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q Nonconvex optimization is prevalent in statistics

q Finding global optima is difficult, even impossible in some cases

q In some cases, stationary points (local minima, saddle point, local maxima) have desirable statistical properties 
[Loh17; EG18; QCLP19]

q Examples: Piecewise affine regression, 2-layer neural network model with the ReLu activation function, robust 
regression, Smoothly Clipped Absolute Deviation (SCAD) penalty, Minimax Concave Penalty (MCP)

q There are methods to find stationary point, e.g., gradient descent

Nonconvex optimization in Statistics



In recent past, lot of research on… 

qMatrix Completion [GLM16, CL19]

qRobust Principle Component Analysis [GJZ17, FS19]

qTensor Decomposition [GHJY15]

qPhase Retrieval [SQW16]

qDeep Neural Nets [NH17, Led20, LP20]

Nonconvex

Not all stationary points 
are desirable

Only local minima are 
statistically favorable !
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Deep Learning and Nonconvex Optimization

Neural Tangent Kernel viewpoint

For ultra-wide network, randomly initialized 
gradient descent can be shown to work like 
kernel regression with the kernel NTK [JGH18]

All over-parametrized neural networks are not 
captured by NTK [ZLZ19]

NTK based results are for polynomially large 
networks (in depth and sample-size)

But, in practice, finite width work well as well

Landscape Analysis viewpoint

An alternative view for finite-width multilayer 
neural networks

All approximate local minima are also global 
minima [KK20, Led20, LP20]

Escape saddle points to reach local minima



Problem

𝑎𝑟𝑔m𝑖𝑛
!∈ℝ!

𝑓 𝜃 ≔ 𝐄$ 𝐹 𝜃, 𝜉

Nonconvex

Definition (𝝐-local minimum): Let 𝜆!"# ∇$𝑓 𝜃 is the minimum eigenvalue of ∇$𝑓 𝜃 . A 
point �̅� is called a 𝝐-local minimum/ 𝝐-second-order stationary point if,

max ∇𝑓 �̅� $, −𝜆!"# ∇$𝑓 �̅� ≤ 𝜖

Small Gradient 
( ∇𝑓 �̅� !≤ 𝜖)

Locally Convex
𝜆"#$ ∇!𝑓 �̅� ≥ − 𝜖
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Over-parametrized Models and Interpolation

f 𝜃 =
1
𝑛*
!"#

$

𝑔% 𝑥! − 𝑦! &Empirical Loss

𝑔%: Parametrized space of functions

Over-parametrized Models: 
#𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ≫ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

Deep Neural Networks achieves zero training error

Achieves perfect interpolation: 𝑔%∗ 𝑥! = 𝑦!

Empirically Minibatch SGD performs better than GD

Gradient Descent (GD): 𝜃'(# = 𝜃' − 𝜂∇𝑓 𝜃'

Minibatch Stochastic  Gradient Descent (SGD):
𝜃'(# = 𝜃' − 𝜂∇𝐹 𝜃' , 𝜉

Interpolation [MBB18]: 𝜃∗ minimizes f 𝜃 ⇒ 𝜃∗
minimizes 𝑔% 𝑥! − 𝑦! &

Theoretically, previously, slower convergence rate for 
minibatch SGD 
We theoretically show that, under interpolation, SGD does 
have faster convergence rate (even comparable with GD in 
some cases!) to reach the local minima of a non-convex loss 
function
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First-order oracle: Outputs an estimate ∇𝐹 𝜃, 𝜉 of ∇𝑓 𝜃 such 
that 𝐄 ∇𝐹 𝜃, 𝜉 = ∇𝑓 𝜃 .

Example: For empirical loss minimization 
#
*
∑+"#* ∇ 𝑔%" 𝑥!'

+ − 𝑦!"
+ &

, where 𝑖' +"#
* are uniformly at 

random from 1,2,⋯ , 𝑛 .



Strong Growth Condition (SGC) and main implication

For any point 𝜃 ∈ ℝ!, the stochastic gradient at 𝜃, ∇𝐹 𝜃, 𝜉 satisfy 

𝑬𝝃 𝛁𝑭 𝜃, 𝝃 𝟐
𝟐 ≤ 𝝆 𝛁𝒇 𝜃 𝟐

𝟐 𝝆 > 𝟏 (SGC)                                  [VBS18]

Without SGC, we have

𝐄
𝟏
𝒏𝟏
5
𝒊&𝟏

𝒏𝟏

𝛁𝑭 𝜃𝒕, 𝝃𝒊 − 𝛁𝒇 𝜃𝒕
𝟐

𝟐

≤
𝝆 − 𝟏
𝒏𝟏

𝛁𝒇 𝜃𝒕 𝟐
𝝈𝟐
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Previous Work on over-parametrized optimization

[SV09] Randomized version of the Kaczmarz method for consistent, overdetermined linear systems 
converges with exponential rate; similar condition like SGC

Interpolation regime: 
[MBB18] showed mini-batch stochastic gradient descent (SGD) has exponential rates of 
convergence for unconstrained strongly-convex optimization, and linear rate for functions 
satisfying PL-inequality

SGC:
[MVL+20] Regularized subsampled Newton method (R-SSN) and the stochastic BFGS algorithm 
under SGC: global linear convergence for strongly convex case

[VBS18] constant step-size SGD has optimal convergence rate for strongly-convex and smooth 
convex functions

Non-convex setting: [VBS18] Constant step-size SGD can obtain the deterministic rate in the 
interpolation regime for converging to first-order stationary solution



How to escape from a saddle-point?

