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Objectives

Detection of shallowly-buried objects using wideband FM sonar
Classification of objects into mines or non mines
Characterization of types of mines

(a) Manta (b) Pdm1
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Concept

Synthetic Aperture Sonar (SAS) for wide range survey

Buried Object Scanning Sonar (BOSS) for the detailed check
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SAS Photos
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SAS Operation . . .
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SAS Imagery
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SAS Imagery . . .
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An Easier Example
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A Tough Example
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Our Overall Strategy

Two important problems: Detection and Classification

We tackle the classification problem first.

We cast the detection problem later as a clustering problem.

In both cases, shape information alone obtained from reconstructed
images from sonar is often ambiguous even after improving image
resolution using sophisticated interpolation algorithms

Hence, we examine the part of the recorded raw waveforms scattered
from the objects that are responsible to form the imaged object of
interest.

We will examine whether we can distinguish material content inside of
suspicious objects from waveforms =⇒ acoustic impedance of
material

We first examine the experimental data obtained in a pond at Naval
Surface Warfare Center (NSWC), Panama City, FL.
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Experiment Setup

(a) Pond

(b) Zoom up
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Experiment Setup

(a) Rail system (b) Sonar tower
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Experiment Setup . . .

Source: 10 kHz – 50 kHz sinusoids; 0.2 msec duration

Fast-time sampling rate: 500 kHz, i.e., ∆t = 2µsec =⇒ ∆x = 0.15
cm

Along-track sampling distance, ∆u = 2.54 cm

Sonar height above bottom = 3.8862 m

Grazing angle = 20 degree

Sound velocity in the pond water = 1503 m/s

Ping rate: about 6–10 pings/sec

Average 32 pings at each position
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Experiment Setup . . .

We have three different sets of experiments:

Experiment 1: Buried
Target: a solid aluminum cylinder (diameter: 30.5 cm; length: 1.52 m)
Target location: x = 10.3 m (or t = 14.8 msec), y = 4.0− 5.5 m;
buried about 10 cm below the rippled interface
A steel sphere (filled with air) of diameter 25.4 cm was placed in front
of the target.

Experiment 2: Proud
Target: a solid aluminum cylinder (diameter: 30.5 cm; length: 1.52 m)
Target location: the same as above
A sphere (filled with silicone oil) of diameter 35.6 cm was placed in
front of the target.

Experiment 3: Proud Short
Target: a shorter solid aluminum cylinder (diameter: 30.5 cm; length:
60 cm)
Target location: the same as above
A sphere (filled with silicone oil) of diameter 35.6 cm was placed in
front of the target.
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Data: 30 kHz Source

(a) Data (b) Zoom up
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Our Classification Strategy

Step 0: Reconstruct reflectivity images/scenes from SAS data

Step 1: Select objects of interest (at this point manually using a
pointing device)

Step 2: Extract raw waveforms corresponding to the selected objects
and align/straighten them

Step 3: Apply Local Discriminant Basis (LDB) algorithm to the
waveforms

Step 4: Supply top k LDB coordinates to a classifier of one’s choice
(e.g., linear discriminant analysis, decision tree, support
vector machine, . . . )

Step 5: Validate the classification rule using test datasets
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An Example in a Pond; Step 0: Reconstruct an Image

(a) Buried Cylinder (C1) (b) Proud Cylinder (C2)
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An Example in a Pond; Step 1: Select objects
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An Example in a Pond; Step 2: Extract data
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Step 2 details: Extraction/Alignment Algorithm

Indicate the four points of rectangle.
(Rectangle shown in green. Point shown
in black.)

Calculate dispersion of four points using
dispersion relation“ct

2

”2

= x2
0 + (y − y0)

2

y - cross-range location of the
transmitter/receiver
t - two-way travel time of the signal
(x0, y0) - location point source
c - speed of sound through water
(red and blue lines show dispersion of
points)

Use the union of the dispersed points
corresponding to all the points in the
rectangle to form envelope (indicated in
cyan).
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Step 2 details: Extraction/Alignment Algorithm . . .

Assume the object to be extracted consists of
a collection of horizontal lines (e.g., a
magenta rectangle);

Construct a rectangular envelope for each
horizontal line segment (green points);

Extract waveform samples contained in
envelope and within half of signals
wavelength of envelope (red points);

Using the dispersion relation, map extracted
points to their location if dispersed from the
center line (black points);

Interpolate these mapped points to find the
values of waveforms at the desired time
locations (the same as the center line time
samples);

Repeat this procedure for all the horizontal
line segments in the object.
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An Example in a Pond; Step 2: Extract data . . .

(a) Cylinder Waveforms (b) Sphere Waveforms
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Step 3: Apply Local Discriminant Basis (LDB) Algorithm

Developed by Saito and Coifman (1993–5) for extracting localized
discriminant features from data using various basis dictionaries (e.g.,
wavelet packets, local cosines, etc.)

Selects a complete basis from a specified dictionary by optimizing
some discriminant measure of the basis coordinates

Top few coordinates in terms of the discriminant measure are then
fed to any classifier of one’s choice (Linear Discriminant Analysis,
Decision Trees, Support Vector Machine, . . . )

LDB and its variants have been applied to: geophysical signal/image
classification; noise reduction in hearing aids; diagnostics of
mammography; radar target discrimination; neural spike detection
and sorting; face detection, etc.

Searching the keyword “local discriminant basis” in
google.scholar.com immediately shows its impact
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Examples of Basis Dictionaries
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An Example in a Pond; Step 3: LDB

Figure: (a) Average C1 waveform; (b) Average S1 waveform; (c) The LDB vector
#1 trained on (C1,S1); (d) The LDB vector #2 trained on (C1,S1); (e) The
LDB vector #3 trained on (C1,S1).
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An Example in a Pond; Step 3: Top 3 LDB coordinates

Figure: Extracted waveforms projected onto the top 3 LDB coordinates. Each
point represents a single waveform. The LDB was computed on the (C1,S1)
dataset.
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Future Plan

Examine the robustness of the extracted LDB features

Investigate a new and robust discriminant measure based on Earth
Mover’s Distance (EMD), which is related to optimal transport (or
the Monge-Kantorovich) problem

Modify LDB to accept complex-valued signal or phase information
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Thank you very much for your attention!
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