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Archetypal Analysis
Archetypal Analysis is an unsupervised learning method that uses a convex polytope to
summarize multivariate data.

Given k ∈ N and data XN = {xi}i∈[N] ⊂ Rd .

Find a cardinality k pointset
A = {a`}`∈[k] ⊂ Rd that solves

min
A⊂co(XN)

F(A)

where F(A)2 = 1
N

∑N
i=1 d2(xi, co(A)).

We refer to points in A? as archetype points and
co(A?) as the archetype polytope.

 

xcd.tnn A

Archetypal analysis with k = 3 and d = 2.
Data points (blue) are projected onto the convex
hull (red).

I Archetypal analysis was proposed in [Cutler and Breiman, Technometrics, 1994], where
they proved:
(i) If k = 1, then the archetype point is the mean of the data, XN .
(ii) For 1 < k < N, there exists an archetype pointset, A = {a`}`∈[k] and furthermore,
there exists an archetype pointset on the boundary of co(XN).
(iii) Finally for k ≥ N, the archetype pointset is given by A = XN , with value F(A) = 0.

I They demonstrated that archetypal analysis can be reformulated as a nonlinear least
squares problem and efficiently solved using an alternating minimization algorithm.

I Archetypal analysis is also sometimes referred to as principal convex hull analysis,
although we don’t use this language here.
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Algebraic formulation of archetypal analysis

Given k ∈ N and data XN = {xi}i∈[N] ⊂ Rd .

Geometric formulation. Find a pointset A ∈ {co(XN)}k that solves

min
A∈{co(XN)}k

1
N

N∑
i=1

d2(xi, co(A))

Algebraic formulation. Write X = [x1, · · · , xN ] ∈ Rd×N . We can rewrite AA as the
non-negative matrix factorization problem,

min
A∈RN×k,B∈Rk×N

1
N
‖X− XAB‖2

F

s.t. A,B ≥ 0, AT 1 = 1, BT 1 = 1,

Here:
I the columns of XA ∈ Rd×k ∈ are the k archetype points and
I the columns of XAB ∈ Rd×N are the projection of the data points onto co(A).
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Comparison to other unsupervised learning methods
Given k ∈ N and XN = {xi}i∈[N] ⊂ Rd .

I Archetypal Analysis [extreme patterns]:

min
A∈{co(XN)}k

1
N

∑
i∈[N]

d2(xi, co(A)) ⇐⇒ min
A∈RN×k, B∈Rk×N

A,B≥0, AT 1=1, BT 1=1

1
N
‖X− XAB‖2

F

I K-Means [clustering]:

min
A∈{Rd}k

1
N

∑
i∈[N]

d2(xi,A).

I Principal Component Analysis (PCA) [dimensionality reduction]:

max
V∈Gr(k,d)

‖Cov(ProjV(XN))‖2
F ⇐⇒ min

U∈RN×k

UtU=I

‖X− XUUt‖2
F

Further comparison to other matrix factorization and clustering methods can be found in
[Mørup and Hansen, Neurocomputing, 2012].
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Example: Covid-19 pandemic in the US
There are 51 data points1 (50 states + D.C.), each corresponding to a time series of the (average)
positivity rates. The positivity rate on a day is calculated using the following formula:

Positivity rate =
Total # of positive cases by the day

Total # of tests by the day
× 100%.

The average positivity rate is taken as the 7-day moving average of positivity rates. The time
range is between May 20 and Sep 20, 2020.
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(Left) Visualization of average positivity rates in 50 states + D.C. from May 20 to Sep 20.
(Right) Variances explained by the first five PCs of the dataset.

1https://covidtracking.com/data/api.
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Example: Covid-19 pandemic in the US
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Archetype ● 1 2 3

(Left) Archetypal analysis (k = 3) applied to the reduced data representations under the first
two PCs. The archetypes (red circles) are compared to the centers (green triangles) given by
k-means.
(Right) Visualization of the AA coefficients of the projected reduced data points with respect to
three archetypes.
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Example: Covid-19 pandemic in the US
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Positivity rate curves of the states near three archetypes:

1. red dashed curves (First outbreak, steadily declining),

2. blue solid curves (Second outbreak, growing and gradually stabilizing) and

3. orange dotted curves (Consistently low-positivity rates).
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Consistency

Typically, a consistency result for an estimate has the following components:

I A statistical assumption on the generation of data.

I A mathematical object identified under the assumption.