Saddle Point (∇𝑓 𝜃 = 0)

Solution: Add random 
perturbation to the 
update 

GD update:

𝜃'(# = 𝜃' − 𝜂∇𝑓 𝜃'

Stuck at Saddle point!
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Perturbed Stochastic Gradient Descent (PSGD) Algorithm
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What if only noisy unbiased function-value estimates are available instead of noisy gradient ?



Perturbed Stochastic Gradient Descent (PSGD) Algorithm
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Let 𝑓 be a Lipschitz-continuous function with Lipschitz gradient and hessian. Let the noise in function-
value/gradient is                        . Then under SGC, for PSGD algorithm: 

a) First-order: with probability at least 1 − 𝛿, total first-order oracle calls to reach 𝜖-local minimizer are, 
K𝑶 𝝐,𝟐 .

b) Zeroth-order: total corresponding zeroth-order calls are    K𝑶 𝒅𝟏.𝟓𝝐,𝟒.𝟓 .

c) Zeroth-order (Without SGC): total corresponding zeroth-order calls are       K𝑶 𝒅𝟏.𝟓𝝐,𝟓.𝟓 .

Main Theorem: PSGD
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sub-gaussian

𝛼 − 𝑠𝑢𝑏 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 Worse concentration around ∇𝑓 𝜃

This paperThis paperThis paper



Proof Outline

| ∇𝑓 𝜃! |" ≥ 𝜖 ?

Function descends as fast 
as the deterministic case*

𝜆#$% ∇"𝑓 𝜃! ≤ − 𝐿&𝜖 ?

Coupling argument to show that either the
func8on descends or the sequence of iterates are
stuck around the saddle point

shown that the stuck region is narrow 
enough so that the iterates escape the 
saddle points with high probability

𝜖-Local Minima

Constant variance ⇒ following negative 
curvature difficult. 

SGC ⇒ variance is of the order of 
𝛁𝒇 𝜽𝒕 𝟐

𝟐 ≈ 𝝐𝟐

YES

YES

NO

NO
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(* Deterministic = when we know 
true ∇𝑓 𝜃! instead of ∇𝐹 𝜃!, 𝜉 )
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So far…

q [MBB18] introduced the interpolation condition for over-parametrized models and analyzed SGD for convex 
functions

q [VBS18] introduced SGC and analyzed for non-convex functions but considers stationary points only

q Stationary points not enough in many applications but local-minima are

q We show faster convergence rate (matching deterministic) for PSGD to reach 𝜖-local minima under SGC

Next…What happens for second-order methods?
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q Second-order methods (uses hessian) have better convergence rate in the deterministic case

q Second-order oracle: Outputs an estimate ∇&𝐹 𝜃, 𝜉 such	that		𝐄 ∇&𝐹 𝜃, 𝜉 = ∇&𝑓 𝜃

q Cubic-regularized Newton Method. 

Second-order Methods



Cubic-regularized Newton (CRN) Algorithm

Can be efficiently solved 
by Gradient Descent 
[CD16]
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Main Theorem: CRN
Let 𝑓 be a function with Lipschitz-gradient and hessian. Then under SGC, for CRN algorithm, we have:

a) Higher-order: choosing 𝑇, 𝑛#, 𝑛&, 𝑀 appropriately, we get an 𝜖-local minima

Total first-, and second-order oracle calls 𝑶 𝟏
𝝐𝟐.𝟓

.

b) Zeroth-order: choosing parameters appropriately, we get, total first−order oracle calls𝑶 𝒅𝝐,𝟐.𝟓 , and second−order

oracle calls 𝑶 𝒅𝟒 𝐥𝐨𝐠𝒅 𝝐,𝟐.𝟓 .
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FO+SO FO+SO

Table 1. Oracle complexities of PSGD and SCRN. ZO corresponds to number of calls to zeroth-order oracle and FO+SO corresponds to number
of calls to first or second-order oracles. The result for PSGD and SCRN are given respectively in high-probability and in expectation.

This paper This paper

This paper This paper This paper



Cubic-regularized Newton (CRN) Algorithm

19

No SGC-type 
condition 
here
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Thank You


