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Motivations

Motivations

We are interested in generating a smooth wavelet packet dictionary
on a given graph, which truly generalizes its classical counter part.
We have already developed the Hierarchical Graph Laplacian Eigen
Transform (HGLET) [J. Irion & N. Saito, 2014a]; the Generalized
Haar-Walsh Transform (GHWT) [J. Irion & N. Saito, 2014b]; and its
extension eGHWT [Y. Shao & N. Saito, 2019].
HGLET is a graph version of the Hierarchical Block Discrete Cosine
Transform (BDCT) while GHWT/eGHWT are graph versions of the
Haar-Walsh wavelet packet transform [R. Coifman & Y. Meyer,
1989]/the adapted time-frequency tilings [C. Thiele & L. Villemoes,
1996].
All of these methods require the hierarchical bipartition tree of an
input graph G, and the support of each basis vector is restricted within
the partition pattern. That is, for a given pair of mutually exclusive
subgraphs of G, the support of the basis vectors of one of such
subgraphs does not smoothly crossover to the other subgraph.
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Figure: A binary partition tree of the input space Ω

1D Hierarchical BDCT ⇐⇒Ω= [0,1] on the spatial axis
HGLET, GHWT, eGHWT ⇐⇒Ω=G, a graph
Classical wavelet packets ⇐⇒Ω= [0, 1

2 ] on the frequency axis
Smooth graph wavelet packets ⇐⇒Ω= ??
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Motivations

Problems of Interpreting “eigenvalues ≈ frequencies2”

Using graph Laplacian eigenvectors as “cosines” or Fourier modes on
graphs with eigenvalues as (the square of) their “frequencies” has been
quite popular.
However, the notion of frequency is ill-defined on general graphs;
Fourier modes on graphs may be quite different from those on regular
lattices.
Graph Laplacian eigenvectors may also exhibit peculiar behaviors
depending on topology and structure of given graphs!
Spectral Graph Wavelet Transform (SGWT) of Hammond et al.
derived wavelets on a graph based on the Littlewood-Paley theory that
organized the graph Laplacian eigenvectors corresponding to dyadic
partitions of eigenvalues by viewing the eigenvalues as “frequencies”
Unfortunately, this view may face difficulty for graphs more
complicated than very simple undirected unweighted paths and cycles.
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Motivations

A Simple Yet Important Example: A Path Graph
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The eigenvectors of this matrix are exactly the DCT Type II basis vectors (used
for the JPEG standard) while those of the symmetrically-normalized Graph
Laplacian matrix Lsym = D− 1

2 LD− 1
2 are the DCT Type I basis! (See G. Strang,

“The discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0 : n −1.

φk (`) = ak;n cos
(
πk

(
`+ 1

2

)
/n

)
, k,`= 0 : n −1; ak;n is a const. s.t. ‖φk‖2 = 1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. For a general graph, however,
the notion of frequency is not well defined.
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Motivations

Problem with 2D Lattice Graph

As soon as the domain becomes even slightly more complicated than
unweighted and undirected paths/cycles, the situation completely
changes: we cannot view the eigenvalues as a simple monotonic
function of frequency anymore.
For example, consider a thin strip in R2, and suppose that the domain
is discretized as Pm ×Pn (m > n), whose Laplacian eigenpairs are:

λk = 4

[
sin2

(
πkx

2m

)
+ sin2

(
πky

2n

)]
,

φk (x, y) = akx ;m aky ;n cos

(
πkx

m

(
x + 1

2

))
cos

(
πky

n

(
y + 1

2

))
,

where k = 0 : mn −1; kx = 0 : m −1; ky = 0 : n −1; x = 0 : m −1; and
y = 0 : n −1.
As always, let {λk }k=0:mn−1 be ordered in the nondecreasing manner.
In this case, the smallest eigenvalue is still λ0 =λ(0,0) = 0, and the
corresponding eigenvector is constant.
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Motivations

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

All of a sudden the eigenvalue of a completely different type of oscillation
sneaks into the eigenvalue sequence.

Hence, on a general domain or a general graph, by simply looking at the
Laplacian eigenvalue sequence {λk }k=0,1,..., it is almost impossible to organize
the eigenpairs into physically meaningful dyadic blocks and apply the
Littlewood-Paley approach unless the underlying domain is of very simple
nature, e.g., Pn or Cn .

