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Objectives

Objectives
Analyze acoustic wavefields scattered from underwater objects via the
wideband FM (synthetic aperture) sonar system, in particular, how
waveforms change relative to geometric transformation of those
objects, e.g.: translations, rotations, change of material inside objects
Classify underwater objects using those waveforms
Apply the Scattering Transform (ST) and examine its effectiveness

(a) Manta (b) Pdm1
saito@math.ucdavis.edu (UC Davis) Acoustic Feature Extraction November 29, 2017 5 / 57



A Brief Introduction to SAS
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A Brief Introduction to SAS

Synthetic Aperture Sonar System (Courtesy: D. Cook)
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A Brief Introduction to SAS

SAS Operation (Courtesy: D. Cook) . . .
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A Brief Introduction to SAS

Waveforms =⇒ Images (Courtesy: R. Goroshin; S. Kargl)

(a) Waveforms

(b) Reconstructed Images
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A Brief Introduction to SAS

Waveforms =⇒ Images (Courtesy: R. Goroshin; S. Kargl)

(a) Waveforms (b) Reconstructed Images
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A Brief Introduction to SAS

Several more real images (Courtesy: D. Cook)
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A Brief Introduction to SAS

Ambiguous Objects! (Courtesy: R. Goroshin)
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A Brief Introduction to SAS

Observations

Shape information alone extracted from images (generated by the SAS
imaging algorithm applied to sonar waveforms) is ambiguous for
object classification
Better to examine the raw waveforms and the entire wavefield
scattered from an object for classification
Do dolphins always reconstruct images from the returns of their clicks
from objects in their brains??
Dolphins do use some features of the waveforms returned from fishes
to estimate their locations, fish species/sizes (via their swim bladder
shapes; see, e.g., Yovel and Au, PLoS ONE, 2010)

Figure: Malene Thyssen, http://commons.wikimedia.org/wiki/User:Malene
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Modeling & Simulation of Scattering Problems

Problem Setup
Consider an object (a domain) Ω ∈R2 of arbitrary shape whose
acoustic velocity is cm , which is immersed in the surrounding material
(i.e., water) of acoustic velocity cw = 1503(m/s).
For a single frequency source eiωt , this situation can be described by
the Helmholtz equations with transmission boundary conditions:

∆u +k2
1u = 0 in Ω

∆v +k2
2 v = 0 in Ωc

u − v = g on ∂Ω
∂νu −∂νv = ∂νg on ∂Ω√
|x|(∂|x|− ik2

)
v(x) → 0 as |x|→∞

where k1 =ω/cm and k2 =ω/cw .
The above BVP provides a slightly more realistic model of acoustic
scattering than simple Dirichlet or Neumann conditions.
Our efficient numerical solver based on boundary integral equations
allows singularities (e.g., corners, cusps) in the boundary curve ∂Ω.
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Modeling & Simulation of Scattering Problems

Responses to Multifrequency Transmitters

A more realistic source waveform consists of multiple frequency
sinusoids (e.g., chirps or truncated sinusoids).
To do so, we employ the so-called frequency-domain modeling :

1 Decompose a source signature s(t j ), t j = j∆t , j = 0,1, . . . , N −1,

∆t := T /N into the (discrete) Fourier series
N−1∑
n=0

ŝneiωn t j , ωn := 2πn/T

2 For each frequency ωn , solve the system of the Helmholtz equations to
obtain the wave vobj

n (t j ) = anei(ωn t j +θn ) scattered from the object Ω
3 Synthesize the total response by summing all the individual responses

with the appropriate coefficients: vobj(t j ) :=
N−1∑
n=0

ŝn vobj
n (t j )

Note that in the transmission Helmholtz equations in the previous
page, the total potential v in Ωc is split into two pieces v = vsrc + vobj

where vsrc is part of v purely due to the source in the absence of Ω
and vobj is part of v solely due to the presence of Ω.
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Modeling & Simulation of Scattering Problems

Responses to Multifrequency Transmitters . . .

