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Amplitude-phase decomposition

Let f :R!C be a signal and assume f can be written as a finite
sum of (unknown) amplitude-phase components (modes)

f (t ) =
KX

k=1

Ak (t )exp(2ºi¡k (t )),

where the Ak (t ) represent instantaneous amplitudes (IAs) and the
¡k (t ) represent instantaneous phases. Denote
fk (t ) := Ak (t )exp(2ºi¡k (t )).

• We call the decomposition f =
KX

k=1

fk an amplitude-phase

decomposition.
• The ¡0

k (t ) are called instantaneous frequencies (IFs).
• For definiteness of this decomposition, we impose certain

requirements on Ak and ¡0
k (to be discussed later).
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Motivation for amplitude-phase decomposition

What kinds of signals can be modeled using an amplitude-phase
decomposition?

• Audio signals (music, speech, bat echolocation calls...)
• Medical/physiological signals (EEG, ECG, sEMG...)
• Mechanical signals (vibration, force signals; for machine

condition monitoring and testing...)
• Radar/sonar signals

These signals have time-varying oscillatory characteristics.
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General problem: determining fk

General problem: We want to express

f (t ) =
KX

k=1

fk (t ) =
KX

k=1

Ak (t )exp(2ºi¡k (t )).

How do we determine the amplitude-phase components fk given
that only f is known?

Starting point: Use the short-time Fourier transform to visualize
Ak and ¡0

k .
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Short-time Fourier transform (STFT)

Given a window function g 2 L2

(R) centered at 0, the short-time

Fourier transform (STFT) of a signal f is defined by

Vg f (t ,ª) :=
Z

R
f (x)g (x ° t )e

°2ºiª(x°t )

dx.

If ˆf ,

ˆg 2 L1

(R) then we can reconstruct f from the STFT via the
inversion formula

f (t ) = 1

g (0)

Z

R
Vg f (t ,ª)dª,

provided that g is continuous in a neighborhood of 0 and g (0) 6= 0.
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STFT example (spectrogram)

First plot: f (t ) := f
1

(t )+ f
2

(t ) where

f
1

(t ) := [1+0.2cos(t +1)] ·cos(2º(3t ° t 2

/20)) and

f
2

(t ) :=
p

0.8+ t/10cos(2º(5t +cos(t ))) for t 2 [0,10], 2000 samples.

Second plot: STFT of f , using window function g given by

ˆg (¥) := exp

°
[(¥/æ)

2 °1]

°1

¢
for |¥|∑æ,

ˆg = 0 elsewhere, æ= 0.8.
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How to retrieve fk using STFT?

Due to the uncertainty principle, the STFT visualization of f is
blurry. So the exact IAs and IFs are obscured.

Solution: A post-processing method known as the
Synchrosqueezing transform (SST)! [Daubechies & Maes 1996]
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SST in pictures: frequency reassignment

Step 1: For each t , reassign the frequency locations ¥ of su�ciently large

STFT coe�cients Vg f (t ,¥) to an IF estimate ª f (t ,¥), yielding the SST S∞, f (t ,ª).
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SST in pictures: frequency reassignment

Step 1: For each t , reassign the frequency locations ¥ of su�ciently large

STFT coe�cients Vg f (t ,¥) to an IF estimate ª f (t ,¥), yielding the SST S∞, f (t ,ª).

Define the SST by S f ,∞(t ,ª) :=
R

A∞, f (t )

Vg f (t ,¥)±
≥
ª°ª f (t ,¥)

¥
d¥, where

A∞, f (t ) := {¥ 2R+ : |Vg f (t ,¥)| > ∞}, ∞> 0, and ª f (t ,ª) :=
@t

£
Vg f (t ,ª)

§

2ºiVg f (t ,ª)

.
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SST in pictures: reconstruction

Step 2: For each t , integrate the SST S∞, f (t ,ª)

over a frequency band around an estimate of the curve ¡0
k (t ) to reconstruct fk (t ).
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SST in pictures: reconstruction
Step 2: For each t , integrate the SST S∞, f (t ,ª)

over a frequency band around an estimate of the curve ¡0
k (t ) to reconstruct fk (t ).

