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Amplitude-phase decomposition

Let f:R— C be a signal and assume f can be written as a finite
sum of (unknown) amplitude-phase components (modes)

K
F( =) Ar(t) exprii (1)),
k=1

where the Ay (?) represent instantaneous amplitudes (1As) and the
(1) represent instantaneous phases. Denote
S (1) := Ap(t) exp(2mighy ().

K
= We call the decomposition f = Z fx an amplitude-phase
k=1
decomposition.

= The <p;€(t) are called instantaneous frequencies (IFs).

= For definiteness of this decomposition, we impose certain
requirements on Ay and ¢/ (to be discussed later).



Motivation for amplitude-phase decomposition

What kinds of signals can be modeled using an amplitude-phase
decomposition?

= Audio signals (music, speech, bat echolocation calls...)

= Medical/physiological signals (EEG, ECG, sEMG...)

= Mechanical signals (vibration, force signals; for machine
condition monitoring and testing...)

= Radar/sonar signals

These signals have time-varying oscillatory characteristics.



General problem: determining f

General problem: We want to express
K K
F@O =Y fi( =) Ap(t) exp@ri(0)).
k=1 k=1

How do we determine the amplitude-phase components fi given
that only f is known?

Starting point: Use the short-time Fourier transform to visualize
Ag and ¢
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Short-time Fourier transform (STFT)

Given a window function g€ L?(R) centered at 0, the short-time
Fourier transform (STFT) of a signal f is defined by

Ve f(1,8) ::ff(x)me—zmax—n dr.
R

If f,&€L'(R) then we can reconstruct f from the STFT via the
inversion formula

1
(I)Z:fv (t,6)d¢,
f =0 e of

provided that g is continuous in a neighborhood of 0 and g(0) #0.



STFT example (spectrogram)

First plot: f(1):= f1(¢) + f2(?) where
fi(®):=[14+0.2cos(t+1)]-cos(2m (31— £2/20)) and
f2():=v0.8+ t/10cos(2m(5¢ + cos(t))) for t€[0,10], 2000 samples.

Second plot: STFT of f, using window function g given by
g :=exp([n/a)?—1171) for Inl <o, g =0 elsewhere, o0 =0.8.




How to retrieve fi using STFT?

Due to the uncertainty principle, the STFT visualization of f is
blurry. So the exact |As and IFs are obscured.

Solution: A post-processing method known as the
Synchrosqueezing transform (SST)! [Daubechies & Maes 1996]
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SST in pictures: frequency reassignment

Step 1: For each ¢, reassign the frequency locations n of sufficiently large
STFT coefficients Vg f(t,1) to an IF estimate $r(t,m), yielding the SST Sy, f(£:6).
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SST in pictures: frequency reassignment

Step 1: For each ¢, reassign the frequency locations 1 of sufficiently large
STFT coefficients Vg f(z,1) to an IF estimate {¢(z,7), yielding the SST Sy, £(z,0).

Define the SST by Sey(t,8):= fAy,f(f) ng(t,n)ﬁ(f—ff(t,n)) dn, where

- . . 0r [Vg f(£,8)]
Ay'f(f) ={neR:: |ng(ty77)| >y}, ¥>0, and ff(t,f) = W



SST in pictures: reconstruction

Step 2: For each t, integrate the SST Sy, r(£,6)
over a frequency band around an estimate of the curve (P;c(t) to reconstruct fi.(1).
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SST in pictures: reconstruction

Step 2: For each ¢, integrate the SST S, ¢(t,$)
over a frequency band around an estimate of the curve (J);C(t) to reconstruct fi(1).

tine (sec)

Reconstruction formula: fi.(t) = [ . ‘*%mkﬂﬁ -Spy(t,8)ds.



SST in pictures: whole signal

Synchrasqueezing. Hz

component.