In reality, one needs to be very careful about the silent trailing period
of the input source signal in order to avoid the interference between
the wave sent at t = 0 and that at t = T .
This leads to some intricate choice of the silent period and zero
padding in the DFT, and extraction of the output signal of period T ,
etc. But we will not discuss these details here.
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Modeling & Simulation of Scattering Problems

A Fast Helmholtz Solver via BIEs

The transmission Helmholtz BVP can be reformulated as a system of
boundary integral equations (BIEs).
Let u and v be represented as

u = Dk1σ+Sk1τ

v = Dk2σ+Sk2τ

where

Sk f (x) := i

4

∫
∂Ω

H0(k|x − y |) f (y)ds(y)

Dk f (x) := i

4

∫
∂Ω

k|x − y |H1(k|x − y |) f (y)
(x − y) ·νy

|x − y |2 ds(y)

where Hα(·) are the Hankel functions of the first kind of order α= 0,1.
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Modeling & Simulation of Scattering Problems

A Fast Helmholtz Solver via BIEs . . .
Then, the transmission Helmholtz BVP can be written as a system of
the BIEs as: [

Dk1 −Dk2 − I Sk1 −Sk2

D ′
k1
−D ′

k2
S′

k1
−S′

k2
+ I

][
σ

τ

]
=

[
g
∂νg

]
where

S′
k f (x) := i

4

∫
∂Ω

k|x − y |H1(k|x − y |) f (y)
(y −x) ·νx

|x − y |2 ds(y)

D ′
k f (x) := i

4

∫
∂Ω

(
∂νx∂νy H0(k|x − y |)) f (y)ds(y)

The advantages of solving Helmholtz BVPs using BIEs include:
dimension reduction ⇐= the integral is taken over ∂Ω, not in Ω
well-conditioned systems (even for singular domains)
tamer singularities than in FDM/FEM
solvable via a direct (i.e., non-iterative) method
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Modeling & Simulation of Scattering Problems

A Few More Words about Our Fast Solver

Our solver is direct as opposed to iterative. This means that we form
a compressed representation of the inverse of the matrix discretizing
the relevant integral operator in order to solve the associated system
of equations. In other words, we form a scattering matrix for the
problem.
Solvers of this type have a number of advantages; among them,
resistance to ill-conditioning and the ability to solve for multiple
right-hand sides efficiently.
The ability to rapidly solve for multiple right-hand sides allows us to
conduct our simulations efficiently.
Computational cost of our 2D solver for a single frequency source is:

O(N ) to form a scattering matrix of size Nout ×Nin where N is the
number of discretization of the boundary curve ∂Ω
O(Nout ×Nin) to build a solution for a given right-hand side.
O(Nin) to evaluate vout(x) for x far away from Ω.
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Modeling & Simulation of Scattering Problems

Simulation Setup

Three simple geometric shapes as Ω: triangle; shark fin; rectangle
The range of cm : 1, 500, 1000, . . . , 5000 (m/s)
The geometry of measurements was similar to the real experiments
conducted by NSWC-PCD: 481 transmitter/receiver location along a
straight line (rail system)
Each object was rotated 360◦ with 10◦ increment and the resulting
wavefield was computed
To speed up the wavefield synthesis, a database of a set of single
frequency responses were created at the frequency range from 156.25
Hz to 50,000 Hz with 156.25 Hz increment (320 frequencies in total).
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Modeling & Simulation of Scattering Problems

Simulation Results: Triangle

Triangle
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Modeling & Simulation of Scattering Problems

Simulation Results: Shark Fin

Shark Fin

saito@math.ucdavis.edu (UC Davis) Acoustic Feature Extraction November 29, 2017 22 / 57


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}





Invariant Feature Extraction; Scattering Transforms

Outline

1 Objectives

2 A Brief Introduction to SAS

3 Modeling & Simulation of Scattering Problems

4 Invariant Feature Extraction; Scattering Transforms

5 Classificatin of Synthetic Waveforms

6 Classification of Real Experimental Waveforms (BAYEX14)

7 Summary & Future Plan

8 References
saito@math.ucdavis.edu (UC Davis) Acoustic Feature Extraction November 29, 2017 23 / 57



Invariant Feature Extraction; Scattering Transforms

Effects of Object Deformation to Waveforms

Translation of an object =⇒ translation and amplitude decay of the
waveforms
Rotation of an object =⇒ translation, amplitude decay , and shifts in
receiver indices if measured under the straight line receiver arrays
Changes of object material or source pulse shape ≡ changes in
k =ω/cm =⇒ nonlinear changes in amplitude and phase of the
waveforms
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Invariant Feature Extraction; Scattering Transforms

Effects of Object Translation to Waveforms

Translation of an object =⇒ translation and amplitude decay of the
waveforms
Let x and y be the coordinates of the receiver location and a point
scatter, respectively. Then, the scattered wave arrives at this receiver
at time 2|x−y |

cw
.

