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Point Spread Function
Engineering and 3D Imaging
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2D into 3D (Depth from focus)
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2D into 3D (Depth from defocus)
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Background

Space safety problem:
detecting and quantifying space
junk

Credit to [www.extremetech.com]

Microscopy problem:
obtaining 3D structures of live
cells by single molecule
localization

Credit to [G. Grover et al. 2012]
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Telescope System for Space Debris Localization

Proposed in [Prasad 2013]

Space based system for tracking debris - funded by US AFOSR



9/49

PSF engineering and 3D imaging Limited-angle CT reconstruction Conclusions

Conventional PSFs when imaging a point source
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Single Lobe (SL) point source images using engineered
spiral phase mask
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Phase masks other than SL can enable PSF rotation

Credit to [Shuang, ..., Landes 2016]

Figure: (a): Some other kinds of phase masks & rotating PSFs, (b):
images correspond to one point source in different depth positions.
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Physics Model of SL Rotating PSF

Fourier Optics Formula for rPSF

Aζ(s) =
1

π

∣∣∣∣∫ P(u)exp
[
ι(2πu · s + ζu2 − ψ(u))

]
du

∣∣∣∣2

Defocus parameter:

ζ = − πδzR2

λl0(l0 + δz)
,

ψ(s) = lφs when
√

(l − 1)/L ≤ s ≤
√

l/L, l = 1, · · ·, L

P is a pupil function and ι =
√
−1.

(s, φs ) is the polar coordinate of normalized position.
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Physics Model of SL Rotating PSF
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Discretization

Order the slices of
A such that the
last slice is
corresponding to
rPSF when
x , y , δz = 0.

We need to do 3D
convolution A ∗ X
when x , y or
δz 6= 0,
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Forward model with 2 point sources

forward model

The 2D observed image G ∈ Rm×n can be represented as

G = N(T (A ∗ X ))
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Optimization Problem

l0 model

min
X

‖X‖0

s.t. D(T (A ∗ X )) < ε,

To find the locations and values the the true point sources is a sparse
recovery problem.

Gaussian noise case

`0 model:

min
X

‖X‖0

s.t. ‖T (A ∗ X ) + b1− G‖F < ε,

`0 regularization model:

min
X

1

2
‖T (A ∗ X ) + b1− G‖2

F + µ‖X‖0.
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Gaussian noise case

Continuous Exact `0 algorithm (CEL0) applied on rPSF:

min
X

1

2
‖T (A ∗ X )− G‖2

F + ΦCEL0(X ).

where

ΦCEL0(X ) =
P∑
i=1

φ(‖ai‖, λ, ;X ),

φ(a, λ, ; u) = λ−
a2

2

(
|u| −

√
2λ

a

)2

1
{|u|≤

√
2λ
a
}
,

1{u∈E} =

{
1 if u ∈ E ;
0 others.

Global minimizers of `0 model are contained in the global minimizers of CEL0;

A transformation on a minimizer of CEL0 model will get a minimizer of `0 model;

CEL0 can avoid some local minimizers of `0 model.

C. Wang, et al. IPIP 2018 (Springer).
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Poisson Noise Case

Data Fitting Term

Gaussian noise model:

1

2
‖T (A ∗ X ) + b1− G‖2

F

⇓

Poisson noise model:

DKL(T (A ∗ X ) + b1,G ),

The uniform background is denoted by b and 1 is a matrix
with all entries 1.

DKL(T (A ∗ X ) + b1,G ) can be rewritten as

〈1, T (A ∗ X )G log(T (A ∗ X ) + b1)〉.
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Poisson Noise Model Optimization Problem

Optimization Problem

min
X≥0

DKL(T (A ∗ X ) + b1,G ) + µR(X ).

We choose R(X ) to be a nonconvex and nondifferentiable
function

R(X ) :=

m,n,d∑
i ,j ,k=1

|Xijk |
a + |Xijk |

,

where the tensor X is m × n × d and a is fixed and
determines the degree of nonconvexity.
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Minimization Problem: KL-NC

The minimization problem (KL-NC) is

min
X≥0

〈1, T (A ∗ X )− G ln(T (A ∗ X ) + b 1)〉+ µ

m,n,d∑
i ,j ,k=1

|Xijk |
a + |Xijk |

 .

Iteratively reweighted `1 algorithm (IRL1)


w l
ijk = aµ(

a+X̂ l
ijk

)2 , ∀i , j , k

X̂ l+1 = arg min
X≥0

{
〈1, T (A ∗ X )− G log(T (A ∗ X ) + b 1)〉+

∑m,n,d
i,j,k=1 w

l
ijk |Xijk |

}
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Post-processing: Removing False Positive

Computing the centroid of clustered point sources

x =

∑
(i,j,k)∈C iXijk∑
(i,j,k)∈C Xijk

; y =

∑
(i,j,k)∈C jXijk∑
(i,j,k)∈C Xijk

; z =

∑
(i,j,k)∈C kXijk∑
(i,j,k)∈C Xijk

.

