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/ M otivation \

e Series of experiments and observations of the basis functions learned
from a set of natural scenes:

— Olshausen & Field: Sparsity
— Bell & Sejnowski, van Hateren & van der Schaaf: Statistical
Independence/ICA

e Both approaches produced basis functions that look like edge
detectors (i.e., multiscale, oriented DOG functions)

e Why do they have to be the same?

e Natural images are way too complicated to analyze as realizations of
a stochastic processes = Use much simpler stochastic processes to
gain deeper understanding about this phenomenon.

e By-product of this research: Our theorems and examples can be used
K to validate any ICA algorithms/software because it is so simple. /
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M otivation ...

() Natural images 16x16 (b) Monet’s paintings 16x16
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(c) Natural images 64x64

M otivation ...
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(d) Monet’s paintings 64x64
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Motivation ...

(e) Sparse basis for natural images (f) Sparse basis for Monet’s paint-
ings
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Motivation ...

We want to understand:

1. Why both criteria produced basis functions resembling edge or line
detectors?

2. What Is the difference between sparsity and independence as a basis
selection criterion?

What Is the effect of the sizes of the image patches used?
What is the effect of orthonormality?

What is the effect of overcompleteness?

o e e

What iIs the effect of orientation selectivities of basis functions?

o v
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Methodology: Best-Basis Paradigm
Let X € R? be a random vector with pdf fx.

Assume that the available data 7 = {1, ...,z N} were
Independently generated from this probability model.

Let B € O(d) or SL*(d, R) (i.e., GL(d, R) with det(B) = +1).

The best-basis paradigm is to find a basis B or a subset of basis
vectors such that the features (expansion coefficients) Y = B—1 X
are useful for the problem at hand (e.g., compression, modeling,
discrimination, regression, segmentation) in a computationally fast
manner.

Let C(B | T) be a numerical measure of or of the
basis B given the training dataset T for the given problem.

~

Y
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/ Spar sity/SCA \

IS a key property as a good coordinate system for compression, which can
be measured by of the expansion coefficients, where

e,(B| X) = BB~ X,
Then, we search the minimizer:

B, = arg Jgnei% Cp(B|X).

e \We call B, the (BSB) among D, and this
procedure the (SCA).

e Directly relevant to the compression:

i Y1 = [ lo = #4i € [1,d] : Y; # 0}

e (Can compute a best basis for

o
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/ Statistical Independence \
IS a key property as a good coordinate system for compression and
modeling.

e Damage of one coordinate does not propagate to the others.

o as a set of 1D processes.

e The “closeness” of the random variables Y7, ..., Yy to the statistical
Independence can be measured by among the
components of Y':

I(Y) = /fY log fr(y) dy; - -+ dyq
—1 fY (yz)

— —H(Y)+ Z 1700%

e I(Y)>0.1I(Y) = 0if and only if the components of Y are

K mutually independent. /

10
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L east Statistically-Dependent Basis/I CA \
e IfY =B 'X and B € SL*(d,R), then

d d
I(Y)=-H(Y)+> HY,)=-HX)+)» HY),
1=1 =1
since the differential entropy is under such a transformation,

e, HB™'X)=H(X) +log | det(B—1)| =3:10. ¢}
e Define the cost:
| N
€H<B|X>=; N_N,;;bgfy Yi,k).

e Then we search the minimizer:

Brspp = arg glei% Cu(B|X).

We call this basis the (LSDB)
[Saito, 1998, 2001]. This is the same as a certain version of the ICA

[Pham, 1996, Cardoso, 1999]. )

11
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Preferred by Sparsity
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(Counter-)Example: 2D Uniform Distribution
Consider all possible rotations around origin. Then, the rotation giving
the sparsest distribution and the independent distribution can be quite

Preferred by Independence
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The Simple Spike Process

Consider a discrete stochastic process generating a single spike at a
random grid location 1, ..., d. This process generates the standard basis
vectors e; € R% randomly.

