Discrete Integral Operators and Distance Matrices for Graph Signal Processing

AMS Special Session on Geometry and Topology of High-Dimensional Biomedical Data

Joint Mathematics Meeting, San Francisco, CA January 5, 2024

Naoki Saito

UC Davis TETRAPODS Institute of Data Science Department of Mathematics, University of California, Davis

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Acknowledgment

- NSF Grants: DMS-1418779, DMS-1912747, CCF-1934568, DMS-2012266
- ONR Grants: N00014-16-1-2255, N00014-20-1-2381
- And my collaborator on this project:

Eugene Shvarts (UCD \rightarrow Teleport)

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Motivations

Since 2005 or so, I have been studying the *integral operators that commute with the Laplace operators* on various domains ranging from simple Euclidean domains (e.g., the 1D unit interval or the 2D unit circle) to very complicated 2D domains (e.g., the Japanese archipelago) to graphs.

Motivations: Why commuting integral operators?

- Easier to implement than differential operators that require specification of precise *boundary conditions*
- Utilize *global* information (e.g., shortest distances between points) instead of *local* information (e.g., communication with immediate neighbors in differential operators)
- Easier to handle *directed graphs* than differential operators
- *Numerically more stable* in eigenvalue solvers than discretized differential operators
- Lead to dense kernel matrices yet ∃ an efficient computational algorithm for eigenvalue solvers, i.e., the Fast Multipole Method (FMM)

Motivations: Why Laplacian Eigenfunctions on $\Omega \in \mathbb{R}^d$?

- Want to analyze the spatial frequency information *inside* of the object defined in $\Omega \implies$ need to avoid *the Gibbs phenomenon* due to $\partial\Omega$.
- Want to represent the object information efficiently for analysis, interpretation, discrimination, etc. ⇒ need fast decaying expansion coefficients relative to a meaningful basis.
- Want to extract *geometric information* about the domain $\Omega \implies$ shape clustering/classification.

Enter Laplacian Eigenfunctions!

- On either irregular Euclidean domains or graphs, appropriately defined *Laplacian eigenfunctions* play an important role for data analysis.
- Let us first consider an irregular (i.e., general shape) Euclidean domain $\Omega \subset \mathbb{R}^d$.

• Let
$$\mathscr{L} := -\Delta = -\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}\right).$$

• The Laplacian eigenvalue problem is defined as:

$$\mathscr{L}u = -\Delta u = \lambda u \quad \text{in } \Omega,$$

together with some *appropriate* boundary condition (BC).

• Most common (homogeneous) BCs are:

Laplacian Eigenfunctions: Some Facts

- Why not analyze (and synthesize) an object of interest defined or measured on an irregular domain Ω using *genuine basis functions tailored to the domain* instead of the basis functions developed for rectangles, tori, balls, etc.?
- After all, *sines* (and *cosines*) are the eigenfunctions of the Laplacian on a *rectangular* domain (e.g., an interval in 1D) with Dirichlet (and Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian (via separation of variables) for the spherical, cylindrical, and spheroidal domains, respectively.

Laplacian Eigenfunctions: Difficulties

- Analysis of ${\mathscr L}$ is difficult due to its unboundedness, etc.
- Much better to analyze its inverse, i.e., the Green's operator because it is compact and self-adjoint.
- Thus \mathscr{L}^{-1} has discrete spectra (i.e., a countable number of eigenvalues with finite multiplicity) except 0 spectrum.
- \mathscr{L} has a complete orthonormal basis of $L^2(\Omega)$, and this allows us to do *eigenfunction expansion* in $L^2(\Omega)$.
- The key difficulty is to compute such eigenfunctions; directly solving the *Helmholtz equation* (or eigenvalue problem) on a general domain is tough.
- Unfortunately, computing the Green's function for a general Ω satisfying the usual boundary condition (i.e., Dirichlet, Neumann, Robin) is also very difficult.

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Integral Operators Commuting with Laplacian

- The key idea to avoid difficulties associated with the Laplacian \mathscr{L} is to find an integral operator \mathscr{K} commuting with \mathscr{L} without imposing the strict boundary condition a priori.
- Then, we know that the eigenfunctions of *L* is the same as those of *K*, which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose \mathcal{K} and \mathcal{L} commute and one of them has an eigenvalue with finite multiplicity. Then, \mathcal{K} and \mathcal{L} share the same eigenfunction corresponding to that eigenvalue. That is, $\mathcal{L}\varphi = \lambda\varphi$ and $\mathcal{K}\varphi = \mu\varphi$.

Integral Operators Commuting with Laplacian ...