Reconstruction formula: fk (t ) º
R

{ª : |ª°¡0
k (t )|<∞}

1

g (0)

·S f ,∞(t ,ª)dª.
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SST in pictures: whole signal
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Applications of SST

• Speaker identification from speech signal [Daubechies & Maes
1996]

• Fault diagnosis in planetary gearboxes for wind turbines [Feng,
Chang & Liang 2015]

• Extracting heart-rate variability from electrocardiogram (ECG)
signal [Daubechies, Lu & Wu 2011]

• Detecting stages of sleep from respiratory signal [Wu 2013]
• Quantifying the e�ect of solar radiation on a key paleoclimate

change on Earth [Thakur et al. 2013]
• . . .
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SST-STFT: Assumptions on signal and window

Definition: We say that f 2BSTFT

≤,d if we can write

f =
KX

k=1

fk =
KX

k=1

Ak exp(2ºi¡k ) for some K 2Z+ and if moreover

there exist ≤,d > 0 such that for each k 2 {1, . . . ,K },
• Ak and ¡0

k are bounded and su�ciently smooth:
Ak 2C 1

(R)\L1
(R), ¡k 2C 2

(R), ¡0
k 2 L1

(R), inf

t2R
Ak (t ) > 0 and

inf

t2R
¡0

k (t ) > 0;

• Ak is weakly-modulated: 8t 2R, |A0
k (t )|∑ ≤|¡0

k (t )|;
• ¡0

k is slowly-varying: 8t 2R, |¡00
k (t )|∑ ≤|¡0

k (t )|;
• ¡0

k is well-separated from the other IFs: if k ∏ 2, t 2R we have
¡0

k (t )°¡0
k°1

(t ) > d .

Definition: We say that g 2W STFT

d if g 2S (R) (the Schwartz
space), g (0) 6= 0, and supp(

ˆg ) Ω [°d/2,d/2].
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SST-STFT: Theorem
The following theorem is due to Thakur & Wu (2011) and Oberlin,
Meignen & Perrier (2014):

Theorem: Suppose there exist ≤,d > 0 such that f =
KX

k=1

fk 2BSTFT

≤,d and

g 2W STFT

d . Let

˜≤= ≤1/3

. Then, provided that

˜≤ is su�ciently small, the

following results hold:

• (Concentration of STFT around IF curve)
|Vg f (t ,ª)| > ˜≤ only when there exists k 2 {1, . . . ,K } such that

(t ,ª) 2 Zk := {(t ,ª) : |ª°¡0
k (t )| < d/2}.

• (Closeness of reassigned frequency ª f to IF)
For all k 2 {1, . . . ,K } and all (t ,ª) 2 Zk such that |Vg f (t ,ª)| > ˜≤, we have

|ª f (t ,ª)°¡0
k (t )|∑ ˜≤.

• (Accuracy of reconstruction)
For every k 2 {1, . . . ,K } there is a constant C > 0 such that for all times

t 2R,

ØØØØØØØØ

Z

{ª : |ª°¡0
k (t )|<˜≤}

1

g (0)

·S f ,

˜≤(t ,ª)dª° fk (t )

ØØØØØØØØ
∑C ˜≤.
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Default ridge extraction method

Default method: Find maximum of a functional measuring the
time-frequency energy and smoothness of curves using a greedy
algorithm.
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Crazy climbers method

Crazy climbers method: [Carmona, Hwang & Torrésani 1999]
Markov chain Monte Carlo approach to detect ridges.
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Open problems

1 How to increase time resolution and still provide a
reconstruction formula for the modes fk?

2 Can we address the case of strongly modulated and/or

discontinuous IAs Ak?
3 How to handle crossing IFs?
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Quilted STFT to address open problems 1 & 2

1 Quilted Gabor Transform (QGT) for improved time
resolution:
Generalization of STFT, permitting for di�erent analysis functions in

di�erent regions of interest (quilt patches) in time-frequency plane.

Theoretically guaranteed to allow for reconstruction [Dörfler 2011].

2 QGT for strongly modulated/discontinuous IAs:
QGT captures sudden amplitude changes more accurately with improved

time resolution.

On open problem 3, we will not address in this presentation.
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Quilted short-time Fourier transform

First, we define a two-parameter family of quilted window

functions ht ,ª(x).
• For each (t ,ª) 2R£R+, ht ,ª is a function in L2

(R) which is
centered at 0.

• To guarantee SST accuracy, the ht ,ª will satisfy certain
requirements which we give later.

