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Motivations

Want to improve the quality of images (e.g., less blocking
artifacts/visible discontinuities between blocks) reconstructed from
the low bit rate JPEG files.
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Motivations . . .

Want to develop a local image transform that generates faster
decaying expansion coefficients than block DCT used in JPEG and
our previous Polyharmonic Local Sine Transform (PHLST) because
the faster coefficient decay =⇒ more efficient compression

Want to fully incorporate the infrastructure provided by the JPEG
standard, e.g., the block DCT algorithm, the quantization method,
the file format, etc.
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Review of Fourier Cosine Series

Let Ω = (0, 1)2 ⊂ R
2 and f ∈ C (Ω) but not periodic: the periodically

extended version of f is discontinuous at ∂Ω.

Then the size of the complex Fourier coefficients ck of f decay as
O(‖k‖−1), where k = (k1, k2) ∈ Z

2.

Instead, expanding f into the Fourier cosine series gives rise to the
decay rate O(‖k‖−2) because it is equivalent to the complex Fourier
series expansion of the extended version of f via even reflection that
is continuous at ∂Ω.

This is one of the main reasons why the JPEG Baseline method
adopts Discrete Cosine Transform (DCT) instead of Discrete Fourier
Transform (DFT).
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Review of Polyharmonic Local Sine Transform

We now consider a decomposition f = u + v .

The u (or polyharmonic) component satisfies Laplace’s equation with
the Dirichlet boundary condition.

∆u = 0 in Ω; u = f on ∂Ω.

The u component is solely represented by the boundary values of f

via the fast and highly accurate Dirichlet problem solver of Averbuch,
Israeli, & Vozovoi (1998).

The residual v = f − u vanishes on ∂Ω =⇒ The Fourier sine
coefficients of v decay as O(‖k‖−3) for v ∈ C 1(Ω).

See Saito & Remy (2003,2006) for the details.
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Review of Polyharmonic Local Sine Transform . . .
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Polyharmonic Local Cosine Transform

Want to use DCT for fully utilizing the JPEG infrastructure.

Want coefficients decaying faster than O(‖k‖−3).

To do so, we need to solve Poisson’s equation with the Neumann
boundary condition:

∆u = K in Ω; ∂νu = ∂νf on ∂Ω,

where the constant source term K (=the integration of ∂νf along ∂Ω
normalized by the area of Ω) is necessary for solvability of the
Neumann problem.

Then, the Fourier cosine coefficients of the residual decay as
O(‖k‖−4) for v ∈ C 2(Ω) because ∂νv = 0 on ∂Ω.
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Why Poisson instead of Laplace?

Green’s second identity claims that for any u, v ∈ C 1(Ω),

∫

Ω
(u∆v − v∆u) dx =

∫

∂Ω
(u ∂νv − v ∂νu) dσ(x),

where dσ(x) is a surface (or boundary) measure. Setting v = 1 with the
Neumann boundary condition, we have

∫

Ω
∆u dx =

∫

∂Ω
∂νu dσ(x) =

∫

∂Ω
∂ν f dσ(x).

This is a necessary condition that u must satisfy. Now, the source term of
Poisson’s equation is K := 1

|Ω|
∫

∂Ω ∂ν f dσ(x), where |Ω| is the volume of
the block Ω.
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PHLCT from DCT coefficients

Want to achieve the PHLCT representation of f = u + v entirely in
the DCT domain, F = U + V .

Let f (x , y) ∈ C (Ω), and fi ,j be a sample f (xi , yj) with
xi = (i + 0.5)/N, yj = (j + 0.5)/N, i , j = 0, 1, . . . ,N − 1.

Let F ∈ R
N×N be a DCT coefficient matrix of {fi ,j}:

Fk1,k2
:= λk2

√

2

N

N−1
∑

j=0

(

λk1

√

2

N

N−1
∑

i=0

f (xi , yj) cos πk1xi

)

cos πk2yj

where λ0 = 1/
√

2, λk = 1 for all k ≥ 1.

Now let’s compute the DCT coefficient matrix U of the polyharmonic
component u using F .
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PHLCT from DCT coefficients . . .

Assume for the moment that the discretized Neumann boundary data
at each edge of Ω = [0, 1]2 are available:

g
(1)
i := −fy(xi , 0), g

(2)
i := fy (xi , 1), g

(3)
j := −fx(0, yj ), g

(4)
j := fx(1, yj ).

Ω Ω(0,1)

Ω(−1,0)

Ω(0,−1)

Ω(1,0)

-�

Γ(1)

��

Γ(2)

6� Γ(4)

?
�Γ(3)

?x

-y
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PHLCT from DCT coefficients . . .

