Time-Frequency Feature Extraction via Synchrosqueezing Transform and Its Application to Data Sonification

Alex Berrian, Jordan Leung & Naoki Saito

Dept. of Mathematics; Dept. of Statistics University of California, Davis

> JSIAM Annual Meeting Kanazawa, Japan September 11, 2015

1 Introduction

- 2 Synchrosqueezing transform
- **3** Open problems

4 Synchrosqueezing with adaptive time-frequency representations

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/37

- Xiang Cui (formerly Nanjing Univ., currently Univ. Washington)
- Geoff Schladow (UC Davis Tahoe Environmental Research Center)

- Hau-Tieng Wu (Univ. Toronto)
- Support from Office of Naval Research grant: ONR N00014-12-1-0177
- Support from National Science Foundation grants: DMS-1148643; DMS-1418779

1 Introduction

Amplitude-phase decomposition Short-time Fourier transform

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

1 Introduction Amplitude-phase decomposition Short-time Fourier transform

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

Amplitude-phase decomposition

Let $f : \mathbb{R} \to \mathbb{C}$ be a signal and assume f can be written as a finite sum of (unknown) *amplitude-phase components (modes)*

$$f(t) = \sum_{k=1}^{K} A_k(t) \exp(2\pi \mathrm{i}\phi_k(t)),$$

where the $A_k(t)$ represent *instantaneous amplitudes* (IAs) and the $\phi_k(t)$ represent *instantaneous phases*. Denote $f_k(t) := A_k(t) \exp(2\pi i \phi_k(t))$.

- We call the decomposition $f = \sum_{k=1}^{K} f_k$ an *amplitude-phase* decomposition.
- The $\phi'_k(t)$ are called *instantaneous frequencies* (IFs).
- For definiteness of this decomposition, we impose certain requirements on A_k and φ'_k (to be discussed later).

What kinds of signals can be modeled using an amplitude-phase decomposition?

- Audio signals (music, speech, bat echolocation calls...)
- Medical/physiological signals (EEG, ECG, sEMG...)
- Mechanical signals (vibration, force signals; for machine condition monitoring and testing...)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ 5/37

Radar/sonar signals

These signals have time-varying oscillatory characteristics.

General problem: We want to express

$$f(t) = \sum_{k=1}^{K} f_k(t) = \sum_{k=1}^{K} A_k(t) \exp(2\pi i \phi_k(t)).$$

How do we determine the amplitude-phase components f_k given that only f is known?

Starting point: Use the *short-time Fourier transform* to visualize A_k and ϕ'_k .

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ · ∽ ♀ ↔ 6/37

Introduction Amplitude-phase decomposition Short-time Fourier transform

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

Given a window function $g \in L^2(\mathbb{R})$ centered at 0, the *short-time Fourier transform* (STFT) of a signal f is defined by

$$V_g f(t,\xi) := \int_{\mathbb{R}} f(x) \overline{g(x-t)} e^{-2\pi i \xi(x-t)} dx.$$

If $\hat{f},\hat{g}\in L^1(\mathbb{R})$ then we can reconstruct f from the STFT via the inversion formula

$$f(t) = \frac{1}{\overline{g(0)}} \int_{\mathbb{R}} V_g f(t,\xi) \,\mathrm{d}\xi,$$

provided that g is continuous in a neighborhood of 0 and $g(0) \neq 0$.

<□ > < @ > < E > < E > E の Q @ 7/37

STFT example (spectrogram)

First plot: $f(t) := f_1(t) + f_2(t)$ where $f_1(t) := [1 + 0.2\cos(t + 1)] \cdot \cos(2\pi(3t - t^2/20))$ and $f_2(t) := \sqrt{0.8 + t/10}\cos(2\pi(5t + \cos(t)))$ for $t \in [0, 10]$, 2000 samples. Second plot: STFT of f, using window function g given by $\hat{g}(\eta) := \exp([(\eta/\sigma)^2 - 1]^{-1})$ for $|\eta| \le \sigma$, $\hat{g} = 0$ elsewhere, $\sigma = 0.8$. Due to the *uncertainty principle*, the STFT visualization of f is blurry. So the exact IAs and IFs are obscured.