For complicated domains, the notion of frequency is not well-defined
anymore.
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Motivations

What we want to do is to organize those eigenvectors as

0, 0 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

0, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

instead of

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20
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Measuring Differences between Eigenvectors

Plan

How can we quantify the difference between the eigenvectors?

The usual `2-distance doesn’t work since
∥∥∥φi −φ j

∥∥∥
2
=p

2δi 6= j .

Need to come up with a metric that quantifies the “behavioral”
differences between any pair of eigenvectors. Having such a metric, we
do the following:

1 Choose a metric and compute the “distance” between φi and φ j for
all i , j = 0 : n −1, which results in a “distance” matrix D ∈Rn×n

≥0

2 Construct a dual graph G?(V ?,E?) where the i th node corresponds to
φi , and the weight of the edge (i , j ) is the affinity between φi and φ j ,
e.g., 1/Di , j or exp(−D2

i , j /ε) with some ε> 0

3 Organize and group V ? to generate wavelet packet vectors on G
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Measuring Differences between Eigenvectors

Various Metrics for Eigenvector Differences

A similarity measure (HAD) based on the average of local correlations
of eigenvectors [A. Cloninger & S. Steinerberger, 2018]
The ramified optimal transport (ROT) method [N. Saito, 2018]
The difference of absolute gradient (DAG) method [ H. Li & N. Saito,
2019 ]
The time-stepping diffusion (TSD) method [H. Li & N. Saito, 2019]
The ROT method seems to work well for transportation networks with
hubs (e.g., neuronal dendritic trees) whereas the HAD and DAG
methods seem to work well for (ir)regular grids/lattices (e.g., road
networks).
For more pros and cons of these methods, see [H. Li & N. Saito, 2019].

saito@math.ucdavis.edu (UC Davis) Smooth Natural Graph Wavelet Packets 10/20/20 14 / 39



Measuring Differences between Eigenvectors

Difference of Absolute Gradient (DAG) Pseudometric

The basic idea: use the absolute gradient of each eigenvector as its feature vector
describing its behavior.
Let G(V ,E) be an input graph (connected, undirected, weighted, and simple) with
|V | = n, |E | = m. Let Q ∈Rn×m be its incidence matrix. Then, DAG pseudometric
(the identity of discernible is not satisfied) is defined as:

dDAG(φi ,φ j ) := ‖|∇G |φi −|∇G |φ j ‖2 where |∇G |φ := abs.(QTφ) ∈Rm
≥0

It is related to the Hadamard product-based affinity proposed by [A. Cloninger &
S. Steinerberger, 2018] as

dDAG(φi ,φ j )2 =
〈
|∇G |φi −|∇G |φ j , |∇G |φi −|∇G |φ j

〉
E

= 〈|∇G |φi , |∇G |φi
〉

E +
〈
|∇G |φ j , |∇G |φ j

〉
E
−2

〈
|∇G |φi , |∇G |φ j

〉
E

=λi +λ j −
∑

x∈V

∑
y∼x

|φi (x)−φi (y)| · |φ j (x)−φ j (y)| thanks to QQT = L

where 〈·, ·〉E is the inner product over edges.
The last term of the formula can be viewed as a global average of absolute local
correlation between eigenvectors =⇒ the Hadamard-product affinity.
Given the eigenvectors, the computational cost is O(m) for each dDAG(·, ·) eval.
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Measuring Differences between Eigenvectors

2D Lattice P7 ×P3: dDAG visualized by the classical MDS

dDAG nicely detects two directions of the oscillations and the
eigenvectors are organized naturally in the 2D lattice.
For each column of the lattice, the eigenvectors have the same
oscillation pattern in the y-direction and the oscillation in the
x-direction increases linearly, and vice versa.
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Building Natural Graph Wavelet Packets

Natural Graph Wavelet Packets: Basic Steps
1 Bipartition the dual graph G? recursively via any method, e.g.,

spectral graph bipartition using the Fiedler vectors
2 Generate wavelet packet vectors on each subgraph of G? that are well

localized on G

We refer to the graph wavelet packets generated by the above strategy
as Natural Graph Wavelet Packets (NGWPs).
∃ Several possibilities in Step 2; will discuss only one of them today.
Let Φ(0)

0 := [φ0, . . . ,φn−1] = a matrix representation of the GL
eigenvectors of G = the node set V ? of G?, and suppose we get the
following hierarchical bipartition tree of Φ(0)

