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2D into 3D (Depth from focus)

3D localization by
scanning sequence of
2D images
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2D into 3D (Depth from defocus)

0 Our approach:
- Modify the camera optical system

- Engineer PSF to obtain 3D info from ONE 2D snapshot

-
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Background

Microscopy problem:
obtaining 3D structures of live
cells by single molecule
localization

Space safety problem:
detecting and quantifying space
junk

Credit to [ww.extremetechAcom]

‘ Credit to [G. Grover et al. 2012]
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Telescope System for Space Debris Localization
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@ Proposed in [Prasad 2013]
@ Space based system for tracking debris - funded by US AFOSR
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Conventional PSFs when imaging a point source

ll

+24 rad +16 rad +8 rad

_

Cha nging Defocus >

-

pelQ

-16 rad -8 rad

« Excellent in-focus 2D resolution (Rayleigh limit)
= High blur with increasing defocus — terrible 3D resolution/sensitivity!
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Single Lobe (SL) point source images using engineered
spiral phase mask
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Changing Axial Depth

-16 rad -8 rad

-24 rad

O/

+ One full rotation over A (defocus) = 2Mn radians (DOF ~ = M A/NA? )
+ Single-lobe PSF with relatively stable shape/size
+ High 3D image capture/reconstruction sensitivity even at low-light levels
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Phase masks other than SL can enable PSF rotation

(a) )
1
tandard Gaussian PSF
z (um)_-0.
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0 27[ l
Phase masks rPSF with different depth

Credit to [Shuang, ..., Landes 2016]

Figure: (a): Some other kinds of phase masks & rotating PSFs, (b):
images correspond to one point source in different depth positions.
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Physics Model of SL Rotating PSF

oz

Fourier Optics Formula for rPSF

2

Ac(s) = % '/ P(u)exp [L(zm. s Cu — 1/1(u))] du

lo

o Defocus parameter:

7T(SZR2 f

= S hlo+02)’ “

P(s) = Ips when /(T —1)/L<s<+/I/L, =1, L

P is a pupil function and ¢ = /—1.

(s, ¢s) is the polar coordinate of normalized position.
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Physics Model of SL Rotating PSF

o The observed 2D image
P
? 3 i (A O i) + N

e N is noise, P is the number of point sources,

* (6(z,y))uw = {17 (wv) = (z,9)

0, other

E¢> e 3D information: (— 2K, — 754 lo + 0z;)

o <@
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Discretization

/ Discretization N

] @ Order the slices of
E> . A A such that the
last slice is
corresponding to

o @ rPSF when

| x,y,0z =0.
[
@ We need to do 3D

convolution A x X

7—’
& @ =
6z # 0,
N
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Forward model with 2 point sources

forward model

The 2D observed image G € R™*" can be represented as

G = N(T(Ax* X))
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Optimization Problem

lo model

min | X0
X
st. D(T(Ax X)) <e,

@ To find the locations and values the the true point sources is a sparse
recovery problem.

@ Gaussian noise case
e /o model:

mn
st. [[T(A*X)+ bl — Gl <e,

e /g regularization model:

1
min 3 IT(A% X) + b1 = GIE + | ¥,
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Gaussian noise case

Continuous Exact ¢y algorithm (CELO) applied on rPSF:
o1
min o[ T(A*X) - G|F + PceLo(X).

where

P

dcrLo(X) =D d(llaill, A, X),

i=1

2 vaa
Au) = — — — 1 s
(a2 u) 2 (M= {22y

1 _J1 ifuekE
{v€E} = 10 others.

@ Global minimizers of £y model are contained in the global minimizers of CELO;
@ A transformation on a minimizer of CELO model will get a minimizer of £y model;

@ CELO can avoid some local minimizers of g model.

C. Wang, et al. IPIP 2018 (Springer).
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Poisson Noise Case

Data Fitting Term

@ Gaussian noise model:

1
E”T(A * X)+ bl — G|

4

@ Poisson noise model:

DKL(T(A * X) + b]., G),

@ The uniform background is denoted by b and 1 is a matrix
with all entries 1.
@ Dy (T(AxX)+ bl,G) can be rewritten as

(1, T(A % X)G log(T (A X) + bl)).
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Poisson Noise Model Optimization Problem

Optimization Problem

min Dy (T(A* X) + b1, G) + pR(X).