- The inverse of \mathscr{L} with some specific boundary condition (e.g., Dirichlet/Neumann/Robin) is also an integral operator whose kernel is called the *Green's function* G(x, y).
- Since it is not easy to obtain G(x, y) in general, let's replace G(x, y) by the *fundamental solution of the Laplacian*:

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2} |\mathbf{x} - \mathbf{y}| & \text{if } d = 1, \\ -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}| & \text{if } d = 2, \\ \frac{|\mathbf{x} - \mathbf{y}|^{2-d}}{(d-2)\omega_d} & \text{if } d > 2, \end{cases}$$

where $\omega_d := \frac{2\pi^{d/2}}{\Gamma(d/2)}$ is the surface area of the unit ball in \mathbb{R}^d , and $|\cdot|$ is the standard Euclidean norm.

• The price we pay is to have rather implicit, *non-local* boundary condition although we do not have to deal with this condition directly.

Integral Operators Commuting with Laplacian ...

Let \mathcal{K} be the integral operator with its kernel K(x, y):

$$\mathcal{K}f(\boldsymbol{x}) := \int_{\Omega} K(\boldsymbol{x}, \boldsymbol{y}) f(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}, \quad f \in L^2(\Omega).$$

Theorem (NS 2008)

The integral operator \mathcal{K} commutes with the Laplacian $\mathcal{L} = -\Delta$ with the following non-local boundary condition:

$$\int_{\partial\Omega} K(\boldsymbol{x},\boldsymbol{y}) \frac{\partial \varphi}{\partial v_{\boldsymbol{y}}}(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{s}(\boldsymbol{y}) = -\frac{1}{2} \varphi(\boldsymbol{x}) + \operatorname{pv} \int_{\partial\Omega} \frac{\partial K(\boldsymbol{x},\boldsymbol{y})}{\partial v_{\boldsymbol{y}}} \varphi(\boldsymbol{y}) \, \mathrm{d}\boldsymbol{s}(\boldsymbol{y}), \quad \forall \boldsymbol{x} \in \partial\Omega,$$

where φ is an eigenfunction common for both operators, and pv indicates the Cauchy principal value.

1D Example

- Consider the unit interval $\Omega = (0, 1)$.
- Then, our integral operator \mathcal{K} with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0, 1);$$
$$-\varphi'(0) = \varphi'(1) = \varphi(0) + \varphi(1).$$

- The kernel K(x, y) is of *Toeplitz* form \implies Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

1D Example ...

• $\lambda_0 \approx -5.756915$, which is a solution of $\tanh \frac{\sqrt{-\lambda_0}}{2} = \frac{2}{\sqrt{-\lambda_0}}$, $\varphi_0(x) = A_0 \cosh \sqrt{-\lambda_0} \left(x - \frac{1}{2} \right)$; • $\lambda_{2m-1} = (2m-1)^2 \pi^2$, m = 1, 2, ..., $\varphi_{2m-1}(x) = \sqrt{2} \cos(2m-1)\pi x$;

• λ_{2m} , m = 1, 2, ..., which are solutions of $\tan \frac{\sqrt{\lambda_{2m}}}{2} = -\frac{2}{\sqrt{\lambda_{2m}}}$,

$$\varphi_{2m}(x) = A_{2m} \cos \sqrt{\lambda_{2m}} \left(x - \frac{1}{2} \right),$$

where A_k , k = 0, 1, ... are normalization constants.

First 5 Basis Functions

3D Example

- Consider the unit ball Ω in \mathbb{R}^3 . Then, our integral operator \mathcal{K} with the kernel $K(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} \mathbf{y}|}$.
- Top 9 eigenfunctions cut at the equator viewed from the south:

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Incorporating the DC Vector

- The Laplacian eigenfunction with the least oscillation computed by diagonalizing the commuting integral operator is not the constant (i.e., *DC*) vector $\chi_{\Omega} := \mathbf{1}_n / \sqrt{n} \in \mathbb{R}^n$.
- If some application needs to have the DC vector of a given domain Ω and the basis vectors orthogonal to the DC vector, there is a way to include the DC vector into the picture.
- Consider the orthogonal complement to the 1D subspace span{χ_Ω} in the column space of the kernel matrix K:

$$\widetilde{K} = \left(I - \boldsymbol{\chi}_{\Omega} \boldsymbol{\chi}_{\Omega}^{\mathsf{T}}\right) K =: PK.$$

• Then, χ_{Ω} together with the eigenvectors of \tilde{K} corresponding to the largest n-1 eigenvalues form the desired orthonormal basis.

Incorporating the DC vector ...

(a) Laplacian Eigenfunctions via Commuting Integral Operator (b) Laplacian Eigenfunctions incorporating the DC vector

 \implies leads to the generalized discrete cosine basis?