I A statement of how the estimate converges to the object as the sample size tends to
infinity, i.e., a notion of convergence.

I If possible, an upper bound for the convergence rate.
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Related Results

A selection of consistency results concerning unsupervised learning:

I K-Means Clustering: [Pollard, AOS, 1981; Pollard, AOP, 1982; Sun et al., EJS, 2012].

I PCA: Small dimension/large sample [Girshick, AOS, 1939]. Large dimension/fixed
sample [Jung and Marron, AOS, 2009]. Large dimension/large sample (under the random
matrix setup) [Baik et al., AOP, 2005; Baik et al., J. Multivar. Anal, 2006].

I Spectral Clustering: Diffusion dynamics [Coifman and Lafon, ACHA, 2005; Berry and
Sauer, ACHA, 2015]. Partitioning [Luxburg et al., AOS, 2008; Garcia Trillos et al., JMLR,
2016; Garcia Trillos et al., ACHA, 2018, Osting and Reeb, SIMA, 2017].

I PageRank: [Yuan, Calder and Osting, EJAM, 2021].
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Consistency of Archetypal Analysis
Suppose that x1, x2, . . . are independently sampled from the probability measure µ and denote
the first N points by XN = {xi}i∈[N].

For each N, let AN denote the optimal solution to the AA problem

min
A∈{co(XN)}k

F(A).

Is there a set A (depending on µ), such that AN → A as N →∞ in some sense?

To identify the limiting problem, it is useful to write

F(A)2 =
1
N

N∑
i=1

d2(xi, co(A))

=

∫
Rd

d2(x, co(A)) dµN(x).

where µN(x) = 1
N

∑
i∈[N] δxi (x) is the emperical measure associated with the data XN .

Since µN ⇀ µ as N →∞, It is natural to consider as a limiting problem

min
A∈{co(supp(µ))}k

Fµ(A)

where Fµ(A)2 =
∫
Rd d2(x, co(A)) dµ(x).

10/ 20



Consistency of AA: Bounded Support

Theorem (O., Wang, Xu, Zosso, 2021)

Fix k ∈ N. Let µ be a probability measure on Rd with compact support and a density. Suppose

XN := {xi}i∈[N]
iid∼ µ. Then,

I For each N, the AA problem has at least one solution AN .
I AN → A? (along a subsequence) in the Hausdorff distance, where

A? ∈ arg min
A∈{co(supp(µ))}k

Fµ(A), Fµ(A) =

[∫
Rd

d2(x,A) dµ(x)

]1/2

.

I If supp(µ) is convex, then for large N, with probability at least 1− N−2,

Fµ(AN)− Fµ(A?) .

(
log N

N

)1/d

.
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Consistency of AA: Bounded Support

Proof Sketch

I Continuity + Compactness⇒ Existence of minimizers.

I Compactness + Triangle Inequality⇒ Consistency.

I Random Geometry + Dudley’s Inequality⇒ Convergence rate.

Remarks

I Compactness is necessary for the problem to make sense.

I Minimizers are not unique in general.

For example, when d = 2, k ≥ 3 and µ is the uniform distribution on the unit disk, the
solutions are the regular k-gons inscribed in the disk.

I The convexity assumption can be relaxed [Brunel, Bernoulli, 2019].

12/ 20



Consistency of AA: Unbounded Support

We now consider the consistency problem when the probability measure, µ, has non-compact
support. Here we have that co(X1) ⊆ co(X2) ⊆ · · · and co(XN) is a.s. unbounded as N →∞.

In this case, it is clear that there can be no limiting problem for the archetype pointset AN as
N →∞; the problem, as stated, is inconsistent.

Consequently, we must modify AA to obtain a consistency result.

Modification: Introduce a variance regularization term to prevent dispersion of the archetypes:

Fν,α(A) =
1
N

∑
i∈[N]

d2(xi, co(A)) +
α

k

∑
`∈[k]

‖a` − ā‖2
2,

where ā is the mean of {a`}`∈[k] and α > 0 is fixed.

We refer to this modified problem as variance-regularized Archetypal Analysis.
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Consistency of AA: Unbounded Support

Theorem (O., Wang, Xu, Zosso, 2021)
Fix k ∈ N. Let µ be a square-integrable probability measure on Rd . Suppose

XN := {xi}i∈[N]
iid∼ µ. Then,

I For each N, the variance-regularized AA problem has at least one solution A(α)
N .