If the object location is translated to y +∆y , then the arrival time
changes to 2|x−y−∆y |

cw
. Let θ be an angle between y −x and ∆y .

If |∆y |¿ 1, the arrival time difference is ≈ 2|∆y |
cw

cosθ.
This arrival difference depends both on x, ∆y , for a fixed y .
On the other hand, the amplitude decays approximately with the
factor exp

(−αw |∆y |cosθ
)
where αw = 2ηω2

3ρc3
w
is the attenuation

coefficients of the water according to Stoke’s law ; it’s frequency
dependent! η= 8.90×10−4 Pa and ρ = 1000kg/m3 are the dynamic
viscosity coefficient and the density of the water, respectively; but they
also depends on temperature and salinity of the water.
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Invariant Feature Extraction; Scattering Transforms

Effects of Object Rotation to Waveforms
Rotation of an object =⇒ may result in drastic changes in waveforms if the
object has sigularities in ∂Ω

The geometry of a measurement system becomes quite important!

If an array of receivers surround the object completely, a rotation of the
object simply amounts to a circular shift of the receiver indices.

An expected geometry of a receiver array is, however, a straight line.

Hence, a rotation of the object amounts to the changes of translation,
amplitude decay, and shifts in receiver indices.
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Figure: Signals scattered from a rectangle with varying view angles.
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Invariant Feature Extraction; Scattering Transforms

Effects of Change of Material/Source Pulse to Waveforms

Change of material inside an object and/or change of the source pulse
shape ≡ change in k =ω/cm

⇐⇒ nonlinear changes in amplitude and phase of the waveforms
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Figure: Signals scattered from rectangles of varying speed of sound.
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Invariant Feature Extraction; Scattering Transforms

Comments on Invariant Features: Amari & Otsu

Amari (late 60’s) and Otsu (mid 70’s) already worked on invariant feature
extractors based on the “Invariant Theory.”

They first considered the linear feature extractors (LFEs) as linear
functionals in a Hilbert space: ρ[ f ] := 〈

f ,ρ
〉= ∫

f (x)ρ(x)dx.

For a given pattern deformation Tλ (i.e., a composite of continuous
transformation groups in R1 or R2), an LFE is defined as ρ[Tλ f ] = η(λ)ρ[ f ].
If η(λ) ≡ 1, then the LFE ρ is called absolute; otherwise called relative.

If Tλ = an additive group (e.g., translations), then the invariant LFEs must
be of the Fourier-Laplace transform type: ρ[ f ] = ∫

f (x)c1eγ1x dx.

If Tλ = a multiplicative group (e.g., dilations), then the invariant LFEs must
be of the Mellin transform type (including moment feature extractors):
ρ[ f ] = ∫

f (x)c2xγ2−1 dx.

They showed that the absolute LFEs are so limited (γ1 = 0, γ2 = 0) due to
Haar’s theorem that they are basically meaningless.

Hence, they suggested that in order to find more useful invariant feature
extractors, one must seek nonlinear operators.
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Invariant Feature Extraction; Scattering Transforms

Scattering Transform

A scattering transform (ST; proposed by S. Mallat and further
developed by him and his group) can maintain Lipschitz continuity
relative to a small deformation applied to an input signal! In other
words, the ST representation is stable relative to such small
deformations.
An example of a small deformation close to a translation is:
Tτ f (x) := f (x −τ(x)) where τ(·) ∈C 2

(
Rd

)
is a displacement field.