Solution: A post-processing method known as the *Synchrosqueezing transform* (SST)! [Daubechies & Maes 1996]

Introduction

2 Synchrosqueezing transform

Main concepts Applications Synchrosqueezing based on the STFT Ridge extraction

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

Introduction

2 Synchrosqueezing transform Main concepts

Applications Synchrosqueezing based on the STFT Ridge extraction

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

Step 1: For each *t*, reassign the frequency locations η of sufficiently large STFT coefficients $V_g f(t, \eta)$ to an IF estimate $\xi_f(t, \eta)$, yielding the SST $S_{\gamma, f}(t, \xi)$.

Step 1: For each *t*, reassign the frequency locations η of sufficiently large STFT coefficients $V_g f(t, \eta)$ to an IF estimate $\xi_f(t, \eta)$, yielding the SST $S_{\gamma, f}(t, \xi)$.

Step 1: For each *t*, reassign the frequency locations η of sufficiently large STFT coefficients $V_g f(t, \eta)$ to an IF estimate $\xi_f(t, \eta)$, yielding the SST $S_{\gamma, f}(t, \xi)$.

Step 1: For each *t*, reassign the frequency locations η of sufficiently large STFT coefficients $V_g f(t,\eta)$ to an IF estimate $\xi_f(t,\eta)$, yielding the SST $S_{\gamma,f}(t,\xi)$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ 毫 の へ ○ 10/37

Step 2: For each *t*, *integrate* the SST $S_{\gamma,f}(t,\xi)$ over a frequency band around an estimate of the curve $\phi'_k(t)$ to reconstruct $f_k(t)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/37

Step 2: For each *t*, *integrate* the SST $S_{\gamma,f}(t,\xi)$ over a frequency band around an estimate of the curve $\phi'_k(t)$ to reconstruct $f_k(t)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 2: For each *t*, *integrate* the SST $S_{\gamma,f}(t,\xi)$ over a frequency band around an estimate of the curve $\phi'_k(t)$ to reconstruct $f_k(t)$.

Step 2: For each *t*, *integrate* the SST $S_{\gamma,f}(t,\xi)$ over a frequency band around an estimate of the curve $\phi'_k(t)$ to reconstruct $f_k(t)$.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 11/37

Reconstruction formula: $f_k(t) \approx \int_{\{\xi : |\xi - \phi'_k(t)| < \gamma\}} \frac{1}{\overline{g(0)}} \cdot S_{f,\gamma}(t,\xi) d\xi.$

SST in pictures: whole signal

◆□▶ ◆舂▶ ◆≧▶ ◆≧▶ ≧ の�� 12/37

Introduction

2 Synchrosqueezing transform Main concepts Applications

Synchrosqueezing based on the STFT Ridge extraction

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで 12/37

Applications of SST

- Speaker identification from speech signal [Daubechies & Maes 1996]
- Fault diagnosis in planetary gearboxes for wind turbines [Feng, Chang & Liang 2015]
- Extracting heart-rate variability from electrocardiogram (ECG) signal [Daubechies, Lu & Wu 2011]
- Detecting stages of sleep from respiratory signal [Wu 2013]
- Quantifying the effect of solar radiation on a key paleoclimate change on Earth [Thakur et al. 2013]

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ● ○ Q ○ 13/37

• • • •

Introduction

2 Synchrosqueezing transform

Main concepts Applications Synchrosqueezing based on the STFT Ridge extraction

Open problems

4 Synchrosqueezing with adaptive time-frequency representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 13/37

SST-STFT: Assumptions on signal and window

Definition: We say that $f \in \mathscr{B}_{\epsilon,d}^{\mathsf{STFT}}$ if we can write $f = \sum_{k=1}^{K} f_k = \sum_{k=1}^{K} A_k \exp(2\pi i \phi_k)$ for some $K \in \mathbb{Z}^+$ and if moreover there exist $\epsilon, d > 0$ such that for each $k \in \{1, ..., K\}$,

- A_k and ϕ'_k are bounded and sufficiently smooth: $A_k \in C^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}), \ \phi_k \in C^2(\mathbb{R}), \ \phi'_k \in L^{\infty}(\mathbb{R}), \ \inf_{t \in \mathbb{R}} A_k(t) > 0$ and $\inf_{t \in \mathbb{R}} \phi'_k(t) > 0;$
- A_k is weakly-modulated: $\forall t \in \mathbb{R}, |A'_k(t)| \le \epsilon |\phi'_k(t)|;$
- ϕ'_k is *slowly-varying*: $\forall t \in \mathbb{R}, |\phi''_k(t)| \le \epsilon |\phi'_k(t)|;$
- ϕ'_k is well-separated from the other IFs: if $k \ge 2$, $t \in \mathbb{R}$ we have $\phi'_k(t) \phi'_{k-1}(t) > d$.