@ We choose R(X) to be a nonconvex and nondifferentiable

function
m,n,d
1l |Xuk’
R(X) = _
0 i;I 2+ | X
’J7 -

where the tensor X' is m x n x d and a is fixed and
determines the degree of nonconvexity.



Minimization Problem: KL-NC

The minimization problem (KL-NC) is

m,n,d
. ’Uk’
min § (L, T(Ax X) = GIn(T (A X) + b1)) + p Jzk:la+|xuk|

Iteratively reweighted ¢; algorithm (IRL1)

I _ au P
wi = E—, Vij, k
{ b=y

T m,n,d
A = arg min {(1, T(Ax X) — Glog(T(A*X) + b1)) + m"d Wg.k|x,-jk|}
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Post-processing: Removing False Positive

@ Computing the centroid of clustered point sources

Z:(i,j,k)ec "X"J'k_ o Z(i,j,k)ecjxlik_ L Z(i,j,k)ec k Xiji

X==""""5 " Y ; = :
Z(i,j,k)ec X Z(i,jA,k)eC Xjj Z(i,j,k)eC Xijic

@ Searching neighbor from the brightest point source

@ Setting a tolerant distance that for distinguishing one point
source
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Fixed Point lterative Scheme for Estimating the Flux

@ Based on data fitting term: VD (Hf + bl,g) =0

Fixed Point Iterative Scheme
T = fo + K(Ff"), n=1,2,--- (1)

where

*Ze Hf+b1— g) e/ Hf
- T(HF + b1)

i
i=1

and e; is the i-th canonical basis unit vector. Here

H* = (HTH)"'HT, fg = H*(g — bl) and

H =T[hy,hy,---  hp] € RX*P is a system PSF matrix based on

the estimated 3D locations .
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Our Overall Process for 3D Point Source Localizations

@ Solve the minimization problem, KL-NC, using iteratively
reweighted ¢; algorithm;

@ Post Processing for removing false positives, using a
centroid method;

@ Estimate the flux values of the point sources, using a fixed
point iterative scheme.
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Experimental Setup for Poisson Noise Case

Consider different density cases:the number of point sources
simulated in one image plane is 5, 10, 15, 30 and
40,respectively

Randomly generate 50 different distributions of point sources
for each case

@ The number of photons emitted by each point source follows
a Poisson distribution with mean of 2000 photons

Fixed background b =5

Evaluation criteria: Recall rate & Precision rate
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Localization for Low Density Case

(a) Observed image  (b) Original image

(c) Ground truth "0”, estimate " 4"
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Localization for Higher Density Case with Overlaps

(c) Observed image  (d) Original image

(c) Ground truth "0”, estimate " 4"
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Comparison in Other Algorithms

Table: Comparison of KL-NC with KL-{1, #>-¢1 and £>-NC. All the results
are after performing post-processing.

011 7,-NC KL-7; KL-NC

No. Recall Prec. Recall Prec. Recall Prec. Recall Prec.
5 100.00% 68.41% | 97.20% 87.95% | 98.53% 58.67% | 100.00% 93.71%
10 99.60% 56.54% | 94.40% 83.33% | 99.40% 65.33% | 100.00% 92.83%
15 99.20% 54.20% | 93.33% 83.45% | 98.53% 58.67% 98.80% 87.22%
20 97.70% 56.03% | 93.60% 78.89% | 98.10% 57.76% 98.60% 85.29%
30 95.67% 54.16% | 89.73% 74.63% | 95.33% 54.54% 94.47% 79.93%
40 95.25% 49.32% | 82.45% 51.63% | 93.60% 53.87% 95.40% 69.22%

Number of identified true positive emitters

o Recall rate: Number of all true emitters

Number of identified true positive emitters

o Precision rate: Number of all emitters identified by algorithm
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Estimation of Flux




Limited-angle CT reconstruction via
L1/L, minimization




Limited-angle CT reconstruction

Background

s// (2

20 40, 60 100 120 140 160 180

[0,6]