2 3 4 5
tine (sec)
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Applications of SST

= Speaker identification from speech signal [Daubechies & Maes
1996]

= Fault diagnosis in planetary gearboxes for wind turbines [Feng,
Chang & Liang 2015]

= Extracting heart-rate variability from electrocardiogram (ECG)
signal [Daubechies, Lu & Wu 2011]

= Detecting stages of sleep from respiratory signal [Wu 2013]

= Quantifying the effect of solar radiation on a key paleoclimate
change on Earth [Thakur et al. 2013]
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SST-STFT: Assumptions on signal and window

Definition: We say that f € @ES;FT if we can write

K K

f=) fi=">_ Arexp(2mi¢y) for some K€ Z* and if moreover
k=1 k=1

there exist €,d > 0 such that for each ke {1,...,K},

= Ay and ¢ are bounded and sufficiently smooth:
Ar€ C'R)NLP(R), dpr€ CXR), ¢ € L°(R), inf A(1) >0 and
€
: ! .
info0>0
= Ay is weakly-modulated: VteR, IA’k(t)I 56|¢’k(t)|;
. gb;C is slowly-varying: VYt €R, I(p%(t)l S€|¢;C(t)|;
= gb;C is well-separated from the other IFs: if k=2, t€ R we have
- (D) >d.

Definition: We say that g€ WdSTFT if ge #(R) (the Schwartz
space), g(0) #0, and supp(g) < [-d/2,d/2].



SST-STFT: Theorem

The following theorem is due to Thakur & Wu (2011) and Oberlin,
Meignen & Perrier (2014):

K
Theorem: Suppose there exist €,d >0 such that f = Z b E%ES’;FT and
k=1
g€7I/dSTFT. Let é=€!/3. Then, provided that & is sufficiently small, the
following results hold:
= (Concentration of STFT around IF curve)
|Vg f(2,§)| > € only when there exists k€ {1,...,K} such that
(t,§) € Zp:={(1,¢) : IE—([)’k(t)I <dl2}.
= (Closeness of reassigned frequency ¢ to IF)
For all ke{l,...,K} and all (£,¢) € Zj such that |Vg f(£,6)| > €, we have
1§ 7(2,0) - ¢l (D<€
= (Accuracy of reconstruction)

For every ke {l,...,K} there is a constant C > 0 such that for all times
teR,

1
:0) . Sfyg(l’,f) dé - fi ()| < Ce.
§ 1 IE-gL(nl<e
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Default ridge extraction method

Default method: Find maximum of a functional measuring the
time-frequency energy and smoothness of curves using a greedy
algorithm.




Crazy climbers method

Crazy climbers method: [Carmona, Hwang & Torrésani 1999]
Markov chain Monte Carlo approach to detect ridges.

R
W W\WW%\ Ve
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Open problems

@ How to increase time resolution and still provide a
reconstruction formula for the modes f;?

® Can we address the case of strongly modulated and/or
discontinuous |As A7

© How to handle crossing IFs?



Quilted STFT to address open problems 1 & 2

® Quilted Gabor Transform (QGT) for improved time
resolution:
Generalization of STFT, permitting for different analysis functions in
different regions of interest (quilt patches) in time-frequency plane.
Theoretically guaranteed to allow for reconstruction [Dérfler 2011].

® QGT for strongly modulated/discontinuous |As:
QGT captures sudden amplitude changes more accurately with improved

time resolution.

On open problem 3, we will not address in this presentation.
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Quilted short-time Fourier transform

First, we define a two-parameter family of quilted window
functions hyg(x).
= For each (t,&) e R xR, h;¢ is a function in L%(R) which is
centered at 0.
= To guarantee SST accuracy, the h;¢ will satisfy certain
requirements which we give later.

Then we define the quilted short-time Fourier transform (QSTFT)
of a signal f by

Vf,?f(t,é) ::fRf(x)me—zmax—n dx.
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SST-QSTFT: Continuous formulation

We define the Synchrosqueezing transform based on the quilted
short-time Fourier transform (SST-QSTFT) of a signal f, with
tolerance y >0, by

Q — Q _Q
s2,0:= [ v@reme(s-¢lwn)dn,

Aﬁf(t)
where Agf(t) ={neR,: IVng(t,n)I > v}, and where

0| Ve r.0)]

&2(1,8) =
f 1 Q
vag f&,8

is a function which gives an approximation to IF.



SST-QSTFT: Window criteria

Definition: Given €,d >0, we say that the two-parameter family
{heedr,6)erxr+ is of the class Wd?eSTFT if:
= For each (t,{) e RxR" we have h;¢ € WdSTFT.
= For each teR and ke{l,...,K}, there is some constant
a: k € R such that h;¢ = a; i for all ¢ in the frequency band
{£:18— ¢ (D1 <d/2}.