Definition: We say that $g \in \mathcal{W}_d^{\mathsf{STFT}}$ if $g \in \mathscr{S}(\mathbb{R})$ (the Schwartz space), $g(0) \neq 0$, and $\operatorname{supp}(\hat{g}) \subset [-d/2, d/2]$.

SST-STFT: Theorem

The following theorem is due to Thakur & Wu (2011) and Oberlin, Meignen & Perrier (2014):

Theorem: Suppose there exist $\epsilon, d > 0$ such that $f = \sum_{k=1}^{K} f_k \in \mathscr{B}_{\epsilon,d}^{\mathsf{STFT}}$ and

 $g \in W_d^{\mathsf{STFT}}$. Let $\tilde{e} = e^{1/3}$. Then, provided that \tilde{e} is sufficiently small, the following results hold:

- (Concentration of STFT around IF curve) $|V_g f(t,\xi)| > \tilde{\epsilon}$ only when there exists $k \in \{1,...,K\}$ such that $(t,\xi) \in Z_k := \{(t,\xi) : |\xi - \phi'_k(t)| < d/2\}.$
- (Closeness of reassigned frequency ξ_f to IF) For all $k \in \{1, ..., K\}$ and all $(t, \xi) \in Z_k$ such that $|V_g f(t, \xi)| > \tilde{e}$, we have $|\xi_f(t, \xi) - \phi'_k(t)| \le \tilde{e}$.
- (Accuracy of reconstruction) For every $k \in \{1, ..., K\}$ there is a constant C > 0 such that for all times $t \in \mathbb{R}$,

$$\left| \int_{\{\xi : |\xi - \phi'_k(t)| < \tilde{\epsilon}\}} \frac{1}{\overline{g(0)}} \cdot S_{f,\tilde{\epsilon}}(t,\xi) \, \mathrm{d}\xi - f_k(t) \right| \le C\tilde{\epsilon}.$$

Introduction

2 Synchrosqueezing transform

Main concepts Applications Synchrosqueezing based on the STFT Ridge extraction

Open problems

4 Synchrosqueezing with adaptive time-frequency representations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 15/37

Default ridge extraction method

Default method: Find maximum of a functional measuring the time-frequency energy and smoothness of curves using a greedy algorithm.

Crazy climbers method

Crazy climbers method: [Carmona, Hwang & Torrésani 1999] Markov chain Monte Carlo approach to detect ridges.

◆□ ▶ < 酉 ▶ < 重 ▶ < 重 ▶ 至 の Q ℃ 17/37</p>

1 Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > ? 17/37

- **1** How to *increase time resolution* and still provide a reconstruction formula for the modes f_k ?
- 2 Can we address the case of strongly modulated and/or discontinuous IAs A_k?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 18/37

3 How to handle *crossing* IFs?

Quilted STFT to address open problems 1 & 2

• *Quilted Gabor Transform* (QGT) for improved time resolution:

Generalization of STFT, permitting for different analysis functions in different regions of interest *(quilt patches)* in time-frequency plane. Theoretically guaranteed to allow for reconstruction [Dörfler 2011].

2 QGT for strongly modulated/discontinuous IAs:

QGT captures sudden amplitude changes more accurately with improved time resolution.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 19/37

On open problem 3, we will not address in this presentation.

1 Introduction

2 Synchrosqueezing transform

3 Open problems

 Synchrosqueezing with adaptive time-frequency representations Quilted short-time Fourier Transform Synchrosqueezing based on the QSTFT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 19/37

1 Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations Quilted short-time Fourier Transform Synchrosqueezing based on the QSTFT

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 19/37

First, we define a two-parameter family of *quilted window functions* $h_{t,\xi}(x)$.

