Escaping Saddle-points
Faster under Interpolation

Abhishek Roy
MADDD Seminar, UC Davis
10.02.2020



Publication

[RBGM20] “Escaping Saddle-Point Faster under Interpolation-like Conditions”, Roy, Abhishek,
Krishnakumar Balasubramanian, Saeed Ghadimi, and Prasant Mohapatra. "Escaping Saddle-Points
Faster under Interpolation-like Conditions." arXiv preprint arXiv:2009.13016 (2020). (Accepted at
NeurlPS 2020)



Nonconvex optimization in Statistics

O Nonconvex optimization is prevalent in statistics
O Finding global optima is difficult, even impossible in some cases

L In some cases, stationary points (local minima, saddle point, local maxima) have desirable statistical properties
[Loh17; EG18; QCLP19]

O Examples: Piecewise affine regression, 2-layer neural network model with the RelLu activation function, robust
regression, Smoothly Clipped Absolute Deviation (SCAD) penalty, Minimax Concave Penalty (MCP)

1 There are methods to find stationary point, e.g., gradient descent



In recent past, lot of research on...

A Matrix Completion [GLM16, CL19]
Nonconvex
JRobust Principle Component Analysis [GJZ17, FS19]
Not all stationary points
dTensor Decomposition [GHJY15] —— are desirable

(dPhase Retrieval [SQW16] Only local minima are
statistically favorable !

(Deep Neural Nets [NH17, Led20, LP20]



Deep Learning and Nonconvex Optimization

Neural Tangent Kernel viewpoint
For ultra-wide network, randomly initialized
gradient descent can be shown to work like

kernel regression with the kernel NTK [JGH18]

All over-parametrized neural networks are not
captured by NTK [ZLZ19]

NTK based results are for polynomially large
networks (in depth and sample-size)

But, in practice, finite width work well as well

Landscape Analysis viewpoint

An alternative view for finite-width multilayer
neural networks

All approximate local minima are also global
minima [KK20, Led20, LP20]

Escape saddle points to reach local minima



Problem

argmin {f(@) = Eg[F(H,f)]}
R4 T

Nonconvex

Definition (e-local minimum): Let Amin(vzf(e)) is the minimum eigenvalue of V2£(0). A
point @ is called a e-local minimum/ e-second-order stationary point if,
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Over-parametrized Models and Interpolation

Deep Neural Networks achieves zero training error Gradient Descent (GD): 0,1 = 6, — nVf(0,)
1 — Minibatch Stochastic Gradient Descent (SGD):
Empirical Loss f(9) = EZ(‘% (x;) — ¥1)? Ory1 = 0, —NVF (6, ¢)
=1 Example: For empirical loss minimization
gg: Parametrized space of functions 1

2
e V(ge, (x:F) - yl";) , where {i;}}=, are uniformly at

Over-parametrized Models: random from {1,2, -+, n}.

#parameters > training data size
Empirically Minibatch SGD performs better than GD
Achieves perfect interpolation: gg+(x;) = y;
We theoretically show that, under interpolation, SGD does
have faster convergence rate (even comparable with GD in
some cases!) to reach the local minima of a non-convex loss
function

Interpolation [MBB18]: 8" minimizes f(8) = 6*
minimizes (gg(x;) — y;)?

First-order oracle: Outputs an estimate VF (6, &) of Vf(6) such
that E[VF (6, ¢&)] = Vf(6).




Strong Growth Condition (SGC) and main implication

For any point 8 € R%, the stochastic gradient at 8, VF (6, £) satisfy

E¢|IVF(0,9)I5 < plIVF(0)II3

With SGC, we have

E

1 <
”_121 VF(0, &) — VF(6,)

2"

2

(p>1) (SGC)

[VBS18]



Previous Work on over-parametrized optimization

[SV09] Randomized version of the Kaczmarz method for consistent, overdetermined linear systems
converges with exponential rate; similar condition like SGC

Interpolation regime:

[MBB18] showed mini-batch stochastic gradient descent (SGD) has exponential rates of
convergence for unconstrained strongly-convex optimization, and linear rate for functions
satisfying PL-inequality

SGC:
[MVL+20] Regularized subsampled Newton method (R-SSN) and the stochastic BFGS algorithm

under SGC: global linear convergence for strongly convex case

[VBS18] constant step-size SGD has optimal convergence rate for strongly-convex and smooth
convex functions

Non-convex setting: [VBS18] Constant step-size SGD can obtain the deterministic rate in the
interpolation regime for converging to first-order stationary solution



How to escape from a saddle-point?

Saddle Point (Vf(8) = 0) GD update:
Or41 = 0, —nVf(6:)

Stuck at Saddle point!

Solution: Add random
perturbation to the
update
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Perturbed Stochastic Gradient Descent (PSGD) Algorithm

Input: 0, € R%, n, r.
fort =0to 1 do
Set g; = n% S gr.; where

Gr.i = VF (0¢,&.4) (First-order)

What if only noisy unbiased function-value estimates are available instead of noisy gradient ?