Limited angle scanning is due to
@ low radiation exposure (3D mamography)
@ short exposure time (motion reduction)
@ engine exam
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Mathematical model

@ Forward physics model: Radon tranform
f(s,0) = / u(x, y)dxdy
(x,y)€l(s,0)

@ Discretization:
Au = f (noiseless case)
Au+ n = f (noisy case)
@ Optimization model:
min,croxm R(Vu) s.t.  Au=f, (noiseless case)
min cgoxm R(Vu) + 1||Au — f||3, (noisy case)

— Ixll

@ Proposed approximate metric: R(x) = B
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Advantages of L;/L,

Parameter free, unlike L,, Transformed L;, SCAD/MCP.

Scale invariant (same as Lg)

loxlls _ [edlixlls _ [Ix]lx
loxllz - Jalllxllz lIx]l2”

Va #0,x # 0.

Empirically shown to work well for high dynamic range signals,

max{[Xs} s |arge, where S is the support.

le., —
" min{|xs[}

Theoretical guarantee: under a null space property (NSP)
type of condition, any sparse solution of Ax =b (b # 0) is a
local minimum for Lj /Ly in the feasible space of Ax = b.

SISC 2019 and TSP 2020.
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L1/L, on signal processing

Relationship with L1-L;

Define
o = min {HXHl ‘Ax = b} )
xeRn | [|x]|2

To = min {Ixlh - alixl2| Ax=b},

then we have

a* €1, o] if T, <0
a* €la, /n if T,>0
af =« if T, =0.
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Algorithm development — Speed-up by adaptive method 1

BS is computationally expensive, considering that Li-al
minimization is conducted for multiple times.

To speed up, we propose two variant of Lj/L,-BS, one of which
involves two simple steps:

(k) x (k)
x(kt1)  — arg mxin {|x||1 — < (‘T o, > s.t. Ax = b}

a(k+1) _ ”X(k—l—l)”l/Hx(k-i-l ||2

This algorithm is referred to as Ly /L>-Al.
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Algorithm development — Speed-up by adaptive method 2

BS is computationally expensive, considering that L; — al;
minimization is conducted for multiple times.

To speed up, we propose a variant of Lj/L,-BS, which involves two
simple steps:

_ aOx(®)
x(HD) = arg min {||x|1 - <x, O + ng —xB|3s.t. Ax=b

a(t—l—l) _ ||X(t+1)H1/Hx(t+1)||2'

This algorithm is referred to as Ly /Ly-A2.
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Connections to generalized inverse power methods

@ Inverse power: minimize Rayleigh quotient g(x) = <HXH2 by
iteratively solving

x(F1) = arg min {;<x, Bx) — (x(k), x>}

_ r(x)

Lig(x) = k) Via

@ Generalized inverse power
xk+1) = arg min {r(x) — o(vs(x(K)), x>}

@ L;/Lp-Al is the generalized inverse power when
r(x) = g(x),s(x) = [Ix]|2-

@ L1/L5-A2 is the modified generalized inverse power?

'Hein & Biiler, NIPS (2010)
?Bresson, et al. NIPS (2012)
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Connections to gradient-based methods

e Equivalent form on the KKT conditions of L;/L, model:

0 € D"l ~ [ ey + AT8
0= Ax" —b

where § = ||x*||2s

@ This is also an optimality condition to

mxin g(x) + w(x), (2)

where Vw(x) = — lIxlls x

[Ix[l2 fIx][2

o L1/Lr-Al is a generalized conditional gradient method? on (2)
@ [1/L>-A2 is a proximal gradient method on (2).

3Bredies, et al, COA (2009)
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Convergence analysis

Given a sequence {x(K), oK)} generated by L1/Lo-Al. If {x(K} is
bounded, it has a convergent subsequence.

Given a sequence {x() a(K)} generated by Ly /Lo-A2. If {x(¥)} is
bounded, there exists a subsequence, denoted by {x(k)}, that
converges to a critical point.
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L1/L, on the gradient

IVl
u [[Vul2
We introduce d, h to be equal to Vu, thus leading to

- Id]l1
u,d,h ||h|2

(L1/Ly-con) st. Au=f.

st. Au=f, d=Vu, h=Vu.