An operator Ψ : L2
(
Rd

)→H is said to be translation invariant if
Ψ[Tc f ] =Ψ[ f ], for every constant vector c ∈Rd .
A translation invariant operator Ψ is Lipschitz continuous relative to
Tτ if ∀Ω ∈Rd : compact, ∃C > 0 such that ∀ f ∈ L2(Rd ), supp f ⊂Ω,
∀τ ∈C 2

(
Rd

)
,∥∥Ψ[ f ]−Ψ[Tτ f ]

∥∥
H ≤C

∥∥ f
∥∥ (‖∇τ‖∞+‖Hτ‖∞),

where Hτ is the Hessian tensor of τ.
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Invariant Feature Extraction; Scattering Transforms

Why not just use the Fourier Transform?

The magnitude of the Fourier transform is translation invariant, but the
Lipschitz-continuity is not preserved for deformations:
Let τ(t ) = st , with |s| < 1, and f (t ) = eiξtθ(t ), where θ is even and O

(
e−x2)

then Tτ f (t ) = f ((1− s)t ) translates the central frequency ξ to (1− s)ξ∥∥∥T̂τ f − f̂
∥∥∥∼ |s||ξ|‖θ‖ = |ξ|∥∥ f

∥∥‖∇τ‖∞
No universal bound for arbitrary ξ!

Frequency (ω)
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Invariant Feature Extraction; Scattering Transforms

How about Wavelet Transforms?
In the Fourier domain, a wavelet transform ψ j ? f bandpasses the signal
over windows whose bandwidth decreases exponentially with j , so that
both f and Tτ f are captured within the same wavelet, regardless of ξ.

Frequency (ω)
0 10 20 30 40 50 60 70 80 90 100

-0.5
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0.5

1

1.5

2

ξ = 50 limited by ψ̂0

Scattering Wavelets

ψ̂0f̂(ω)

ψ̂0T̂τf(ω)

Effect of Nonlinear Translation on the Scattering Coefficients

Frequency (ω)
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j = 0

j = 0j = 1j = 2. . .

. . . j = 2 j = 1

Discrete Orthonormal Wavelet Transform ≡ not invariant at all
Stationary Wavelet Transform ≡ relatively invariant but not absolutely
invariant
Averaging after Stationary Wavelet Transform improves invariance
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Invariant Feature Extraction; Scattering Transforms

Scattering Transform
A single propagating layer U m

J [ f ] of the scattering transform is a vector consisting
of alternating convolution with wavelets ψ̂ j (ω) = ψ̂(

2 j/Qmω
)
and a modulus | · |

with the scale in each layer varying from the finest scale of 0 up to J −1:
U 1

J [ f ] := (|ψ0? f |, . . . , |ψJ−1? f |)
U 2

J [ f ] := (|ψ0? |ψ0? f ||, . . . , |ψJ−1? |ψ0? f ||, . . . ,

. . . , |ψ0? |ψJ−1? f ||, . . . , |ψJ−1? |ψJ−1? f ||)
S0
J [f ]

U1
J1[f ]

S1
J [f ]

U2
J [f ]

S2
J [f ]

Um
J [f ]

Sm
J [f ]

f(x)

|f ? ψ0|

|ψ0 ? |ψ0 ? f ||

...

|ψ0 ? | · · · |ψ0 ? f | · · · |
|ψJ−1 ? | · · · |ψ0 ? f | · · · |

...

|ψJ−1 ? |ψ0 ? f ||

...
...

|f ? ψJ−1|

|ψ0 ? |ψJ−1 ? f ||

...
...

|ψJ−1 ? |ψJ−1 ? f ||

...
...

|ψ0 ? | · · · |ψJ−1 ? f | · · · | Layer m

...

Layer 2

Layer 1

Layer 0

|ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? f(x)|

|φ ? |f ? ψJ−1(x)|||φ ? |f ? ψ0(x)||

|φ ? |ψ0 ? |ψ0 ? f || |φ ? |ψJ−1 ? |ψJ−1 ? f ||

|φ ? |ψJ−1 ? | · · · |ψ0 ? f| · · · | |φ ? |ψ0 ? | · · · |ψJ−1 ? f| · · · |

|φ ? |ψ0 ? | · · · |ψ0 ? f | · · · |

|φ ? |ψ0 ? |ψJ−1 ? f|||

|φ ? |ψJ−1 ? | · · · |ψJ−1 ? f |

|φ ? |ψJ−1 ? |ψ0 ? f|||

. . .

. . . . . .. . .

. . . . . .
· · ·. . . . . .

