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Clustering Mouse Retinal Ganglion Cells . . . 3D Data
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A Typical Neuron (from Wikipedia)
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Clustering using Features Derived by Neurolucida R©
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Motivations

We observed an interesting phase-transition or thresholding phenomenon
on the behavior of the eigenvalues and eigenfunctions of graph Laplacians
defined on trees constructed from actual neuronal dendrites.

(a) RGC #60 (b) RGC #100
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Motivations . . .

We have observed that this value 4 is critical since:

the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Our Dataset =⇒ Trees
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Graph Laplacians

The Laplacian matrix (often called the combinatorial Laplacian matrix) of
a graph G = (V ,E ) is defined as

L(G ) := D(G )− A(G )

D(G ) := diag(dv1 , . . . , dvn) the degree matrix

A(G ) = (aij) the adjacency matrix where

aij :=

{
1 if vi ∼ vj ;

0 otherwise.

Let f ∈ L2(V ). Then

L(G )f (u) = duf (u)−
∑
v∼u

f (v),

i.e., this is a generalization of the finite difference approximation to the
Laplace operator.
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Graph Laplacians . . .

Let |V (G )| = n, and let 0 = λ0(G ) ≤ λ1(G ) ≤ · · · ≤ λn−1(G ) be the
sorted eigenvalues of L(G ).

mG (λ) := the multiplicity of λ.

Let I ⊂ R be an interval of the real line. Then define
mG (I ) := #{λk(G ) ∈ I}.
A vertex of degree 1 is called a pendant vertex; a vertex adjacent to a
pendant vertex is called pendant neighbor.

Let p(G ) and q(G ) be the number of pendant vertices and that of
pendant neighbors, respectively.
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A Simple Yet Important Example: A Path Graph

L(G ) = D(G )− A(G )
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The eigenvectors of this matrix are exactly the DCT Type II basis vectors

used for the JPEG image compression standard! (See e.g., Strang, SIAM
Review, 1999).

λk = 2− 2 cos(πk/n), k = 0, 1, . . . , n − 1.

φk =
(
cos(πk(`+ 1

2)/n)
)
0≤`<n

, k = 0, 1, . . . , n − 1.
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A Starlike Tree

is a tree where there is only one vertex whose degree is larger than 2.

Let S(n1, n2, . . . , nk) be a starlike tree that has k(≥ 3) paths (i.e.,
branches) emanating from the center vertex v1.

Let the ith branch have ni vertices excluding v1.

Let n1 ≥ n2 ≥ · · · ≥ nk .

The total number of vertices: n = 1 +
k∑

i=1

ni .

(a) S(2, 2, 1, 1, 1, 1) (b) S(n1, 1, 1, 1, 1, 1, 1, 1) a.k.a. comet
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Known Results on Starlike Trees

We proved (in 2010) the largest eigenvalue for a comet is always
larger than 4.

K. Ch. Das (2007) proved the following results.

λmax = λn−1 < k + 1 +
1

k − 1

2 + 2 cos

(
2π

2nk + 1

)
≤ λn−2 ≤ 2 + 2 cos

(
2π

2n1 + 1

)
On the other hand, Grone and Merris (1994) proved the following
lower bound for a general graph G with at least one edge:

λmax ≥ max
1≤j≤n

d(vj) + 1.

Hence if G is a starlike tree, the threshold phenomenon with the value
4 is completely explained.
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Our Observation via Numerical Experiments

Unfortunately, actual dendrite trees are not starlike.

However, our numerical computations and data analysis indicate that:

0 ≤
#{j ∈ (1, n) | d(vj) 	 2} −mG ([4,∞))

n
≤ 0.047

for each cell where n = |V (G )|.
We can define the starlikeliness S`(T ) of a given tree G = T as
follows:

S`(T ) := 1−
#{j ∈ (1, n) | d(vj) 	 2} −mT ([4,∞))

n
.

We found S`(T ) ≡ 1 for all the dendrites in Cluster 6.
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Dendrites with S`(T ) = 1
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More dendrites with S`(T ) = 1
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Dendrites with S`(T ) � 1

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions on Dendrites JSIAM Annual Meeting 22 / 32



More dendrites with S`(T ) � 1

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions on Dendrites JSIAM Annual Meeting 23 / 32



Zoom up

(a) RGC #100; S`(T ) = 1 (b) RGC #155; S`(T ) = 0.953 � 1
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Our Conjecture and Questions

Conjecture

For any tree T of finite volume, we have

0 ≤ mT ([4,∞)) ≤ #{j ∈ (1, n) | d(vj) 	 2}

and each eigenfunction corresponding to λ ≥ 4 has its largest component
(in the absolute value) on the vertices whose degree are larger than 2.

Questions

Is there any tree whose graph Laplacian has an exact eigenvalue 4?

If so, what kind of trees are they?

How about simple connected graphs instead of trees? =⇒
Repeated eigenvalues 4 exist for regular lattice graphs with d > 1.
But the corresponding eigenfunctions are not localized.
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Our Conjecture and Questions . . .

It turned out that Guo proved the following theorem:

Theorem (Guo 2006)

Let T be a tree with n vertices. Then,

λj(T ) ≤
⌈

n

n − j

⌉
, j = 0, . . . , n − 1,

and the equality holds iff a) j 6= 0; b) n − j divides n; and c) T is spanned
by n − j vertex disjoint copies of K

1, j
n−j

.

This implies that if n = 4m, there is an eigenvalue exactly equal to 4
at j = 3m, i.e., λ3m = 4, and this tree consists of m copies of K1,3:
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Our Conjecture and Questions . . .

(a) {λj}19j=0; S`(T ) = 1

(b) φ15 (c) φ19
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Conclusions & Future Plans

Observed a global-to-local phase transition phenomenon of the
eigenvalues and eigenfunctions of such dendrite patterns =⇒ leads to
a theorem?

Further investigate the meaning of the eigenvalue 4.

How about the weighted graph Laplacians?
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