Then we define the quilted short-time Fourier transform (QSTFT)
of a signal f by

V Q
g f (t ,ª) :=

Z

R
f (x)ht ,ª(x ° t )e

°2ºiª(x°t )

dx.
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SST-QSTFT: Continuous formulation

We define the Synchrosqueezing transform based on the quilted

short-time Fourier transform (SST-QSTFT) of a signal f , with
tolerance ∞> 0, by

SQ
f ,∞

(t ,ª) :=
Z

AQ
∞, f (t )

V Q
g f (t ,¥)±

≥
ª°ªQ

f (t ,¥)

¥
d¥,

where AQ
∞, f (t ) := {¥ 2R+ : |V Q

g f (t ,¥)| > ∞}, and where

ª
Q
f (t ,ª) :=

@t

h
V Q

g f (t ,ª)

i

2ºiV Q
g f (t ,ª)

is a function which gives an approximation to IF.
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SST-QSTFT: Window criteria
Definition: Given ≤,d > 0, we say that the two-parameter family
{ht ,ª}

(t ,ª)2R£R+ is of the class W QSTFT

d ,≤
if:

• For each (t ,ª) 2R£R+ we have ht ,ª 2W STFT

d .
• For each t 2R and k 2 {1, . . . ,K }, there is some constant

at ,k 2R such that ht ,ª ¥ at ,k for all ª in the frequency band
{ª : |ª°¡0

k (t )| < d/2}.
• The integrals Im(t ,ª) :=

Z

R
|u|m |ht ,ª(u)|du and

Jm(t ) :=
Z

R
|u|m |h0

t ,ª(u)|du satisfy
sup

t ,ª2R£R+
{Im(t ,ª), Jm(t ,ª)} <1 for all m 2 {0,1,2}.

• Defining h(x, t ,ª) := ht ,ª(x), we have that for all (t ,ª) 2R£R+,Z

R
|@t h(u, t ,ª)|du <1.

The third condition ensures the closeness of ªQ
f to ¡0

k . The fourth
condition bounds the amount of variation that the window family
ht ,ª can exhibit over t .
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SST-QSTFT

Theorem (B., 2015): Let ≤> 0,

˜≤= ≤1/3

, d > 0. Assume that {ht ,ª}

(t ,ª)2R£R+ is

of the class W QSTFT

d ,≤
. Suppose that f =

KX

k=1

fk 2BSTFT

≤,d . Then, if ≤ is

su�ciently small, the following results hold:

• (Concentration of QSTFT around IF curve) |V Q
g f (t ,ª)| > ˜≤ only when

there is a k 2 {1, . . . ,K } such that (t ,ª) 2 Zk := {(t ,ª) : |ª°¡0
k (t )| < d/2}.

• (Closeness of reassigned frequency ª
Q
f to IF) For all k 2 {1, . . . ,K } and

all (t ,ª) 2 Zk such that |V Q
g f (t ,ª)| > ˜≤, we have |ªQ

f (t ,ª)°¡0
k (t )|∑ ˜≤.

• (Accuracy of reconstruction) For every k 2 {1, . . . ,K } there is a constant

Ck such that for all times t 2R,

ØØØØØØØØ

Z

{ª : |ª°¡0
k (t )|<˜≤}

1

ht ,ª(0)

·SQ
f ,∞

(t ,ª)dª° fk (t )

ØØØØØØØØ
∑Ck ˜≤.
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Numerical example 1: Synthetic test signal
We try the SST-QSTFT on a challenging synthetic test signal

f (t ) := f
1

(t )+ f
2

(t ) for t 2 [0,1], where

f
1

(t ) :=
Ω A

1

(t )cos(2º ·51t ) if t 2 [0, .25)[ (.75,1]

0 if t 2 [.25, .75],

f
2

(t ) :=
(

0 if t 2 [0, .25)

A
2

(t )cos(2º · (131t ° 30

4º sin(4ºt ))) if t 2 [.25,1],

and where A
1

(t ) and A
2

(t ) are strongly-modulated, discontinuous amplitude

functions of the form

Ak (t ) :=

8
><

>:

1 if t 2 Sk

7 ·
µ
exp

∑µ≥
t°tk
.05

¥
2

°1

∂°1

∏
+1

∂
if t 2Ok ,

where O
1

= [.75, .8], O
2

= [.25,3] are the intervals of strong amplitude

modulation, t
1

= .75, t
2

= .25 are the onset times, and S
1

= [0, .25][ (.8,1] and

S
2

= (.3,1] are the interval of stable, constant amplitude 1.
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Numerical example 1: Quilted window function choice
Next, we use a spectral flux function [Dixon 2006], which measures temporal

change in magnitude in each frequency bin and sums them within some range

of frequency band, to estimate the onset and o�set times of signal

components. Let

˜t
1

º .743 and

˜t
2

º .243 be the estimates of the actual onset

times t
1

= .75 and t
2

= .25 from before. Then, our window ht ,ª has the form

ht ,ª(x) :=

8
<

:

g
60

(x) for t 2 [

˜t
2

°∫,

˜t
2

+∫], ª 2 [90,240],

g
45

(x) for t 2 [

˜t
1

°∫,

˜t
1

+∫], ª 2 [0,100],

g
30

(x) elsewhere,

where ∫> 0 is a user-prescribed parameter, and for generic æ> 0 we define gæ
to be the Fourier-side bump function given by

cgæ(¥) :=

8
<

:
exp

∑≥°
¥/æ

¢
2 °1

¥°1

∏
if |¥| <æ

0 if |¥|∏æ.