The output Sm
J [ f ] is taken by averaging every term of U m

J [ f ] with the father
wavelet φ corresponding to ψ, followed by subsampling .
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Invariant Feature Extraction; Scattering Transforms

Scattering Transform comparison of f and Tτ f
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Invariant Feature Extraction; Scattering Transforms

Useful Properties

Theorem (Energy conservation, Mallat (2012))

For all f ∈ L2(Rd ), if (ψ,φ) are admissible, then∥∥ f
∥∥

2 =
∥∥S J [ f ]

∥∥
2 where S J [ f ] := (

S0
J [ f ],S1

J [ f ], . . . ,Sm
J [ f ], . . .

)
,∥∥S J [ f ]

∥∥2
2 :=

∞∑
m=0

∥∥Sm
J [ f ]

∥∥2
2

In addition to preserving the energy, as the scale goes to infinite resolution,
the scattering transform is translation invariant

Theorem (Limit Translation Invariance, Mallat (2012))

For all f ∈ L2
(
Rd

)
and c ∈Rd , if (ψ,φ) are admissible, then

lim
J→−∞

∥∥S J [ f ]−S J [Tc f ]
∥∥

2 = 0
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Invariant Feature Extraction; Scattering Transforms
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Invariant Feature Extraction; Scattering Transforms

Theorem (Lipschitz Continuity, Mallat (2012))

For all compactly supported f ∈ L2
(
Rd

)
satisfying

∥∥∥∑
m U m

J f
∥∥∥

1
<∞ and

τ ∈C 2
(
Rd

)
where ‖∇τ‖∞ ≤ 1

2 and ‖τ‖∞
/‖∇τ‖∞ ≤ 2J , there is a C such

that: ∥∥S J [ f ]−S J [Tτ f ]
∥∥

2 ≤C

∥∥∥∥∑
m

U m
J f

∥∥∥∥
1

(‖∇τ‖∞+‖Hτ‖∞)

A more recent result: for general frames, and not just admissible wavelets,
increasing the depth m improves translation invariance property:

Theorem (Depth Translation Invariance, Wiatowski–Bölcskei (2015))

If Rn is the subsampling rate at layer n, as long as the wavelets have frame
bounds Bn satisfying max{Bn ,BnRd

n } ≤ 1, the features at depth m satisfy:

Sm
J [Tc f ] = T c

R1 ···Rm
Sm

J [ f ]
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Invariant Feature Extraction; Scattering Transforms

Theorem (Lipschitz Continuity, Mallat (2012))

For all compactly supported f ∈ L2
(
Rd

)
satisfying

∥∥∥∑
m U m

J f
∥∥∥

1
<∞ and

τ ∈C 2
(
Rd

)
where ‖∇τ‖∞ ≤ 1

2 and ‖τ‖∞
/‖∇τ‖∞ ≤ 2J , there is a C such

that: ∥∥S J [ f ]−S J [Tτ f ]
∥∥

2 ≤C

∥∥∥∥∑
m

U m
J f

∥∥∥∥
1

(‖∇τ‖∞+‖Hτ‖∞)

A more recent result: for general frames, and not just admissible wavelets,
increasing the depth m improves translation invariance property:

Theorem (Depth Translation Invariance, Wiatowski–Bölcskei (2015))

If Rn is the subsampling rate at layer n, as long as the wavelets have frame
bounds Bn satisfying max{Bn ,BnRd

n } ≤ 1, the features at depth m satisfy:

Sm
J [Tc f ] = T c

R1 ···Rm
Sm

J [ f ]
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Invariant Feature Extraction; Scattering Transforms

Implementation Details

As m increases, the remaining energy is concentrated at coarser
scales, so only those Sm

J with increasing scales at deeper layers are
kept for computational reasons (e.g., |φ? |ψ4? |ψ1? f ||| is kept, while
|φ? |ψ1? |ψ4? f ||| is not).
This project so far has focused on using Morlet Wavelets (almost
analytic):

ψ(t ) = cξe−t 2/2
(
eiξt −κξ

)
⇐⇒ ψ̂(ω) = cξ

(
e−(ω−ξ)2/2 −κξe−ω

2/2
)

,

where κξ is a constant for ψ to be admissible and cξ is a normalization
constant.
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Classificatin of Synthetic Waveforms