I Moreover, suppose that µ-a.s., for any r > 0, there exists some Nr ∈ N such that
B(r) ⊂ co(XN) for N > Nr .
Then A(α)

N → A(α)
? (up to a subsequence) in the Hausdorff distance, where

A(α)
? ∈ arg min

A∈{co(supp(µ))}k

Fµ(A)2 +
α

k

∑
`∈[k]

‖a` − ā‖2
2

1/2

, ā =
1
k

∑
`∈[k]

a`.

I For large α,

max
a∈A(α)

?

‖a− x̄‖2 . α−1/4, x̄ =

∫
Rd

x dµ(x).
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Computing approximate solutions to AA

Let X = [x1, · · · , xN ] ∈ Rd×N . We can rewrite AA as a non-negative matrix factorization
problem:

min
A∈RN×k,B∈Rk×N

1
N
‖X− XAB‖2

F

s.t. A,B ≥ 0, AT 1 = 1, BT 1 = 1,

which can be approximately solved via alternating minimization:

1: InitializeA and set Z = XA
2: while Not Converged do
3:

B ← argmin
B∈Rk×N

1
N
‖X− ZB‖2

F, s.t. B ≥ 0, BT 1 = 1.

A ← argmin
A∈RN×k

1
N
‖X− XAB‖2

F, s.t. A ≥ 0, AT 1 = 1.

4: end while

After applying a Gauss-Seidel strategy and reformulating the second problem, both
subproblems can be seen as constrained least squares problems where the (convex) constraint
set is the unit simplex. These are efficiently solved using a projected gradient descent method.
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Numerical Simulations: Consistency

Figure: AA applied to a dataset independently sampled from a uniform distribution on the unit disk in R2, as
opposed to the theoretic solutions (inscribed equilateral triangles).
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Numerical Simulations: Dependence on regularization parameter, α
Variance-regularized Archetypal Analysis:

Objective function:
1
N

∑
i∈[N]

d2(xi, co(A)) +
α

k

∑
`∈[k]

‖a` − ā‖2
2,

where ā is the mean of {a`}`∈[k] and α > 0 is fixed.

Figure: Variance-regularized AA applied to a dataset with increasing parameter α. The x-axis is the
parameter α, and the y-axis is the area of the convex hull of the archetypes.
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Discussion
I For bounded distributions, we identified a continuum problem of archetypal analysis and

established a consistency result including the convergence rate.
I For unbounded distributions, we introduced a variance-regularized problem and

established a consistency result. We also investigated how the solutions depend on the
regularization parameter.

Future directions:
I Consider the modified Archetypal Analysis by replacing the objective function by

F(A) = W2(µN , |A|−1IAdx), where W2 is the 2-Wasserstein distance.

I Investigate deep archetypal analysis [van Dijk et. al, CoRR, 2019; Keller et al., Pattern
Recognition, 2019; Keller et al., Arxiv., 2020].

Thanks! Questions? Email: osting@math.utah.edu
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Future direction: Wasserstein metric-based Archetypal Analysis
— joint work with Katy Craig, Dong Wang, and Yiming Xu

Given a probability measure µ ∈ P(Rd) and an integer k ≥ d + 1, we consider

Ω∗ = min
Ω∈Sk

W2

(
µ, |Ω|−1IΩdx

)
,

where W2 denotes the 2-Wasserstein metric, 1
|Ω| 1Ω denotes the uniform distribution on Ω, and

Sk = {Ω ⊂ Rd : Ω is a convex polytope with at most k vertices and nonempty interior}.

I Note: it is no longer necessary to require that Ω ⊂ co(supp(µ))
I This problem can be solved in small dimensions by reformulating it as a semi-discrete

optimal transport problem
I We expect (and empirically observe) that this problem is less sensitive to outliers. In the

examples below, the archetypal triangle for the Wasserstein metric (blue and black) are
less sensitive to outliers than the archetypal triangle for the Euclidean metric (red).
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Future direction: deep archetypal analysis
— joint work with Lam Nguyen, Darshan Shimpi, Tanner Sims, Grace Siu,

RK Yoon, Rich Medina

I Here, an autoencoder is designed so that
the encoded points (in the latent space) lie
within a (fixed) archetypal polytope.

I This reduces the dimension of the data
while provides more interpretability of the
encoding.

I SRI undergraduate student project
I Beginning to use these tools to create

interpretable latent spaces for
automatically studying online hate speech.

Example: A selection of archetype points from
a 53 dimensional latent space for the Celeb A
dataset.
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