data science and science with data

Brice Ménard

Johns Hopkins University Ecole Normale Supérieure

(Gibbs, 1881)

"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."

Scientific disciplines & complexity

ordered

stochasticity, temperature

disordered

high

level of controlled variation

experiment

scientific datasets surveys

open collection

low

Model testing / parameter inference

experiment

scientific datasets

surveys

high

calibration, control of systematics

open collection

level of controlled variation

low

(Gibbs, 1881)

If a system corresponds to a ensemble of states $x = (x_1, \dots, x_N)$, we want to characterize P(x)

For some constraints $\langle \theta_i(x) \rangle = 0$, the Maximum Entropy Principle gives

"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."

$$\log P_{\theta}(x) = \sum_{j} \lambda_{j} \theta_{j}(x) + \text{cst}$$

Interacting with data

analysis

statistical description

synthesis

- keep the informative variation
- discard the irrelevant one
- stable
- compact - communicable -
 - interpretable (key properties in science)

Synthesis — generation of data with similar texture

1,000 10 100

100,000 1 million externally trained

10,000

Synthesis — generation of data with similar texture

100 1,000 10

scattering transform

power spectrum

100,000 1 million externally trained

10,000

phase harmonic transform

Convolutional neural network

scattering covariance

data

DECaLS survey legacysurvey.com

residuals model

RA,Dec = 244.1404, 6.9982, zoom 13

SDSS images SFD dust map Halpha map unWISE W1/W2 Sources Bricks

- CCDs
- Exposures
- NGC
- Spectra

DECaLS survey legacysurvey.com

data

residuals model RA,Dec = 244.1267, 7.0246, zoom 13 • DECaLS DR1 models SDSS images SFD dust map Halpha map unWISE W1/W2 Sources Bricks CCDs Exposures NGC Spectra SDSS Spectro Plates

model residuals

0

RA,Dec = 244.1433, 7.0874, zoom 13

• DECaLS DR1 residuals SDSS images SFD dust map Halpha map ○ unWISE W1/W2 Sources Bricks CCDs Exposures

- NGC
- Spectra

•*

SDSS Spectro Plates

data

catalog of objects

brightness position size ellipticity colors

• • •

model

10,000

Cosmology

What is the texture of the Universe?

density? amplitude of fluctuations? rate of expansion?

 \rightarrow the cosmological parameters

100,000 1 million

stationary fields or texture

10	100	1,000

10,000 100,000 1 million

Power spectrum

P(k) properties:

- Conservation of energy
- Separation of scales
- All information extracted if Gaussian random field

1D power spectrum

seismogram

3D power spectrum in cosmology

> the gravitational potential energy (per unit volume)

$$W = -\frac{3\Omega_{\rm m}H_0^2}{8\pi^2 a} \int_0^\infty {\rm d}k \ P(k,a)$$

The limitations of moment-based approaches

 $P(k) = \langle |I_0 * e^{ikx}|^2 \rangle$

Higher-order statistics

 $B(k_1, k_2, k_3) = \langle (I_0 * e^{ik_1x}) (I_0 * e^{ik_2x}) (I_0 * e^{ik_3x}) \rangle$

High-order moments amplify the tail: $\langle x \rangle$, $\langle x^2 \rangle$, $\langle x^3 \rangle$,...

motivated by physics, perturbation theory but too limited and unstable

100

power spectrum

10

bispectrum

scattering transform

1,000

driven by performance on complex tasks but "black boxes"

10,000 100,000

scattering covariance phase harmonic transform

neural network

motivated by physics, perturbation theory but too limited and unstable

power spectrum bispectrum

scattering transform

motivated by the mathematics of neural networks

driven by performance on complex tasks but "black boxes"

10,000 1 million 100,000

scattering covariance

phase harmonic transform

Convolutional neural network

How to design a mathematical network?

kernels learned in AlexNet

(Krizhevsky, Sutskever, & Hinton 2012)

Fourier representation

Let's organize them

\rightarrow Gabor wavelets $\psi(x)$

Gaussians

\rightarrow family of scaled & rotated Gaussians $\tilde{\psi}(k)$

Scattering transform

Mallat 2012

 $S_1(k_1) = \langle |I \star \psi| \rangle$ $S_2(k_1, k_2) = \langle ||I^* \psi_{k_1}|^* \psi_{k_2}| \rangle$

• • •

Properties:

- The filters are not learned
- Invariant to translation (+rotation)
- Stable to deformations
- Preserves energy
- Contracting

What can it do for scientific data analyses?

 $S_n(k_1, ..., k_n) = \langle || |I^* \psi_{k_1}|^* \psi_{k_2} |...^* \psi_{k_n}| \rangle$

Bruna & Mallat 2013

texture classification

Sifre & Mallat 2013

- synthesis
- parameter inference
- exploratory data analysis

Syntheses with 2nd order scattering transform (+ min,max values)

\rightarrow for many physical fields, it captures most of the information

Cheng & Ménard, 2021

Parameter inference in cosmology — the texture of the Universe

Simulated weak lensing mass maps

512 weak lensing maps x 100 cosmologies

from the Columbia Univ. lensing group. See Matilla Zorrilla et al. 2016, Gupta et al. 2018

Scattering coefficients vs. power spectrum

Scattering coefficients vs. bispectrum

Scattering transform performance with noise

noise level

How many coefficients were used?

P(*k*): 20

scattering transform: 37

CNN: millions

Cheng & BM, 2021

Scattering transform: interpretability

structure sparsity $s_{21} \equiv S_2 / S_1$

structure shape $s_{22} \equiv S_2^{\parallel} / S_2^{\perp}$

How many coefficients were used?

P(*k*): 20

scattering transform: 37

CNN: millions

Cheng & BM, 2021

CNN analysis by Prochaska, Cornillon, Reiman (2021)

arranged by scattering coefficients

feature sparsity s_{21}

Cheng & BM, 2021

arranged by scattering coefficients

feature sparsity s_{21}

Cheng & BM, 2021

Exploratory data analysis: objects

image credit: Sloan Digital Sky Survey

a analysis: objects

elliptical galaxies

arranged by scattering coefficients

"mathematical" neural networks

texture classification synthesis of physical fields parameter inference exploratory data analysis

scattering transform

scattering covariance

A guide to the Scattering Transform Cheng & Ménard (2021) arXiv:2112.01288

10,000

100,000

phase harmonic transform

1 million

What limits the scattering transform? $\langle ||I^*\psi_{k_1}|^*\psi_{k_2}|\rangle$ ky

k_x

Allys et al. 2020

scattering covariance estimates

Cheng, Allys, Morel, et al. (in prep)

phase harmonic transform

original

with ~6,000 coefficients measured from 30 simulations

phase harmonic with spatial shifts

original

synthesized

Brochard & N (submitted)

with 30k to 300k coefficients

In some cases, dimensionality reduction may provide us with a compact description

Vallat	t
--------	---

"mathematical" neural networks: how to use them?

For scientific data analysis, one wants to

- maximize expressivity
- minimize the number of parameters

\rightarrow there is a sweet spot somewhere

These transforms are data agnostic. To be generic, they produce a lot of coefficients

\rightarrow dimensionality reductions may compactify the description

phase harmonic transforms

CNNs

Key points

• We now have a range of statistical estimators for stationary fields

10	100	1,000	10,000	100,000	millio
moment-based mathematical netw			vorks	trained n	eural netw

For scientific analyses, we want to - maximize expressivity

• A class of systems appear to exhibit unbounded intrinsic complexity. Their summary statistics/models can be arbitrarily large and beyond human scale. Do they still fall within the scope of Science?

- minimize the number of parameters