The augmented Lagrangian is expressed as

d A
£(ud b ba) = (= Au) 3 A £

+ (pbr, Vu —d) + 5 d - Vu3

+ (pab2, Vi~ h) + 2 |h — Vul3.

SISC 2019.
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Different splitting

The L1/L-con model is equivalent to

IVl

Mau= t. h=V
W gy ) -

where g(t) is an indicator function enforcing t into the feasible

set S, i.e.,
0 ifteS
Ns(t) = { .
+00 otherwise.

The augmented Lagrangian function is given by

IVl

Econ(uy h; b2) = ”h||2

M au=r(u)+{p2ba, Vu—h)+2 [h—Tu[3,

arXiv:2006.00601.
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ADMM iterates as follows,

u(k+1) = arg minu Econ(uv h(k)' bgk))
h(k+1) = arg minh ﬁcon(u(k+1)7 h' bgk))
bgk+1) _ bgk) + Vulktl) — plk+1),

The u-subproblem can be expressed as

\V4
D) Z arg min 1V ull1

P2 (k) _plk)y2 _
i Hh(k)\|2+2Hh Vu—-by"|5 st. Au=f.
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Convergence analysis

Theorem (convergence of Ly /Ly-box )

Under the Assumptions A1, A3, and a sufficiently large p», the
sequence {u(k), h(k)} generated by the splitting scheme of
L1/Ly-box always has a subsequence convergent to a critical point
of Ly/Ly-box.

Theorem (convergence of inexact scheme in Ly /Ly-box)

Under the Assumptions AI-A3 and a sufficiently large p>, one can
solve the u-subproblem within an error tolerance €, and feasible
set, ie., |Gkt — y(kt D)2 < ) and 3V € [, d]. If

S €k < +00, then the resulting sequence {i¥), h(F)} has a
subsequence convergent to a critical point of Ly /Ly-box.
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Standard phantoms

We discretize both phantoms at a resolution of 256 x 256. The
forward operator A is generated with a parallel beam geometry
sampled at Oypax /30 over a range of Oypax, resulting in a
sub-sampled data of size 362 x 31. The simulation process is
available in the IR and AIR toolbox

Figure: Ground truth of Shepp-Logan (SL) phantom, FORBILD (FB)
head phantom and real data walnut with the gray scale window of [0, 1],
[1.03, 1.10], and [0, 1.5], respectively.



Limited-angle CT reconstruction
00000@00

Comparison

Table: CT reconstruction of the parallel beam in the SL phantom by
SART, L1, Ll—L2, and L]_/L2.

- SART L L I/L
noise | range o RVISE | SSIM RMSE | SSIM - RMSE | SSIM— RWVISE
0.5% L90° 056 13.81% | 0.88 7.50% | 0.78 8.75% | 096 1.74%
: 150° | 0.58  1057% | 098  3.75% | 0.88  3.43% | 0.98  1.05%
01% |90° 058  13.68% | 0.96 4.12% | 0.88  7.16% | 1.00  0.29%
: 150° | 0.60 1037% | 0.98 3.48% | 099 0.76% | 1.00 0.11%

SART: simultaneous algebraic reconstruction technique, 1984.
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Synthetic data

SART Li/L>

Figure: CT reconstruction from 90° (top) and 135° (bottom) projection
range for the FB phantom with 0.1% noise.
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Experimental data




Conclusions

Conclusions

e PSF:
e Develop novel nonconvex regularization method based on
Kullback-Leibler Divergence (KL-NC)
o lterative scheme for estimating flux
@ Limited-angle CT:
e Compressed sensing approach to handle limited observed data
issue
e Explore the performance of Ly /L, from signal processing to
medical imaging reconstruction
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Stories still continue...(on-going projects at UCD)

© Quantitative Susceptibility Mapping (QSM) in MRI
(cooperated with Prof. Audrey Fan in Dept. BME)

@ Extension of L;/Ly (cooperated with Prof. Shigian Ma in
Dept. Math)



Thank you
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