= The integrals I,,(t,&) ::f |ul™h e (w)|du and
R

]m(t):zf |u|m|h’t€(u)|du satisfy
. :

Sup {Im(t)é‘)y]m(t)é‘)}<00for a” me{orlyz}
t,EERxR*
= Defining h(x,t,¢) := hy¢(x), we have that for all (£,{) e Rx R,

f |0:h(u, t,&)|du < co.
R

The third condition ensures the closeness of 5? to ¢}.. The fourth
condition bounds the amount of variation that the window family
h;¢ can exhibit over t.



SST-QSTFT

Theorem (B., 2015): Let €>0, é=¢!/3, d>0 Assume that {h ¢} 5)epxpr i

of the class WQSTFT Suppose that f = Z fr EQBGS;—FT. Then, if € is

sufficiently small, the following results hold
= (Concentration of QSTFT around IF curve) |V§f(t,€)| > € only when
there is a ke {l1,...,K} such that (¢,8) € Zy :={(£,¢) : |£—(p9€(t)| <dl2}.
= (Closeness of reassigned frequency E? to IF) For all ke{1,...,K} and
all (1,§) € Zy, such that [V f(£,6)] > &, we have I{?(t,qf)—cp;c(t)l <é.

= (Accuracy of reconstruction) For every ke ({l,...,K} there is a constant
Cy. such that for all times t€R,

(t,§)d¢ — fr.(1)| < CyéE.
T fy Ji k
¢l i<e "



Numerical example 1: Synthetic test signal

We try the SST-QSTFT on a challenging synthetic test signal
() :=fi(t) + fo(t) for t€[0,1], where

A1 (t)cos(2m-51¢) if t€(0,.25)U(.75,1]
A ::{ .
0 if te[.25,.75],
0 if t€[0,.25)
(1) :=
f2 { Ao (t)cos(2m-(131¢— %Sinmnt))) if te[.25,1],

and where Aj(f) and A2 (¢) are strongly-modulated, discontinuous amplitude
functions of the form

1 if teSy
(52 1)

where 07 =[.75,.8], O =[.25,3] are the intervals of strong amplitude
modulation, #1 =.75, t» =.25 are the onset times, and S; =[0,.25] U (.8,1] and

Ap(t) :=

+1 if te Oy,

7- (exp

S2 = (.3,1] are the interval of stable, constant amplitude 1.



Numerical example 1: Quilted window function choice

Next, we use a spectral flux function [Dixon 2006], which measures temporal
change in magnitude in each frequency bin and sums them within some range
of frequency band, to estimate the onset and offset times of signal
components. Let 7] ~.743 and % ~.243 be the estimates of the actual onset
times t; =.75 and > =.25 from éefore. Then, our window h; ¢ has the form

ga5(x) for te[f—v,f +v], £€0,100],

geo(x) for t€[fr—v, T +v], £€[90,240],
ht,gr(x) = {
g30(x) elsewhere,

where v>0 is a user-prescribed parameter, and for generic o >0 we define g4
to be the Fourier-side bump function given by

((n/0)* - 1)_1] if Inl<o

0 if Inl=o. /
o / \

S0 = {exp

\

%08 w08 04 02z 0 02z 04 08 08 1
) vith 5=0.5

We remark that for each fixed f, h; ¢ is constant in ¢ over the frequency bands
g:E-phnl<10}, k=1,2.



Numerical example 1 (continued)
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Left: SST-QSTFT of f, using window ggog on the upper component at the time
of its onset, g45 on the lower component at the time of its second onset, and
g30 elsewhere.

Right: SST-STFT of f, using ggo as the window.
For this example, we sample f at sampling rate fs =1024 and take v =80/ f;.



Numerical example 1 (continued)

f: ﬁ/ \ /\/\/\/\/\/\/\/\/\/\/\g
ii - \/\/\/\/\/\/\/\/\/\/\ N /\;

s50 800 e50 700 750 800 a5 200 a50 1000

Transform Relative £2 reconstruction error Relative ¢ reconstruction error
SST-QSTFT .3195 .1406
SST-STFT .3626 .2760

Comparison of relative #2- and ¢1-norm errors in the envelope of the
reconstructed signal from samples 513 to 1024 (the second half of the signal)
in the first component fj () of the signal f(1).