0 :
Φ(0)

0

Φ(1)
1

Φ(2)
3Φ(2)

2

Φ(1)
0

Φ(2)
1Φ(2)

0
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Building Natural Graph Wavelet Packets

NGWPs by Varimax Rotation
Given the full binary partition tree of Φ(0)

0 ∈Rn×n , perform the varimax

rotation on Φ( j )
k ∈Rn×n j

k for each j and k.
Varimax rotation [Kaiser (1958); Jennrich (2001)] is an orthogonal
rotation, often used in factor analysis, to maximize the variances of
energy distribution (or a scaled version of the kurtosis) of the input
column vectors.
Thanks to the orthonormality of columns of Φ( j )

k , this is equivalent to
finding an orthogonal rotation that maximizes the overall 4th order
moments, i.e.,

Ψ
( j )
k := Φ

( j )
k ·R( j )

k , where R( j )
k = arg max

R∈SO(n j
k )

n∑
p=1

n j
k∑

q=1

[(
Φ

( j )
k ·R

)4
]

p,q
.

The column vectors of Ψ( j )
k are more “localized” in the original domain

G than those of Φ( j )
k . This type of localization is important since the

GL eigenvectors in Φ( j )
k are of global nature in general.
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Building Natural Graph Wavelet Packets

The varimax-rotation NGWPs on Pn

are essentially the Shannon wavelet packets !

(a) Father wavelet vectors
Ψ(4)

0

(b) Mother wavelet vectors
Ψ(4)

1

(c) Wavelet packet vectors
Ψ(4)

4

Figure: Some of the Shannon wavelet packet vectors on P512

saito@math.ucdavis.edu (UC Davis) Smooth Natural Graph Wavelet Packets 10/20/20 20 / 39



Building Natural Graph Wavelet Packets

Selecting a Good Natural Graph Wavelet Packet Basis

Once the NGWP dictionary is built, one can apply the best-basis
selection algorithm of Coifman-Wickerhauser or its variants developed
by the Saito group to choose the most suitable basis for a given task
(e.g., efficient approximation, denoising, classification, regression,
etc.). Note that the best-basis algorithm searches the best one among
more than (1.5)n possible ONBs from the wavelet packet dictionary.
For the examples today, we used the `1-norm minimization to select
the best (or sparsest) basis among the NGWP dictionary.
Of course, if one prefers, one can also choose the wavelet basis from
the NGWP dictionary by selecting the specific subspaces and basis
vectors. Ψ(0)

0

Ψ(1)
1

Ψ(2)
3Ψ(2)

2

Ψ(1)
0

Ψ(2)
1Ψ(2)

0
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Numerical Examples

Example 1: Sunflower Graph

(a) Sunflower graph (b) Voronoi tessellation

Figure: (a) Sunflower graph (n = 400); (b) Its Voronoi tessellation
This graph often appears in nature
Consistent counting of spirals gives rise to Fibonacci numbers
0,1,1,2,3,5,8,13,21,34,55, . . .
Edge weights = the inverse Euclidean distances between nodes
My view: a simple model of the distribution of photoreceptors in
mammalian visual systems due to cell generation and growth
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Numerical Examples

Example 1: Sampling an eye of Barbara by Sunflower Graph
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Numerical Examples

Example 1: Top 9 NGWP vectors for Barbara’s eye
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Numerical Examples

Example 1: Sampling cheek of Barbara by Sunflower Graph
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Numerical Examples

Example 1: Top 9 NGWP vectors for Barbara’s cheek
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Numerical Examples

Example 1: Sampling pants of Barbara by Sunflower Graph
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Numerical Examples

Example 1: Top 9 NGWP vectors for Barbara’s pants
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Numerical Examples

Example 2: Toronto Road Network

Figure: The road network of Toronto (n = 2275 nodes and m = 3381 edges)

Nodes = intersections (with traffic lights); edges = streets

Edge weights = the inverse Euclidean distances between nodes

Two graph signals considered: 1) spatial distribution of the street
intersections; 2) real pedestrian counts between the hours of 7:30am and
6:00pm on a single day measured during the period 03/22/2004–02/28/2018
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Numerical Examples