η with σ=0.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ĝ
σ
(η
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

We remark that for each fixed t , ht ,ª is constant in ª over the frequency bands

{ª : |ª°¡0
k (t )| < 10}, k = 1,2.
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Numerical example 1 (continued)

Left: SST-QSTFT of f , using window g
60

on the upper component at the time

of its onset, g
45

on the lower component at the time of its second onset, and

g
30

elsewhere.

Right: SST-STFT of f , using g
60

as the window.

For this example, we sample f at sampling rate fs = 1024 and take ∫= 80/ fs .
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Numerical example 1 (continued)

Transform Relative `2

reconstruction error Relative `1

reconstruction error

SST-QSTFT .3195 .1406

SST-STFT .3626 .2760

Comparison of relative `2

- and `1

-norm errors in the envelope of the

reconstructed signal from samples 513 to 1024 (the second half of the signal)

in the first component f
1

(t ) of the signal f (t ).
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Numerical example 2 (onset detection)

Glockenspiel signal, analyzed by SST-QSTFT and SST-STFT.

Left: SST-QSTFT, using window g
250

around estimated onset times and g
100

elsewhere. Right: SST-STFT, using window g
100

.
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Lake Tahoe temperature dataset: description

In this part, we work with a dataset of lake temperatures,
described as follows:

• 16 thermometers placed at a location in Lake Tahoe, each at
di�erent depths.

• Temperature measurements taken every 30 seconds, for
approximately 70 days. 202150 ·16 data points in total.
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Lake Tahoe temperature dataset: description
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Sonification: Motivation

• Goal: Convey the separate short-term oscillatory and
long-term trend information from each of the temperature
signals, while still enabling their simultaneous “reading.”

• Obstacle: Visualization of all this information may be di�cult
to read.

• Idea: Using the power of our auditory system, one has some
hope of “hearing” all the information together.

This leads to the idea of sonification: the translation of data into
sound!
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Sonification with SST: Main ideas

• SST can be used to extract the oscillatory characteristics from
the data, in the form of IF curves.

• Oscillatory characteristics represent diverse events occurring in
the fluid flow of the lake.

• Musical sonification: Since music signals share similar
oscillatory characteristics to those in our data, it is natural to
consider a musical model of these IF curves.

Hence, we propose to model this Lake Tahoe temperature dataset
as a musical composition using SST.
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Sonification with SST: Algorithm

The algorithm to sonify the temperature dataset proceeds as
follows:

1 Assign an instrument to each thermometer.
• Lower thermometers are assigned lower-pitched instruments;

higher thermometers are assigned higher-pitched instruments.
2 Extract IF curves ¡0

k from the data using SST.
3 Map the IF curves to pitches in a musical scale (major, minor,

Dorian, etc.) in an audible range, using the open-source
software JythonMusic.

4 Use a LOESS (locally weighted polynomial regression) method
to extract each signal’s trend (seasonality).

5 Map the trend to MIDI volume values.
6 Export the information as MIDI data, using JythonMusic.
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Steps of SST-based sonification

From top to bottom: the temperature measurement T1; its detrended version;

the magnitude of the STFT; SST-STFT with the extracted IF curves overlaid

in magenta.
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Performance of SST-based sonification
About 14 days amount of data after subsampling every 5th time
sample:
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Summary

• SST is quite useful for revealing and extracting modes in
nonstationary multicomponent signals for various applications.

• In particular, SST-QSTFT can provide improved time
resolution and handle signals having strongly-modulated
and/or discontinuous IAs.

• SST could extract IA/IF curves from the Lake Tahoe
temperature measurements, which allowed us to sonify them
nicely.

• Yet, the current versions of SST have di�culty to handle
crossing IF curves, which often occur in practice. Investigate
Chirplet transforms?

• Also, it is important to consider how to (semi-)automatically
set all the parameters in SST-QSTFT .

• As for the Lake Tahoe dataset, we will examine the isothermal

displacement data generated from those temperature
measurements.
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Thank you!
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