 more times.

Underwater Object Classification: Results

Object		С1	С2	С3	<i>S</i> 1	<i>S</i> 2	<i>S</i> 3
True Label		ΑΙ	ΑΙ	ΑΙ	IA	IS	IS
PCA	EMD	AI	AI	AI	IS	IS	IA
	HD	AI	AI	AI	IS	IS	IA
LE_{rw}	EMD	AI	AI	AI	AI	IS	IS
	HD	AI	AI	AI	AI	Al	IS
LE _{sym}	EMD	AI	AI	AI	AI	IS	IS
	HD	AI	AI	AI	AI	IS	IS
DM	EMD	AI	AI	AI	AI	IS	IS
	HD	AI	AI	AI	AI	IS	IS

AI = Aluminum; IA = Iron-Air; IS = Iron-Silicone Oil

EMD and HD values in the $\mathrm{LE}_{\mathrm{rw}}$ coordinates between S2 and all other objects

Object	<i>C</i> 1	С2	С3	<i>S</i> 1	<i>S</i> 3
EMD	0.0070	0.0064	0.0057	0.0085	<mark>0.0053</mark>
HD	0.1917	0.2374	0.1237	0.1500	0.1684

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- Numerical Experiments
 Underwater Object Classification
 - Video Clip Classification
 - Conclusions and Future Plan
 - 8 References

Video Clip Classification: Lip Reading

- Lips speaking five digits, 'one', ..., 'five' were captured by a camcorder with the rate 60 frames/second.
- Each video frame is cropped to have 55×70 pixels.
- A single speaker spoke each digit 10 times (i.e., totally 50 video clips).
- Each video clip consists of 30 \sim 63 video frames.
- Split the whole data randomly into the training and test ensembles as $X = \bigcup_{i=1}^{25} X^i$, $Y = \bigcup_{j=1}^{25} Y^j$. Then, do the classification.
- Repeat this process 99 times more.

Lip-Reading total recognition errors (averaged over 100 trials)

PCA EMD	PCA HD	$\mathrm{LE}_{\mathrm{rw}}$ EMD	$\mathrm{LE}_{\mathrm{rw}}$ HD	${ m LE_{sym}}$ EMD	${ m LE_{sym}}\ { m HD}$	DM EMD	DM HD
5.3%	9.4%	36.1%	36.1%	26.0%	27.6%	24.1%	25.2%

Acknowledgment

- 2 Problem Formulation
- 3 Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification

7 Conclusions and Future Plan

References

- The key for the signal ensemble classification was to use the appropriate dimensionality reduction techniques with the robust distance measure like EMD;
- The best choice of the dimensionality reduction depends on the data; this is particularly so for the real data.
- Global (PCA) vs Local (LE/DM): Lip-reading video clips involve more global trajectories while sonar waveforms involve more localized clusters.
- Robustness of EMD was important compared to HD.
- Comparison with the other ideas of ours: node connectivity matching that do not require the eigenvalue/eigenvector computations;
- Comparison with explicit feature extraction techniques such as Local Discriminant Basis

Acknowledgment

- 2 Problem Formulation
- Our Proposed Algorithm
- 4 Dimensionality Reduction
- 5 Earth Mover's Distance (EMD)
- 6 Numerical Experiments
 - Underwater Object Classification
 - Video Clip Classification
- Conclusions and Future Plan

8 References

- Laplacian Eigenfunction Resource Page http://www.math.ucdavis.edu/~saito/lapeig/ contains
 - All the talk slides of the special session on "Kernel Methods in Data Analysis, " which Yosi and I organized at IEEE Workshop on Statistical Signal Processing; and
 - My Course Note (elementary) on "Laplacian Eigenfunctions: Theory, Applications, and Computations"
- The following article is available at http://www.math.ucdavis.edu/~saito/publications/
 - L. Lieu and N. Saito: "Signal ensemble classification using low-dimensional embeddings and Earth Mover's Distance," to appear in *Wavelets: Old and New Perspectives* (J. Cohen and A. Zayed, eds.), Birkhuser, 2010.

Thank you very much for your attention!

→ Ξ →