Synthetic Data Setup I: Target Shape Discrimination

Classification of Triangle object vs Shark Fin object via waveforms
Each object is rotated by 10◦ increment to cover 0◦ to 350◦

Speed of sound in both objects is the same, 2000m/s.
Hence, this classification is about the object shape through the
scattered waveforms regardless of rotations
Each signal is normalized so the maximum amplitude is 1
The white Gaussian noise N(0,10−5) is added to the waveforms, i.e.,
the average SNR is about 12dB.
For each angle for each object, 481 waveforms with 641 time samples
are generated.
Multiclass logistic regression with Lasso (via glmnet) is used as a
feature extractor and a classifier.
Perform twofold cross validation 10 times, i.e., repeats the
classification 10 times by randomly splitting the whole dataset into
training and test sets with 50/50.
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Classificatin of Synthetic Waveforms

Examples of Scattering Transform Coefficients

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μTriangle speed 2000 angle 200

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μTriangle speed 2000 angle 230

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μTriangle speed 2500 angle 230

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μSharkfin speed 2000 angle 200

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μSharkfin speed 2000 angle 230

0 1 2 3

S
ca

le

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μ

−300μ

−200μ

−100μ

0

100μ

200μ

300μSharkfin speed 2500 angle 230

The results from a depth 3 scattering transform with (Q1 =Q2 =Q3 = 1,
0 ≤ m ≤ 3) on various materials, shapes, and angles.
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Classificatin of Synthetic Waveforms

Target Shape Discrimination: Results
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Figure: The ROC curve for discriminating a sharkfin from a triangle. Finer ST:
(Q1,Q2,Q3) = (8,4,4); Coarser ST: (Q1,Q2,Q3) = (1,1,1). The AUC values of Finer
ST, Coarser ST, AVFT are: 0.998, 0.886, and 0.775, respectively.
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Classificatin of Synthetic Waveforms

Target Shape Discrimination: ST Coefficients
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Figure: The glmnet coefficients selected in one run. Red coefficients correspond
to the triangle class, while blue to the sharkfin
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Classificatin of Synthetic Waveforms

Synthetic Data Setup II: Target Material Discrimination

Classification of two Triangle objects each of which has a different
speed of sound.
Each object is rotated by 10◦ increment to cover 0◦ to 350◦

Speed of sound in these two objects are set to 2000m/s and 2500m/s.
Hence, this classification is about the object material through the
scattered waveforms regardless of rotations.
The other classification setup is the same as the shape discrimination
case.
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Classificatin of Synthetic Waveforms

Target Material Discrimination: Results
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Figure: The ROC curve for detecting the material difference in a triangle, for
speeds of sound c1 = 2000m/s and c1 = 2500m/s. The AUC values of Finer ST,
Coarser ST, AVFT are: 0.99994, 0.97778, and 0.992837, respectively.
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Classificatin of Synthetic Waveforms

Target Material Discrimination: ST Coefficients
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Figure: The glmnet coefficients selected in one run. Red coefficients correspond
to the speed 2000 class, while blue to the speed 2500
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Classification of Real Experimental Waveforms (BAYEX14)

About the BAYEX14 Dataset

The Bay Experiment 2014 (BAYEX14) was conducted from 29 April
2014 through 1 June 2014 at St. Andrews Bay (Panama City, FL).
22 objects were placed on the ocean floor (about 8m deep).
Each object was placed at different grid cell of the ocean floor.

Figure: Some of the targets used in BAYEX14
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Classification of Real Experimental Waveforms (BAYEX14)

About the BAYEX14 Dataset . . .

Each SAS measurement ran along the sonar rail (42m long) with
spatial sampling rate 2.5cm.
Each object was rotated through a set of 9 angles with respect to the
rail (−80◦ to 80◦ with 20◦ increment) by divers!
We received the waveforms scattered from 14 objects.
For each angle for each object, about 1600 waveforms with 1400 time
samples were recorded.
Due to some amplitude bursts of some waveforms, we normalized each
waveform so that it has the unit `2 norm.
We have split the data into two classes: UXOs (or their replicas) and
non-UXOs (including natural rock, water-filled drum and tank).
Between classes, there are no similar shapes, but there are two with the
same material (aluminum UXO replica vs aluminum non-UXO pipe).
Performed 10-fold cross validation, i.e., repeats the classification 10
times by randomly splitting the whole dataset into training and test
sets with 50/50.