Relationship with the Neumann-Laplacian for $\Omega \in \mathbb{R}^1$

- It turned out that there is more to the DC vector business!
- The eigenfunctions of the *Neumann-Laplacian* automatically includes the DC vector of a domain.
- Hence, it is natural to investigate the relationship between our integral operator \mathcal{K} and the Neumann-Laplacian \mathcal{L}_N .
- Then, consider \mathscr{PKP} , with \mathscr{P} the orthogonal projection onto the orthogonal complement of the DC component span{ χ_{Ω} }.

Theorem

Let $\Omega = (0,1) \in \mathbb{R}$. Then, the kernel of the integral operator \mathscr{PKP} is precisely the Neumann Green's function G_N . In particular, $(\mathscr{PKP}) \mathcal{L}_N = \mathcal{L}_N (\mathscr{PKP})$.

Neumann conditions tied intimately to projections:

•
$$\partial_{\nu}f|_{\partial\Omega} = 0 \Longrightarrow \mathscr{P}\mathscr{L}_N f = \mathscr{L}_N f$$

•
$$\int_{\Omega} f = 0 \iff \mathscr{P}f = f$$

23/40

Relationship with the graph Laplacian

- Let's consider the discrete case, i.e., the *midpoint* discretization of (0, 1), which leads to a *path graph* P_n consisting of n nodes.
- Let L, K, P denote the graph Laplacian, the discretized integral operator, and the orthogonal projector killing the DC component, corresponding to L, K, P in the continuum, respectively.

Theorem

 $PKP = L^{\dagger}$. In particular, (PKP)L = L(PKP).

- Consequently, the eigenvectors of *PKP* are *exactly the DCT Type II basis vectors* used for the JPEG standard.
- Knowledge of $K \iff distance matrix \Delta$ of P_n . In fact, for P_n , $K = -\Delta/2$.

Higher dimensions: Neumann BC's; Generalized DCT

• *PKP* commutes with a *subspace* of the domain of the Neumann-Laplacian:

Theorem

Let Ω be a sufficiently smooth bounded domain in \mathbb{R}^d , $d \ge 2$, and let f satisfy both $\partial_{\nu} f |_{\partial\Omega} \equiv 0$, and $\int_{\Omega} f = 0$. Then $(\mathscr{PRP})\mathscr{L}_N f = \mathscr{L}_N(\mathscr{PRP})f = f$ if and only if $f |_{\partial\Omega} \equiv \text{const.}$

• For some discretized domains, we can say the following:

Theorem

Let G be either a tree or a lattice graph $P_{n_1} \otimes \cdots \otimes P_{n_d}$ in \mathbb{R}^d . Let L, Δ be the graph Laplacian, the distance matrix of G. Then, $(P\Delta P)L = L(P\Delta P)$. Hence, in the lattice case, the eigenvectors of $P\Delta P$ are the tensor-product DCT-II vectors.

• What is the right kernel for the integral operator for general graphs?

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Handling Directed Graphs with Integral Operators

- If G is a directed graph (digraph), then its graph Laplacian L(G) := D(G) W(G) is nonsymmetric \Longrightarrow not necessarily diagonalizable; eigenvalues may be in \mathbb{C} ; \exists many different definitions of L(G) ...
- Our viewpoint: the connectivity between any two vertices in a digraph are not a local concept; rather it is a *global* concept. Think about one-way streets in your town!
- Hence, it is quite natural to use the distance matrix of G,
 Δ(G) := (d(i, j))_{i,j=1:n} where d(i, j) is the shortest/geodesic distance between vertices i, j.
- Note that if edge weights of *G* reflect the *affinity* instead of the distance, then *d*(*i*, *j*) should be the sum of the edge weights along the greatest affinity path between *i*, *j*.
- Our previous investigation suggests the SVD of K(G) and PK(G)P. Note that in 3D, $K(G) = \frac{1}{4\pi}(1/d(i, j))_{i,j}$. 27/40

Detecting the directional difference!

Example: A Neuronal Dendritic Tree

Mouse's retinal ganglion cell as a tree (n = 1154)

Right Singular Vectors of *K* **vs** *PKP* **for undirected case**

Right Singular Vectors of K vs PKP for undirected case ...

(a) **v**₄

(d) \tilde{v}_3

(e) \tilde{v}_4

(f) *v*₅

31/40

Right Singular Vectors of *K* **vs** *PKP* **for** *directed* **case**

Right Singular Vectors of K vs PKP for directed case ...

Right Singular Vectors *PKP* for the different directed cases

Right Singular Vectors *PKP* for the different directed cases ...