Some realizations of ‘Spike’ process
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The Smple Spike Process...

Theorem 1 (BB & NS). The best sparsifying basis chosen from
SLE(d, R) for any p € [0, 1] is the standard basis (or its
permuted/sign-flipped versions).

Proposition 2 (BB & NS). The Karhunen-Loeve Basis Is any rotation
around the ““DC” vector, b = (1,1,...,1)T//d.

l.e., the KLB is useless < the simple spike process is non-Gaussian.

o v

4 I
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/ The Smple Spike Process... \
Theorem 3 (BB & NS). The LSDB among O(d) is the following:
d > 5: either the standard basis or the following basis:
d—2 =2 —2 -2 |
—2 d—-2 —2 -
1
- =1, - Qﬁl_d;
d VdVd
—2 d—2 =2
=2 = -2 d-2 |
101 1 1
Ll 1 -1 -1
d = 4: the Walsh basis, 3 :
1 -1 1 -1
1

K 1 -1 -1 1 /

15
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L V3 V6
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V2 | g

< kN

, and this Is the only case where the true

independence is achieved.
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The Smple Spike Process...

following basis pair (analysis and synthesis):

4 a a - a |
b2 (63) b2 cee b2
B(;I{(d) — b3 b3 C3 b3 9
| bg bg bg -+ cq |

where a, by, ci are arbitrary constants satisfying a # 0, by, # ¢, for
k=2,...,d.

o

Theorem 4 (BB & NS). The LSDB chosen from GL(d, R), d > 2 is the

~

Y
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(1 + ZZ:2 bkdk) /a —d2 —d3 s —dd
—bgdg/a d2 0 s 0
Bagrq) = —bsds/a 0 ds 0 |,
—bddd/a 0 0 ce dd

Wheredk, :1/(Ck—bk),k:2,...,d.

Corollary 5 (BB & NS). There is that

provides the truly statistically-independent coordinates for the spike
process for d > 2.

Remark: Permuted and sign-flipped versions of these matrices also
possess the same quality in sparsity or statistical independence.

Y
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The Smple Spike Process...

Remark: The LSDB pair chosen from GL(d, R) shows another contrast
between the sparsity and independence as follows.

e Chooseb, =0,¢c, =1,fork=2,...,dtoget:

1 1 1 1 —1 —1
0 0
B*—l = | . B, =
: Id—l Id—l
0 0

This analysis LSDB provides us with a very sparse representation for
the spike process. For Y = B 1X,

1 d—1 1
Gp:E[HYHﬂ:Eler T x2=2--, 0<p<l.

o v
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e Chooseb, =1,¢c, =2fork =2,...,dtoget:

1 1 1 1 d -1 -1 —1
1 2 1 1 -1 1 0 0
Bi'=1]1 1 2 1|, B,=|-1 0 1 0
11 1 2 -1 0 0 1

) basis in terms of sparsity,

)

This is the worst (i.e., completely
l.e.,

| 1
d

1 d —
EXd—l_ g

where 0 < p < 1, yet this is still the LSDB.

€, =

! x{(d—1)+2p}:d+(2p—1)<

Y

Y
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/ The‘Generalized’ Spike Process \

Similar to the simple spike process, but now the amplitude of each spike
Is sampled from the standard normal distribution.

10

15

20
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The‘Generalized’” Spike Process...

The pdf of this process can be written as:
|
fx(@) =~ > [ []6() | gz,
i=1 \ j#i

where §(-) is the Dirac delta function, and g(z) = (1/v/27) exp(—x2/2).

o v

22
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\ The pdf of the ‘Generalized’ Spike Process (d = 2) /
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The Marginal Distributions under SL*(d, R)
ForY = B~'X, B € SL*(d, R), the change of variable formula for a
pdf generates:

d
j—iz (H5 bf:u)) g(b; ),

=1 Ve

where bf IS the jth row vector of B. Now, we can compute its marginal
pdf as follows:

Lemma 6 (NS).

d
1
= E 9(y; A1),
1=1

o

where A;; is the (¢, j)th cofactor of matrix B, and g(y; o) = g(y/o)/o.