- For each $(t,\xi) \in \mathbb{R} \times \mathbb{R}^+$, $h_{t,\xi}$ is a function in $L^2(\mathbb{R})$ which is *centered at 0*.
- To guarantee SST accuracy, the $h_{t,\xi}$ will satisfy certain requirements which we give later.

Then we define the *quilted short-time Fourier transform* (QSTFT) of a signal f by

$$V_g^Q f(t,\xi) := \int_{\mathbb{R}} f(x) \overline{h_{t,\xi}(x-t)} e^{-2\pi i \xi(x-t)} dx.$$

1 Introduction

2 Synchrosqueezing transform

3 Open problems

 4 Synchrosqueezing with adaptive time-frequency representations Quilted short-time Fourier Transform Synchrosqueezing based on the QSTFT

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q C 20/37

SST-QSTFT: Continuous formulation

We define the Synchrosqueezing transform based on the quilted short-time Fourier transform (SST-QSTFT) of a signal f, with tolerance $\gamma > 0$, by

$$S_{f,\gamma}^Q(t,\xi) := \int_{A_{\gamma,f}^Q(t)} V_g^Q f(t,\eta) \delta\left(\xi - \xi_f^Q(t,\eta)\right) \mathrm{d}\eta$$

where $A^Q_{\gamma,f}(t) := \{\eta \in \mathbb{R}_+ : |V^Q_g f(t,\eta)| > \gamma\}$, and where

$$\xi_f^Q(t,\xi) := \frac{\partial_t \left[V_g^Q f(t,\xi) \right]}{2\pi i V_g^Q f(t,\xi)}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 21/37

is a function which gives an approximation to IF.

SST-QSTFT: Window criteria

Definition: Given $\epsilon, d > 0$, we say that the two-parameter family $\{h_{t,\xi}\}_{(t,\xi)\in\mathbb{R}\times\mathbb{R}^+}$ is of the class $\mathscr{W}_{d,\epsilon}^{\mathsf{QSTFT}}$ if:

- For each $(t,\xi) \in \mathbb{R} \times \mathbb{R}^+$ we have $h_{t,\xi} \in \mathcal{W}_d^{\mathsf{STFT}}$.
- For each $t \in \mathbb{R}$ and $k \in \{1, ..., K\}$, there is some constant $a_{t,k} \in \mathbb{R}$ such that $h_{t,\xi} \equiv a_{t,k}$ for all ξ in the frequency band $\{\xi : |\xi \phi'_k(t)| < d/2\}.$
- The integrals $I_m(t,\xi) := \int_{\mathbb{R}} |u|^m |h_{t,\xi}(u)| du$ and $J_m(t) := \int_{\mathbb{R}} |u|^m |h'_{t,\xi}(u)| du$ satisfy $\sup_{t,\xi \in \mathbb{R} \times \mathbb{R}^+} \{I_m(t,\xi), J_m(t,\xi)\} < \infty$ for all $m \in \{0, 1, 2\}$.
- Defining $h(x, t, \xi) := h_{t,\xi}(x)$, we have that for all $(t, \xi) \in \mathbb{R} \times \mathbb{R}^+$, $\int_{\mathbb{R}} |\partial_t h(u, t, \xi)| \, \mathrm{d}u < \infty.$

The third condition ensures the closeness of ξ_f^Q to ϕ'_k . The fourth condition bounds the amount of variation that the window family $h_{t,\xi}$ can exhibit over t.

SST-QSTFT

Theorem (B., 2015): Let $\epsilon > 0$, $\tilde{\epsilon} = \epsilon^{1/3}$, d > 0. Assume that $\{h_{t,\xi}\}_{(t,\xi) \in \mathbb{R} \times \mathbb{R}^+}$ is of the class $\mathcal{W}_{d,\epsilon}^{\mathsf{QSTFT}}$. Suppose that $f = \sum_{k=1}^{K} f_k \in \mathscr{B}_{\epsilon,d}^{\mathsf{STFT}}$. Then, if ϵ is sufficiently small, the following results hold:

- (Concentration of QSTFT around IF curve) $|V_g^Q f(t,\xi)| > \tilde{\epsilon}$ only when there is a $k \in \{1, ..., K\}$ such that $(t,\xi) \in Z_k := \{(t,\xi) : |\xi \phi'_k(t)| < d/2\}$.
- (Closeness of reassigned frequency ξ_f^Q to IF) For all $k \in \{1, ..., K\}$ and all $(t,\xi) \in Z_k$ such that $|V_g^Q f(t,\xi)| > \tilde{e}$, we have $|\xi_f^Q(t,\xi) \phi'_k(t)| \le \tilde{e}$.
- (Accuracy of reconstruction) For every $k \in \{1, ..., K\}$ there is a constant C_k such that for all times $t \in \mathbb{R}$,

$$\left| \int_{\left[\xi : |\xi - \phi_k'(t)| < \bar{\epsilon}\right]} \frac{1}{\bar{h}_{t,\xi}(0)} \cdot S_{f,\gamma}^Q(t,\xi) \, \mathrm{d}\xi - f_k(t) \right| \le C_k \bar{\epsilon}.$$

◆□▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ E の Q @ 23/37

Numerical example 1: Synthetic test signal

We try the SST-QSTFT on a challenging synthetic test signal $f(t):=f_1(t)+f_2(t)$ for $t\in[0,1]$, where

$$f_1(t) := \begin{cases} A_1(t)\cos(2\pi \cdot 51t) & \text{if } t \in [0, .25) \cup (.75, 1] \\ 0 & \text{if } t \in [.25, .75], \end{cases}$$

$$f_2(t) := \begin{cases} 0 & \text{if } t \in [0, .25) \\ A_2(t) \cos(2\pi \cdot (131t - \frac{30}{4\pi} \sin(4\pi t))) & \text{if } t \in [.25, 1], \end{cases}$$

and where $A_1(t)$ and $A_2(t)$ are strongly-modulated, discontinuous amplitude functions of the form

$$A_k(t) := \begin{cases} 1 & \text{if } t \in S_k \\ 7 \cdot \left(\exp\left[\left(\left(\frac{t-t_k}{.05} \right)^2 - 1 \right)^{-1} \right] + 1 \right) & \text{if } t \in O_k, \end{cases}$$

where $O_1 = [.75,.8]$, $O_2 = [.25,3]$ are the intervals of strong amplitude modulation, $t_1 = .75$, $t_2 = .25$ are the onset times, and $S_1 = [0,.25] \cup (.8,1]$ and $S_2 = (.3,1]$ are the interval of stable, constant amplitude 1.

Numerical example 1: Quilted window function choice

Next, we use a *spectral flux function* [Dixon 2006], which measures temporal change in magnitude in each frequency bin and sums them within some range of frequency band, to estimate the onset and offset times of signal components. Let $\tilde{t}_1 \approx .743$ and $\tilde{t}_2 \approx .243$ be the estimates of the actual onset times $t_1 = .75$ and $t_2 = .25$ from before. Then, our window $h_{t,\xi}$ has the form

$$h_{t,\xi}(x) := \begin{cases} g_{60}(x) & \text{for } t \in [\tilde{t}_2 - \nu, \tilde{t}_2 + \nu], \ \xi \in [90, 240], \\ g_{45}(x) & \text{for } t \in [\tilde{t}_1 - \nu, \tilde{t}_1 + \nu], \ \xi \in [0, 100], \\ g_{30}(x) & \text{elsewhere,} \end{cases}$$

where $\nu>0$ is a user-prescribed parameter, and for generic $\sigma>0$ we define g_σ to be the Fourier-side bump function given by

$$\widehat{g_{\sigma}}(\eta) := \begin{cases} \exp\left[\left(\left(\eta/\sigma\right)^2 - 1\right)^{-1}\right] & \text{ if } |\eta| < \sigma \\ 0 & \text{ if } |\eta| \ge \sigma. \end{cases}$$

We remark that for each fixed t, $h_{t,\xi}$ is constant in ξ over the frequency bands $\{\xi : |\xi - \phi'_k(t)| < 10\}, k = 1, 2.$

Numerical example 1 (continued)

Left: SST-QSTFT of f, using window g_{60} on the upper component at the time of its onset, g_{45} on the lower component at the time of its second onset, and g_{30} elsewhere.

Right: SST-STFT of f, using g_{60} as the window.

For this example, we sample f at sampling rate $f_s = 1024$ and take $v = 80/f_s$.