Let {G (`)
k } be the 1D-DCT coefficients of {g (`)

i }.
Then, we have a solution to Poisson’s equation as (see
Yamatani-Saito for details):

u(x , y) =

√

2

N

N−1
∑

k=0

λk

{(

G
(1)
k ψk (y − 1) + G

(2)
k ψk(y)

)

cos πkx

+
(

G
(3)
k ψk (x − 1) + G

(4)
k ψk (x)

)

cos πky
}

+ c ,

where c is a constant to be determined and

ψk (t) :=

{

t2/2 if k = 0;

(cosh πkt)/(πk sinhπk) otherwise.
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PHLCT from DCT coefficients . . .

Applying 2D DCT to u above, we obtain U = (Uk1,k2
) as

Uk1,k2
= G

(1)
k1
ηk1 ,k2

+ G
(2)
k1
η∗k1 ,k2

+ G
(3)
k2
ηk2 ,k1

+ G
(4)
k2
η∗k2 ,k1

,

where ηk1,k2
, η∗k1,k2

are independent from the input image:

ηk,m := λm

√

2

N

N−1
∑

i=0

ψk(xi − 1) cos πmxi ,

η∗k,m := λm

√

2

N

N−1
∑

i=0

ψk(xi ) cos πmxi ,

Can set the DC component U0,0 ≡ 0 because the solution to the
Poisson-Neumann problem is unique modulo an additive constant. In

fact this is achieved by c = − 4N2−1
24N2.5

(

G
(1)
0 + G

(2)
0 + G

(3)
0 + G

(4)
0

)

.

This will become important in our algorithms.
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Approximation of the Neumann Boundary Data

In practice, we need to estimate the Neumann boundary data {g (`)
i }

from the image samples of the current and adjacent blocks. Let

f
(s,t)
i ,j = f (xi + s, yj + t) and Ω(s,t) be:

Ω Ω(0,1)

Ω(−1,0)

Ω(0,−1)

Ω(1,0)

-�

Γ(1)

��

Γ(2)

6� Γ(4)

?
�Γ(3)

?x

-y

Let I5 := {(0,−1), (−1, 0), (0, 0), (1, 0), (0, 1)} be the indices of the
current and adjacent blocks.
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Approximation of the Neumann Boundary Data . . .

Approximate {g (`)
i } using column & row averages:

g
(1)
i ' X

(−1)
i −X

(0)
i ; g

(2)
i ' X

(1)
i −X

(0)
i ; g

(3)
j ' Y

(−1)
j −Y

(0)
j ; g

(4)
j ' Y

(1)
j −Y

(0)
j

X
(t)
i :=

1

N

N−1
∑

j=0

f
(0,t)
i ,j , Y

(s)
j :=

1

N

N−1
∑

i=0

f
(s,0)
i ,j ,

Then, {G (`)
k } can be expressed using the first row & column of F (s,t).

Consequently, for (k1, k2) 6= (0, 0), we have

Uk1,k2
=

1√
N

{(

F
(0,−1)
k1,0

− Fk1,0

)

ηk1,k2
+
(

F
(0,1)
k1,0

− Fk1,0

)

η∗k1 ,k2

+
(

F
(−1,0)
0,k2

− F0,k2

)

ηk2,k1
+
(

F
(1,0)
0,k2

− F0,k2

)

η∗k2,k1

}

. (1)
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Approximation of the Neumann Boundary Data . . .
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Modifying PHLCT for Practice

Approximating Eq.(1) only using the DC components F0,0 and F
(s,t)
0,0

allows us to simplify our algorithms: Uk1,k2
=

(2)



























0 if k1 = k2 = 0;
1√
N

{(

F
(−1,0)
0,0 − F0,0

)

η0,k1
+
(

F
(1,0)
0,0 − F0,0

)

η∗0,k1

}

if k1 6= 0 = k2;

1√
N

{(

F
(0,−1)
0,0 − F0,0

)

η0,k2
+
(

F
(0,1)
0,0 − F0,0

)

η∗0,k2

}

if k1 = 0 6= k2;

Uk1,k2
as Eq.(1) otherwise.

Now set Vk1,k2
= Fk1,k2

− Uk1,k2
, ∀k1, k2. Note V0,0 = F0,0!!

Note also that if we know V of the current and adjacent blocks, we
can reconstruct F . No need to store U! See next page.