24
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/ The Marginal Distributionsunder SL=(d,R) ... \
Can interpret fy, (y) asa
Marginal Density Function at Various Rotation Angles
A
o el
-
< ...
...
© A e
e ——..
4 2 6 2 4
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The Moments under SL*(d, R)

Lemma 7 (NS).

I'(p) :

Q2T (p)2) £

Remark: Keep ,
desk!

o

E[|Y;|P] = > |AlP, forallrealp>0,5=1,...,d.

on your

26
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KLB and BSB
Using all these lemmas, we can prove the following:

process is any orthonormal basis in R¢.

Theorem 9 (NS). The BSB with any p € [0, 1] for the generalized spike
process is the standard basis if D = O(d) or SL=(d, R).

How about L SDB?
Unfortunately, the following is still the conjecture at this point:

Conjecture 10. The LSDB among O(d) is the standard basis.

o

~

Proposition 8 (NS). The Karhunen-Loéve basis for the generalized spike

27
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/ KurtosissMaximizing Basis (KM B) \
Instead of the LSDB, if we consider the KMB, then we can show much
more.

d
B, = arg IIlEI% Cu(B|X) = arg max 2 k(Y;),

where k(Y;) = pa(Y;) — 3u3(Y;), and g (Y;) is the kth central moment
of Y;. (A slight abuse of notation here: strictly speaking, the of Y;

is (Y3)/u5(Yi).)
e An approximation to ICA/LSDB
e Based on the approximation of the marginal differential entropy by
higher order moments/cumulants using the Edgeworth expansion
H(Y;) ~ —k(Y;)/48. (see Comon (1994), Jones & Sibson (1987)).
e Also proposed independently by Buckheit & Donoho (1996) as a
K basis exposing maximal non-Gaussianity. /
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KMB ...
Then, we have the following theorems:

Theorem 11 (NS). The KMB among O(d) for the generalized spike
process Is the standard basis.

process does not exist.

o

Theorem 12 (NS). The KMB among SL=(d, R) for the generalized spike

Y
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Conclusion

e For the simple spike process,

— BSB ~ LSDB if D = SL*(d,R) or GL(d, R), or if D = O(d)
with d < 4.

— BSB -~ LSDB if D = O(d) with d > 5, but LSDB is not unique
In this case (the Householder reflector).

e F[or the generalized spike process,
— BSB — KMB (an alternative to LSDB) if D = O(d).
— ' BSB whereas | KMB if D = SL*(d, R).

e The above results can be used to validate any ICA/SCA software.

30
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Conclusion ...

e Statistical independence and sparsity are completely different
notions and criteria in general.

e However, under the best basis setting, both criteria prefer sharply
concentrated (i.e., peaky) marginal distributions.

e A fundamental difference: the sensitivity on the location (mean) of
the marginal pdf’s. The entropy is location invariant whereas the ¢
norm Is very sensitive to the mean. = non-uniqueness of the
LSDBs for certain cases.

e The LSDB/ICA unfortunately cannot tell how close it is to the
statistical independence; it can only tell that it is the best one (i.e., the
closest one to the statistical independence) among the given set of

possible bases.

Y
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Conclusion ...

e Numerical issues for general inputs:

— If D=wavelet packets, local Fourier dictionaries, then BSB/SCA
IS much simpler and stable than LSDB/ICA.

— If D = O(d), SL*(d, R), then BSB/SCA becomes a very tough
optimization problem . On the other
hand, there are several ICA implementations are available.

o spike processes should be explored.

Papers
http://www.math.ucdavis.edu/~saito/publications/
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