Numerical example 1 (continued)

Comparison of relative ℓ^2 - and ℓ^1 -norm errors in the envelope of the reconstructed signal from samples 513 to 1024 (the second half of the signal) in the first component $f_1(t)$ of the signal f(t).

Numerical example 2 (onset detection)

Glockenspiel signal, analyzed by SST-QSTFT and SST-STFT. Left: SST-QSTFT, using window g_{250} around estimated onset times and g_{100} elsewhere. Right: SST-STFT, using window g_{100} .

Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

5 Application: data sonification

Lake Tahoe temperature dataset Sonification with SST: Motivation and main ideas Sonification with SST: Algorithm Results

Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

5 Application: data sonification

Lake Tahoe temperature dataset

Sonification with SST: Motivation and main ideas Sonification with SST: Algorithm Results In this part, we work with a dataset of lake temperatures, described as follows:

 16 thermometers placed at a location in Lake Tahoe, each at different depths.

▲□▶ ▲□▶ ▲≣▶ ▲≣▶ ■ のへで 29/37

 Temperature measurements taken every 30 seconds, for approximately 70 days. 202150.16 data points in total.

Lake Tahoe temperature dataset: description

Introduction

- 2 Synchrosqueezing transform
- **3** Open problems
- 4 Synchrosqueezing with adaptive time-frequency representations

6 Application: data sonification Lake Tahoe temperature datas

Sonification with SST: Motivation and main ideas Sonification with SST: Algorithm Results

- **Goal:** Convey the separate short-term oscillatory and long-term trend information from each of the temperature signals, while still enabling their simultaneous "reading."
- **Obstacle:** Visualization of all this information may be difficult to read.
- **Idea:** Using the power of our auditory system, one has some hope of "hearing" all the information together.

This leads to the idea of *sonification*: the translation of data into sound!

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 31/37

- SST can be used to extract the oscillatory characteristics from the data, in the form of IF curves.
- Oscillatory characteristics represent diverse events occurring in the fluid flow of the lake.
- Musical sonification: Since music signals share similar oscillatory characteristics to those in our data, it is natural to consider a musical model of these IF curves.

Hence, we propose to model this Lake Tahoe temperature dataset as a musical composition using SST.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ○ ○ ○ 32/37

Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

5 Application: data sonification

Lake Tahoe temperature dataset Sonification with SST: Motivation and main ideas Sonification with SST: Algorithm Results The algorithm to sonify the temperature dataset proceeds as follows:

- 1 Assign an instrument to each thermometer.
 - Lower thermometers are assigned lower-pitched instruments; higher thermometers are assigned higher-pitched instruments.
- **2** Extract IF curves ϕ'_k from the data using SST.
- Map the IF curves to pitches in a musical scale (major, minor, Dorian, etc.) in an audible range, using the open-source software JythonMusic.
- Use a LOESS (locally weighted polynomial regression) method to extract each signal's trend (seasonality).
- **6** Map the trend to MIDI volume values.
- **6** Export the information as MIDI data, using JythonMusic.

Introduction

2 Synchrosqueezing transform

3 Open problems

4 Synchrosqueezing with adaptive time-frequency representations

5 Application: data sonification

Lake Tahoe temperature dataset Sonification with SST: Motivation and main ideas Sonification with SST: Algorithm

Results

Steps of SST-based sonification

From top to bottom: the temperature measurement T1; its detrended version; the magnitude of the STFT; SST-STFT with the extracted IF curves overlaid in magenta.

Performance of SST-based sonification

About 14 days amount of data after subsampling every 5th time sample:

Summary

- SST is quite useful for revealing and extracting modes in nonstationary multicomponent signals for various applications.
- In particular, SST-QSTFT can provide improved time resolution and handle signals having strongly-modulated and/or discontinuous IAs.
- SST could extract IA/IF curves from the Lake Tahoe temperature measurements, which allowed us to sonify them nicely.
- Yet, the current versions of SST have difficulty to handle crossing IF curves, which often occur in practice. Investigate Chirplet transforms?
- Also, it is important to consider how to (semi-)automatically set all the parameters in SST-QSTFT.
- As for the Lake Tahoe dataset, we will examine the *isothermal displacement* data generated from those temperature measurements.

Thank you!

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 37/37