data science and science with data

Brice Ménard
Johns Hopkins University
Ecole Normale Supérieure
"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."

Scientific disciplines \& complexity

ordered
disordered
stochasticity, temperature

experiment

scientific datasets surveys

open collection

experiment
scientific datasets surveys
open collection

"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."
(Gibbs, 1881)

If a system corresponds to a ensemble of states $x=\left(x_{1}, \ldots, x_{N}\right)$, we want to characterize $P(x)$

For some constraints $\left\langle\theta_{j}(x)\right\rangle=0$, the Maximum Entropy Principle gives

$$
\log P_{\theta}(x)=\sum_{j} \lambda_{j} \theta_{j}(x)+\mathrm{cst}
$$

Interacting with data

analysis
synthesis

statistical description

- keep the informative variation
- discard the irrelevant one
- stable
- compact

Synthesis - generation of data with similar texture

$10 \quad 100$

externally trained

Synthesis - generation of data with similar texture

10	100	1,000	10,000		100,000	
						million

model
residuals
RA,Dec $=244.1433,7.0874$, zoom 13

data

stationary fields or texture

| 10 | 100 | 1,000 | 10,000 | 100,000 | 1 million |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Power spectrum

Let's pick a frequency $\left.\vec{k}_{1} \quad P\left(k_{1}\right)=\left.\langle | I_{0} * \mathrm{e}^{i k_{1} x}\right|^{2}\right\rangle$

- Conservation of energy
- Separation of scales
- All information extracted if Gaussian random field

1D power spectrum

seismogram

3D power spectrum in cosmology

> the gravitational potential energy (per unit volume)

$$
W=-\frac{3 \Omega_{\mathrm{m}} H_{0}^{2}}{8 \pi^{2} a} \int_{0}^{\infty} \mathrm{d} k P(k, a)
$$

The limitations of moment-based approaches

$$
\begin{aligned}
& \text { Power spectrum } \\
& \left.\qquad P(k)=\left.\langle | I_{0} * \mathrm{e}^{i k x}\right|^{2}\right\rangle
\end{aligned}
$$

Higher-order statistics
$B\left(k_{1}, k_{2}, k_{3}\right)=\left\langle\left(I_{0} * \mathrm{e}^{i k_{1} x}\right)\left(I_{0} * \mathrm{e}^{i k_{2} x}\right)\left(I_{0} * \mathrm{e}^{i k_{3} x}\right)\right\rangle$

High-order moments amplify the tail: $\langle x\rangle,\left\langle x^{2}\right\rangle,\left\langle x^{3}\right\rangle, \ldots$

scattering
covariance

phase harmonic
Convolutional neural network
motivated by physics, perturbation theory but too limited and unstable
motivated by the mathematics of neural networks
driven by performance on complex tasks but "black boxes"

bispectrum
scattering transform

scattering covariance

phase harmonic transform Convolutional neural network

How to design a mathematical network?

kernels learned in AlexNet

Let's organize them

\rightarrow Gabor wavelets $\psi(x)$
(Krizhevsky, Sutskever, \& Hinton 2012)

Fourier representation

\rightarrow family of scaled \& rotated Gaussians $\tilde{\psi}(k)$

Power spectrum vs scattering transform

power spectrum

scattering transform
modulus

$$
I_{1} \equiv\left|I_{0} \star \psi_{1}\right|\langle\cdot\rangle=S_{1}(k)
$$

Scattering transform

Mallat 2012

$$
\begin{aligned}
& S_{2}\left(k_{1}, k_{2}\right)=\langle |\left|I^{*} \psi_{\mathrm{k}_{1}}\right| * \psi_{\mathrm{k}_{2}}| \rangle \\
& \ldots \\
& S_{n}\left(k_{1}, \ldots, k_{n}\right)=\langle || | I^{*} \psi_{\mathrm{k}_{1}}\left|* \psi_{\mathrm{k}_{2}}\right| \ldots * \psi_{\mathrm{k}_{\mathrm{n}}}| \rangle
\end{aligned}
$$

Properties:

- The filters are not learned
- Invariant to translation (+rotation)
- Stable to deformations
- Preserves energy
- Contracting

MNIST classification 3421956218 8912500664 6701636370 3779466182 2934398725 1598365723 9319158084 5626858899 3)70948543 7964706923
texture classification

Sifre \& Mallat 2013

- synthesis

What can it do for scientific data analyses?

- parameter inference
- exploratory data analysis

Syntheses with $2^{\text {nd }}$ order scattering transform (+ min,max values)

\rightarrow for many physical fields, it captures most of the information

Parameter inference in cosmology - the texture of the Universe

\rightarrow
σ_{8}, Ω_{m}

	$\left(\begin{array}{c}x_{1}, y_{1}, \epsilon_{1} \\ x_{2}, y_{2}, \epsilon_{2} \\ x_{3}, y_{3}, \epsilon_{3} \\ x_{4}, y_{4}, \epsilon_{4} \\ , \ldots\end{array}\right)$

Simulated weak lensing mass maps

512 weak lensing maps $\times 100$ cosmologies

Scattering coefficients vs. power spectrum

Scattering coefficients vs. bispectrum

Scattering transform performance with noise

Scattering transform: interpretability

How many coefficients were used?

$$
P(k): 20
$$

structure sparsity $s_{21} \equiv S_{2} / S_{1}$
scattering transform: 37
CNN: millions

Exploratory data analysis

Exploratory data analysis

Sea Surface Temperature [deg C]
CNN analysis by Prochaska, Cornillon, Reiman (2021)

Exploratory data analysis

arranged by scattering coefficients

feature sparsity s_{21}

Exploratory data analysis

arranged by scattering coefficients

feature sparsity s_{21}

Exploratory data analysis: objects

Exploratory data analysis: objects
arranged by scattering coefficients

"mathematical" neural networks

texture classification
synthesis of physical fields
parameter inference
exploratory data analysis

10
100,000
1 million
scattering transform

A guide to the Scattering Transform
Cheng \& Ménard (2021) arXiv:2112.01288
Cheng \& Menard (2021) arXiv:2112.01288

phase harmonic transform

What limits the scattering transform?
phase harmonic transform

$$
\operatorname{covar}\left(\left[I \star \psi_{1}\right]^{p},\left[I \star \psi_{2}\right]^{\mathrm{q}}\right)
$$

scattering covariance estimates

phase harmonic transform
original

with ~6,000 coefficients measured from 30 simulations
phase harmonic with spatial shifts

Brochard \& Mallat (submitted)
with 30 k to 300 k coefficients
In some cases, dimensionality reduction may provide us with a compact description

"mathematical" neural networks: how to use them?

For scientific data analysis, one wants to

- maximize expressivity
- minimize the number of parameters
\rightarrow there is a sweet spot somewhere

These transforms are data agnostic.
To be generic, they produce a lot of coefficients
\rightarrow dimensionality reductions may compactify the description

On interpretability and the limits of science

interpretable

10	100	1,000	10,000	100,000	1 million

Key points

- We now have a range of statistical estimators for stationary fields

| 10 | 100 | 1,000 | 10,000 | 100,000 |
| :---: | :---: | :---: | :---: | :---: | million

- For scientific analyses, we want to - maximize expressivity
- minimize the number of parameters
- A class of systems appear to exhibit unbounded intrinsic complexity. Their summary statistics/models can be arbitrarily large and beyond human scale. Do they still fall within the scope of Science?