Example 2: Smooth Histogram of Street Intersections

(a) Graph signal (b) Approximation

Figure: (a) A graph signal representing the smooth spatial distribution of the
street intersections on the Toronto street network Toronto; (b) Relative `2

approximation error of the data shown in (a) vs the fraction of kept coefficients.
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Numerical Examples

Top 9 VM-NGWP best basis vectors
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Numerical Examples

Example 2: Pedestrian Counts at the Intersections

(a) Graph signal (b) Approximation

Figure: (a) Pedestrian volume data in the city of Toronto; (b) Relative `2

approximation error of the data shown in (a) vs the fraction of kept coefficients.
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Numerical Examples

Top 9 VM-NGWP best basis vectors
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Numerical Examples

Observations from Examples 1 & 2

Basis vectors that behave like oriented edge detectors are
automatically generated in the NGWP dictionary.
NGWP outperformed the other dictionaries on piecewise smooth graph
signals
NGWP performed reasonably well for graph signals sampled on an
image containing oriented anisotropic texture patterns (e.g., Barbara’s
pants)
NGWP was beaten by the eGHWT on the non-smooth and localized
graph signal (e.g., pedestrian volume data on the Toronto street map)
Potential reason I: NGWP is a direct generalization of the Shannon
wavelet packet dictionaries, i.e., their “frequency” domain support is
localized and well controlled while the “time” domain support is not
compact.
Potential reason II: The eGHWT tends to have better performance
with oscillatory non-smooth signals in general compared to the other
transforms [Shao & Saito, 2019].
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Summary

Summary and Future Projects

Developed a natural method to generate the smooth graph wavelet
packet (NGWP) dictionary.
Used the hierarchical bipartitioning of the dual G? consisting of the
GL eigenvectors as its nodes
Used varimax rotation to get wavelet packet vectors well-localized on
G.
How to reduce computational complexity of O(n3)

How to proceed more precise approximation theoretic statements
How to deal with the GL eigenvectors corresponds to multiple
eigenvalues
Can we incorporate clustering with overlaps on either G (=⇒ graph
local cosines) or G? (=⇒ graph Meyer wavelet packets) ?

saito@math.ucdavis.edu (UC Davis) Smooth Natural Graph Wavelet Packets 10/20/20 37 / 39



Summary

Summary and Future Projects

Developed a natural method to generate the smooth graph wavelet
packet (NGWP) dictionary.
Used the hierarchical bipartitioning of the dual G? consisting of the
GL eigenvectors as its nodes
Used varimax rotation to get wavelet packet vectors well-localized on
G.
How to reduce computational complexity of O(n3)

How to proceed more precise approximation theoretic statements
How to deal with the GL eigenvectors corresponds to multiple
eigenvalues
Can we incorporate clustering with overlaps on either G (=⇒ graph
local cosines) or G? (=⇒ graph Meyer wavelet packets) ?

saito@math.ucdavis.edu (UC Davis) Smooth Natural Graph Wavelet Packets 10/20/20 37 / 39



Summary

References

J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” JSIAM
Letters, vol.6, pp.21–24, 2014.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” in Proc. 2014 IEEE
Workshop on Statistical Signal Processing, pp. 472–475, 2014.
J. Irion & N. Saito: “Applied and computational harmonic analysis on graphs and
networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper # 95971F, 2015.
J. Irion & N. Saito: “Efficient approximation and denoising of graph signals using
the multiscale basis dictionaries,” IEEE Trans. Signal and Inform. Process. Netw.,
vol. 3, no. 3, pp. 607–616, 2017.
N. Saito: “How can we naturally order and organize graph Laplacian eigenvectors?”
in Proc. 2018 IEEE Workshop on Statistical Signal Processing, pp. 483–487, 2018.
A. Cloninger & S. Steinerberger: “On the dual geometry of Laplacian
eigenfunctions,” Experimental Mathematics,
DOI:10.1080/10586458.2018.1538911, 2018.
H. Li & N. Saito: “Metrics of graph Laplacian eigenvectors,” in Wavelets and
Sparsity XVIII, Proc. SPIE 11138, Paper #11138K, 2019.
A. Cloninger, H. Li, & N. Saito: “Natural graph wavelet packet dictionaries,”
arXiv:2009.09020, 2020.

saito@math.ucdavis.edu (UC Davis) Smooth Natural Graph Wavelet Packets 10/20/20 38 / 39



Summary

Thank you very much for your attention!
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