Strictly speaking, this new version of u does not satisfy Poisson’s
equation, but satisfies the Neumann condition.

saito@math.ucdavis.edu (UC Davis) PHLCT Compression SIAM Imaging Science Conf. 25 / 47



Inverse PHLCT

1 Assuming V (s,t), (s, t) ∈ I5, are available, recover the first column

and row of U using the DC components, F
(s,t)
0,0

(

= V
(s,t)
0,0

)

, (s, t) ∈ I5

via (2);

2 Recover the first column and row of F (s,t), (s, t) ∈ I5 by summing
those of U and V (see (2));

3 Recover other entries of U via (1) and the results of Step 2;

4 Set F = U + V ;

5 Apply Inverse 2D DCT to F to recover f .
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Inverse PHLCT: Step 0

(a) F (b) U (c) V
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Inverse PHLCT: Step 1

(a) F (b) U (c) V
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Inverse PHLCT: Step 2

(a) F (b) U (c) V
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Inverse PHLCT: Step 3

(a) F (b) U (c) V
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Inverse PHLCT: Step 4

(a) F (b) U (c) V
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Full Mode PHLCT (FPHLCT)

FPHLCT adds simple procedures in both the encoder and the decoder
parts of the JPEG Baseline method.

In the encoder part, the only difference from JPEG is to: 1) compute
U from F ; and 2) compute the residual V = F − U and store the
quantized version V Q instead of FQ .

In the decoder part, the only difference from JPEG is to: 1) compute
UQ , the estimate of U from V Q ; and 2) compute UQ + V Q as an
improved estimate of F over F Q .

Because V decays faster than F , the decompressed image quality gets
better than JPEG if it is compressed at the same bit rate.
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Partial Mode PHLCT (PPHLCT)

Only the decoder part of the JPEG Baseline method is modified:
PPHLCT accepts the JPEG-compressed files.

The JPEG encoder kills small DCT coefficients Fk′ , i.e., FQ
k′

= 0.

PPHLCT replaces those F Q
k′

by UQ
k′

if UQ
k′

are also small.

This is possible because UQ can be computed solely from the first
column & row of FQ and those of the adjacent blocks F (s,t)Q ; see
Eqs.(1), (2).

Our reasoning to do this is Fk ≈ Uk for large k because Vk decays
quickly.

We also add some quadratic polynomial to reduce the blocking
artifacts further. This can be done also in the DCT domain. (See
Yamatani-Saito for the details.)
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Numerical Experiments

(a) Barbara (b) Gabor

Two test images.
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Numerical Experiments . . .

(a) JPEG, 23.61 dB (b) FPHLCT, 24.19 dB (c) PPHLCT, 23.97 dB

Compressed at 0.15 bits/pixel. Numerical values indicate the Peak
Signal-to-Noise Ratio (PSNR).
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Numerical Experiments . . .

(a) JPEG, 25.67 dB (b) FPHLCT, 26.05 dB (c) PPHLCT, 25.73 dB

Compressed at 0.30 bits/pixel. Numerical values indicate the Peak
Signal-to-Noise Ratio (PSNR).
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Numerical Experiments . . .
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Comparison of PSNR gain by various methods for the Barbara image over
the JPEG Baseline method.
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Numerical Experiments . . .

(a) JPEG, 31.41 dB (b) FPHLCT, 39.21 dB (c) PPHLCT, 35.69 dB

Compressed at 0.15 bits/pixel. Numerical values indicate the Peak
Signal-to-Noise Ratio (PSNR).
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Numerical Experiments . . .

(a) JPEG, 38.12 dB (b) FPHLCT, 47.02 dB (c) PPHLCT, 40.89 dB

Compressed at 0.30 bits/pixel. Numerical values indicate the Peak
Signal-to-Noise Ratio (PSNR).
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Numerical Experiments . . .
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Comparison of PSNR gain by various methods for the Gabor image over
the JPEG Baseline method.
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Conclusion

More extensive numerical experiments (see Yamatani-Saito) indicate
that FPHLCT reduces the bit rates about 15% over JPEG whereas
PPHLCT does about 7% to achieve the same PSNR in the relatively
low bit rate range.

If one can afford to use the higher bit rates, then our methods
naturally approach to the performance of JPEG.

PPHLCT is particularly useful because it accepts the files compressed
by the JPEG standard.

On the other hand, FPHLCT is better than PPHLCT if one can
afford to modify the encoder part of the JPEG standard.

Additional computational cost of both methods over JPEG is small:
linearly proportional to the number of pixels of an input image.

Should be useful for zooming, interpolation, feature extraction.
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Thank you very much for your attention!
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