saito@math.ucdavis.edu (UC Davis) Acoustic Feature Extraction November 29, 2017 47 / 57



Classification of Real Experimental Waveforms (BAYEX14)

Examples of Scattering Transform Coefficients
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The results from a depth 2 scattering transform with (Q1 = 8;Q2 = 1,
0 ≤ m ≤ 2). Top row: UXOs; Bottom row: non-UXOs.
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Classification of Real Experimental Waveforms (BAYEX14)

The BAYEX14 Dataset: Results

0.0 0.2 0.4 0.6 0.8 1.0
False Positive

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

Comparing UXO detection

ST
AVFT

Figure: The ROC curve for detecting UXOs. ST: (Q1,Q2) = (8,1); AUC=0.9487;
AVFT: AUC=0.8186.
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Classification of Real Experimental Waveforms (BAYEX14)

UXO vs non-UXO Discrimination: ST Coefficients

0 1 2

−200k

−150k

−100k

−50k

0

50k

100k

150k

200k

−200k

−150k

−100k

−50k

0

50k

100k

150k

200k

−200k

−150k

−100k

−50k

0

50k

100k

150k

200k

−200k

−150k

−100k

−50k

0

50k

100k

150k

200k

S
ca
le

Figure: The glmnet coefficients selected in one run. Red coefficients correspond
to the UXO class, while blue to the non-UXO
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Summary & Future Plan

Summary

Our preliminary results indicated the robustness of the ST
representations under the SAS setup, both synthetic and real.
As predicted, the ST coefficients at deeper layers turned out to be
more useful for classification of signals with various deformations
thanks to their quasi-invariance to those deformations.
The ST-based representations performed better than the the modulus
of the Fourier transforms (AVFTs), confirming that the deformations
in our signals are not simple constant shifts of template/prototype
signals.
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Summary & Future Plan

Future Plan

Examine how to present the selected features (ST coefficients) in an
intuitive manner (perhaps, via reconstructing the waveforms from the
selected ST coefficients, which requires estimating the phase
information lost due to the modulus operations).
Investigate if waveform deformations due to target rotations, material
changes, and geometry of measurements can be formulated via
nonlinear displacement field τ(x); though it may not be in C 2

(
Rd

)
,

and the Lipschitz continuity may not be preserved.
Use the whole 2D wavefields as training signals, i.e., view each 2D
wavefield as a special image and use 2D Scattering Transform based
on Shearlets.
Examine the simulation results for manifold learning, e.g., how to learn
rotation angles of an object or medium velocity changes purely from
the scattered wavefields.
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Summary & Future Plan

Shearlets (Guo, Kutyniok, Labate, . . . )
A 2D frame based around dilation and shearing of a mother “wavelet”:

1, 1, 2 1, 1, 1 1, 1, 0 1, 1, 1 1, 1, 2

1, 2, 2 1, 2, 1 1, 2, 0 1, 2, 1 1, 2, 2

2, 1, 1 2, 1, 0 2, 1, 1

2, 2, 1 2, 2, 0 2, 2, 1

0, 0, 0

Figure: The real part of a shearlet system with J = 2, where ψi , j ,k is in cone i ,
with scale j and shearing k, and φ is the averaging function.
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Summary & Future Plan

“Shattering” Transform

A shattering (or shearlet scattering) transform is a generalized scattering
transform using shearlets as the frames.

For the nonlinearity operator, we use σ= | · | here, but the other possibilities,
e.g., the complex extension of the Rectifier Linear Unit, i.e.,
ReLU(z) := ReLU(Re(z))+ReLU(Im(z))i, where ReLU(x) := max{0, |x|} for
x ∈R.
For the theoretical results to apply, we will eventually need to show that

max
{

B ,
Bγ2

R2

}
≤ 1 (1)

where γ is the Lipschitz constant for σ, which is at worst 2 for the above
examples, R is the subsampling rate, and B is the frame bound for the
system of shearlets. The last is the only tricky one.

To improve computation time and to increase the parallelism with CNNs
(convolutional neural networks), we could only use the output from the final
layer, but that might be suboptimal . . .
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