Sample 3; € NV (0,7%1,)

Update z,.1 = x; — 1 (g + 3¢)
end for



Perturbed Stochastic Gradient Descent (PSGD) Algorithm

Input: 0, € R%, n, r.
fort =0to 1 do
Set g; = n% S gr.; where

Gr.i = VF (0¢,&.4) (First-order)

F(0 19 1) F(0 ) )
gt,i = B+ v, bu.) O, &, )Ut,z’ (Zeroth-order)
V
andum NN(O,Id) Vt = 1,2,--- ,T,i — 1,2,-” s T
Sample 3; € N (0,721 )
Update x;1 =z — 1 (g+ + 5t)
end for




Main Theorem: PSGD

Let f be a Lipschitz-continuous function with Lipschitz gradient and hessian. Let the noise in function-
value/gradient is sub-gaussian. Then under SGC, for PSGD algorithm: [P

a) First-order: with probability at least 1 — §, total first-order oracle calls to reach e-local minimizer are,
0(e72).

b) Zeroth-order: total corresponding zeroth-order calls are | 0(d'®e *?).
c) Zeroth-order (Without SGC): total corresponding zeroth-order calls are 5(d1'5€_5'5).
With SGC : .
Algorithm (This paper) Without SGC Deterministic
Z0 HO Z0 HO HO
} _ - ;| ;)
Perturbed || @ (d15e=45)||| & (e—2) O (d1-5¢-5-5) O (™) O (™)
GD This paper This paper This paper (ING*19' (IGN+17

F(O: +vue i, &i) — F(0r,&4)

gti =

v

)

a — sub exponential

Worse concentration around Vf(6)




Proof Outline

YES

INZACHI PR

NO

Function descends as fast
as the deterministic case*

(* Deterministic = when we know
true Vf(6,) instead of VF(6,,&) )

Amin(V?f(60)) < —\[Ly€?

YES

Coupling argument to show that either the
function descends or the sequence of iterates are
stuck around the saddle point

- y I B -
e shown that the stuck region is narrow =~ N
( enough so that the iterates escape the = = =
S e saddle points with high probability i
~ o - _ - -

s el .
- - = il

NO

e-Local Minima

Constant variance = following negative
curvature difficult.
SGC = variance is of the order of

IVF(0.1I3 ~ €
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So far...

O [MBB18] introduced the interpolation condition for over-parametrized models and analyzed SGD for convex
functions

O [VBS18] introduced SGC and analyzed for non-convex functions but considers stationary points only
[ Stationary points not enough in many applications but local-minima are

O We show faster convergence rate (matching deterministic) for PSGD to reach e-local minima under SGC

Next...What happens for second-order methods?



Second-order Methods

 Second-order methods (uses hessian) have better convergence rate in the deterministic case
Q Second-order oracle: Outputs an estimate V2F (8, ¢) such that E[V2F(0,¢&)] = V*f(0)

O Cubic-regularized Newton Method.



Cubic-regularized Newton (CRN) Algorithm

Input: 6, € R, T, M, nq, no
fort =1to7 do
Set g; = % >it1 gt where

gr.i = VF (6, Etc’l) (First-order)
gti = F6. + Vugi’ 55) — F® ftGZ) uIG (Zeroth-order)
Set H; = % >, Hyi where
H;; = V°F (6, ftHL) (Second-order)
Ho = F(0: + vurly, &%) + F(QSV_Q vug, &) = 2F (00, &%) (uffzufflT B I) (Zeroth-order)

where ufi[H] ~N0I)Vt=1,2,--- T, i=1,2,--- ,nq[ns]

Update Can be efficiently solved
0,1 = argminme (0, 2, o, Hy, M), by Gradient Descent
: [CD16]
where
- T 1 T M 3
mi(z) = f(0r) + (2 — 0) g: + 5(2’ —0) Hi(z—0;) + EHZ — O]
end for
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Main Theorem: CRN

Let f be a function with Lipschitz-gradient and hessian. Then under SGC, for CRN algorithm, we have:

a) Higher-order: choosing T, n{,n,, M appropriately, we get an e-local minima

. 1
Total first-, and second-order oracle calls O (E) >

b) Zeroth-order: choosing parameters appropriately, we get,|total first-order oracle calls O(de‘z'S), and second-order

oracle calls O(d*logd e 2°).

With SGC

Algorithm (This paper) Without SGC Deterministic
Z0 FO+SO Z0 _HO FO+SO
Perturbed | O (d1-5¢—45) | O (e—2) O (d1-5¢—5-5) O () O (e7?)
GD This paper This paper This paper (ING*19° (IGN+17
Cubic | |® (a4e—25)| | [0 (c—25) | O(d'€?°) +0(de?%) | O(e72%) | O(e)
Newton This paper This paper IBG18] ITSJ+18] INP06|

Table 1. Oracle complexities of PSGD and SCRN. ZO corresponds to number of calls to zeroth-order oracle and FO+SO corresponds to number
of calls to first or second-order oracles. The result for PSGD and SCRN are given respectively in high-probability and in expectation.



Cubic-regularized Newton (CRN) Algorithm

Input: 6, € R, T, M, nq, no
fort =1to7 do
Set g; = n% > gr.i where

—
: gr.i = VF (6, fff ) (First-order) :
F(O; +vul,, €5 — F (04, £C,
: gti = (6 L ft’ ) (6 gt’ ) & (Zeroth-order) :
| / > i :
Set H, = n% >, Hyi where
T Tere T A T Nosacee
' PO, + vull, €Y + F(0, — vult ell) — 2F(0,, ¢ , . 1 | — condition
: Hy; = AR 52 - ’ ( tilly;  — I) (Zeroth-order) : here

Whereuf[H] ~NO0,Iy)Vt=1,2,--- T,i=1,2,--- ny[no

1

Update
0y 1 = argminmy (04, 2, g, Hy, M) |
where
me(2) = f(0r) + (2 = 00) g+ 5(2 = 00) He(z = 0¢) + [z = O
end for
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