(f) $\tilde{\tilde{v}}_5$

(d) $\tilde{\tilde{v}}_3$

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

Summary

Our approach using the commuting integral operators

- Allows data analysis analysis & synthesis on quite singular domains including graphs
- is based on the *distance matrix* of the sample points on the domain, closely related to the *Green's function*
- Can get *fast-decaying expansion coefficients* (less Gibbs effect)
- Can handle data analysis/synthesis on directed graphs
- Can incorporate the *DC vector* of a domain if a user wishes, which leads to the *generalized discrete cosine transform*

Furthermore, our approach

- Can naturally extend the basis functions outside of the initial domain
- Can extract *geometric information* of a domain through eigenvalues
- Can decouple geometry/domain information and statistics of data
- Can use the *Fast Multipole Method* to speed up the computation, which is the key for higher dimensions/large domains
- Has a connection to lots of interesting mathematics: spectral geometry, spectral graph theory, isoperimetric inequalities, Toeplitz operators, PDEs, potential theory, almost-periodic functions, ...

Summary

Our approach using the commuting integral operators

- Allows data analysis analysis & synthesis on quite singular domains including graphs
- is based on the *distance matrix* of the sample points on the domain, closely related to the *Green's function*
- Can get *fast-decaying expansion coefficients* (less Gibbs effect)
- Can handle data analysis/synthesis on directed graphs
- Can incorporate the *DC vector* of a domain if a user wishes, which leads to the *generalized discrete cosine transform*

Furthermore, our approach

- Can naturally extend the basis functions outside of the initial domain
- Can extract geometric information of a domain through eigenvalues
- Can decouple geometry/domain information and statistics of data
- Can use the *Fast Multipole Method* to speed up the computation, which is the key for higher dimensions/large domains
- Has a connection to lots of interesting mathematics: spectral geometry, spectral graph theory, isoperimetric inequalities, Toeplitz operators, PDEs, potential theory, almost-periodic functions, ...

Future Plan

- Investigate numerical quadratures for more accurate discrete integral operators on irregularly-sampled domains and graphs
- Extend our integral operator to *Hodge Laplacians* for *simplicial complexes*; see, e.g., [S-Schonsheck-Shvarts (2024)]
- Develop wavelet packets on a general shape domain by hierarchically grouping the eigenfunctions similar to what we did recently for graphs [Cloninger-Li-S (2021)]
- Examine further our boundary conditions for specific geometry in higher dimensions; e.g., analysis of S² leads to *Clifford Analysis*
- Integral operators commuting with *polyharmonic operators* $(-\Delta)^p$, $p \ge 2$; *Helmholtz operators* $\Delta + k^2$; etc.
- Investigate the *heat kernel* in \mathbb{R}^d : $K_t(\mathbf{x}, \mathbf{y}) := \exp(t\Delta)(\mathbf{x}, \mathbf{y}) = \frac{1}{(4\pi t)^{d/2}} e^{-\|\mathbf{x}-\mathbf{y}\|^2/4t}$

Outline

Acknowledgment

Motivations

Integral Operators Commuting with Laplacian

Incorporating the DC Vector; Relation with the Neumann-Laplacian

Application to Directed Graphs

Summary

References

References

Laplacian Eigenfunction Resource Page: https://www.math.ucdavis.edu/-saito/lapeig/ contains my course note: "Laplacian Eigenfunctions: Theory, Applications, and Computations" as well as other useful information

The following articles are available at https://www.math.ucdavis.edu/~saito/publications/:

- N. Saito: "Data analysis and representation using eigenfunctions of Laplacian on a general domain," *Applied & Computational Harmonic Analysis*, vol. 25, no. 1, pp. 68–97, 2008.
- L. Hermi & N. Saito: "On Rayleigh-type formulas for a non-local boundary value problem associated with an integral operator commuting with the Laplacian," *Applied & Computational Harmonic Analysis*, vol. 45, no. 1, pp. 59–83, 2018.
- A. Cloninger, H. Li, & N. Saito: "Natural graph wavelet packet dictionaries," Journal of Fourier Analysis & Applications, vol. 27, article #41, 2021.
- L. Hermi & N. Saito: "On a nonlocal integral operator commuting with the Laplacian and the Sturm-Liouville Problem I: Low rank perturbations of the operator," arXiv:2211.07141v3 [math.SP], 2023.
- N. Saito, S. Schonsheck, & E. Shvarts: "Multiscale transforms for signals on simplicial complexes," *Sampling Theory, Signal Processing, and Data Analysis,* vol. 22, no. 2, 2024.

40/40

Thank you very much for your attention!