Numerical example 2 (onset detection)

Glockenspiel signal, analyzed by SST-QSTFT and SST-STFT.
Left: SST-QSTFT, using window g»s50 around estimated onset times and gjgo
elsewhere. Right: SST-STFT, using window g100.
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Lake Tahoe temperature dataset: description

In this part, we work with a dataset of lake temperatures,
described as follows:
= 16 thermometers placed at a location in Lake Tahoe, each at
different depths.

= Temperature measurements taken every 30 seconds, for
approximately 70 days. 20215016 data points in total.



Lake Tahoe temperature dataset: description

Water surface

T 2 floats, top=-2.5
T2 Floats fastened to rope loop, T16
T cableto rope with tape and zip ties

b

14
GPS 26-Jul-2013:
395.084
h 1209131
-34 T14(T6)
43 ™
53 T8
1 green fleat
63 ™
725 0
E 1
92 2
102 § T3
107 T6(T14)
110 § TS
Ti6

RER logger + optode + P (with pinger]

00w rderwates cabe & L8 95 wire roe. hor




Outline

@ Application: data sonification

Sonification with SST: Motivation and main ideas



Sonification: Motivation

= Goal: Convey the separate short-term oscillatory and
long-term trend information from each of the temperature
signals, while still enabling their simultaneous “reading.”

= Obstacle: Visualization of all this information may be difficult
to read.

= ldea: Using the power of our auditory system, one has some
hope of “hearing” all the information together.

This leads to the idea of sonification: the translation of data into
sound!



Sonification with SST: Main ideas

= SST can be used to extract the oscillatory characteristics from
the data, in the form of IF curves.

= Oscillatory characteristics represent diverse events occurring in
the fluid flow of the lake.
= Musical sonification: Since music signals share similar

oscillatory characteristics to those in our data, it is natural to
consider a musical model of these IF curves.

Hence, we propose to model this Lake Tahoe temperature dataset
as a musical composition using SST.
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Sonification with SST: Algorithm

The algorithm to sonify the temperature dataset proceeds as
follows:

@ Assign an instrument to each thermometer.

= Lower thermometers are assigned lower-pitched instruments;
higher thermometers are assigned higher-pitched instruments.

@ Extract IF curves ¢} from the data using SST.

©® Map the IF curves to pitches in a musical scale (major, minor,
Dorian, etc.) in an audible range, using the open-source
software JythonMusic.

@ Use a LOESS (locally weighted polynomial regression) method
to extract each signal's trend (seasonality).

® Map the trend to MIDI volume values.
@® Export the information as MIDI data, using JythonMusic.
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Steps of SST-based sonification
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From top to bottom: the temperature measurement T1; its detrended version;
the magnitude of the STFT; SST-STFT with the extracted IF curves overlaid

in magenta.



Performance of SST-based sonification

About 14 days amount of data after subsampling every 5th time
sample:

Wl ﬂrp‘\ﬂb’\ﬂkﬁ*ﬁ A A A

; | S|
I :ﬁﬂ“ﬁmM\?‘“ w': M k! i i ]\q f’ﬁh ﬂ%Hw Aﬂ Vi ﬂ ¥\

1 |- W TR A
;"‘-'f‘ A H“'.'J ].I'al ‘ﬁ,. ur | MII Ll' |/ A ’- Jl'l lﬂl‘. " ii'g'gh,ul W\ Jll_l 'l |\




Summary

= SST is quite useful for revealing and extracting modes in
nonstationary multicomponent signals for various applications.

= In particular, SST-QSTFT can provide improved time
resolution and handle signals having strongly-modulated
and/or discontinuous IAs.

= SST could extract IA/IF curves from the Lake Tahoe
temperature measurements, which allowed us to sonify them
nicely.

= Yet, the current versions of SST have difficulty to handle
crossing |F curves, which often occur in practice. Investigate
Chirplet transforms?

= Also, it is important to consider how to (semi-)automatically
set all the parameters in SST-QSTFT .

= As for the Lake Tahoe dataset, we will examine the isothermal
displacement data generated from those temperature
measurements.



Thank you!
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