Searching neighbor from the brightest point source

Setting a tolerant distance that for distinguishing one point
source
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Fixed Point Iterative Scheme for Estimating the Flux

Based on data fitting term: ∇DKL(Hf + b1, g) = 0

Fixed Point Iterative Scheme

fn+1 = fG +K(fn), n = 1, 2, · · · (1)

where

K(f) =
K∑
i=1

eTi (Hf + b 1− g) eTi Hf

eTi (Hf + b1)
H+ei ,

and ei is the i-th canonical basis unit vector. Here
H+ = (HTH)−1HT , fG = H+(g − b1) and
H = [h1,h2, · · · ,hP ] ∈ RK×P , is a system PSF matrix based on
the estimated 3D locations .
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Our Overall Process for 3D Point Source Localizations

1 Solve the minimization problem, KL-NC, using iteratively
reweighted `1 algorithm;

2 Post Processing for removing false positives, using a
centroid method;

3 Estimate the flux values of the point sources, using a fixed
point iterative scheme.
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Experimental Setup for Poisson Noise Case

Consider different density cases:the number of point sources
simulated in one image plane is 5, 10, 15, 30 and
40,respectively

Randomly generate 50 different distributions of point sources
for each case

The number of photons emitted by each point source follows
a Poisson distribution with mean of 2000 photons

Fixed background b = 5

Evaluation criteria: Recall rate & Precision rate
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Localization for Low Density Case

(a) Observed image (b) Original image

(c) Ground truth ”o”, estimate ”+”
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Localization for Higher Density Case with Overlaps

(c) Observed image (d) Original image

(c) Ground truth ”o”, estimate ”+”
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Comparison in Other Algorithms

Table: Comparison of KL-NC with KL-`1, `2-`1 and `2-NC. All the results
are after performing post-processing.

`2-`1 `2-NC KL-`1 KL-NC
No. Recall Prec. Recall Prec. Recall Prec. Recall Prec.

5 100.00% 68.41% 97.20% 87.95% 98.53% 58.67% 100.00% 93.71%
10 99.60% 56.54% 94.40% 83.33% 99.40% 65.33% 100.00% 92.83%
15 99.20% 54.20% 93.33% 83.45% 98.53% 58.67% 98.80% 87.22%
20 97.70% 56.03% 93.60% 78.89% 98.10% 57.76% 98.60% 85.29%
30 95.67% 54.16% 89.73% 74.63% 95.33% 54.54% 94.47% 79.93%
40 95.25% 49.32% 82.45% 51.63% 93.60% 53.87% 95.40% 69.22%

Recall rate: Number of identified true positive emitters
Number of all true emitters

Precision rate: Number of identified true positive emitters
Number of all emitters identified by algorithm
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Estimation of Flux
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Limited-angle CT reconstruction via
L1/L2 minimization
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Background

Limited angle scanning is due to

low radiation exposure (3D mamography)

short exposure time (motion reduction)

engine exam

...
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Mathematical model

Forward physics model: Radon tranform

f (s, θ) ≈
∫

(x ,y)∈l(s,θ)
u(x , y)dxdy

Discretization:
Au = f (noiseless case)
Au + n = f (noisy case)

Optimization model:
minu∈Rn×m R(∇u) s.t. Au = f , (noiseless case)
minu∈Rn×m R(∇u) + 1

2‖Au − f ‖2
2, (noisy case)

Proposed approximate metric: R(x) = ‖x‖1

‖x‖2
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Advantages of L1/L2

Parameter free, unlike Lp, Transformed L1, SCAD/MCP.

Scale invariant (same as L0)

‖αx‖1

‖αx‖2
=
|α|‖x‖1

|α|‖x‖2
=
‖x‖1

‖x‖2
, ∀α 6= 0, x 6= 0.

Empirically shown to work well for high dynamic range signals,
i.e., max{|xS |}

min{|xS |} is large, where S is the support.

Theoretical guarantee: under a null space property (NSP)
type of condition, any sparse solution of Ax = b (b 6= 0) is a
local minimum for L1/L2 in the feasible space of Ax = b.

SISC 2019 and TSP 2020.
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L1/L2 on signal processing

Relationship with L1-L2

Define

α∗ := min
x∈Rn

{
‖x‖1

‖x‖2

∣∣∣Ax = b

}
,

Tα := min
x∈Rn

{
‖x‖1 − α‖x‖2

∣∣∣Ax = b
}
,

then we have 
α∗ ∈ [1, α] if Tα < 0

α∗ ∈ [α,
√
n] if Tα > 0

α∗ = α if Tα = 0.
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Algorithm development — Speed-up by adaptive method 1

BS is computationally expensive, considering that L1-αL2

minimization is conducted for multiple times.

To speed up, we propose two variant of L1/L2-BS, one of which
involves two simple steps:

x(k+1) = arg min
x

{
‖x‖1 −

〈
x,
α(k)x(k)

‖x(k)‖2

〉
s.t. Ax = b

}
α(k+1) = ‖x(k+1)‖1/‖x(k+1)‖2.

This algorithm is referred to as L1/L2-A1.



35/49

PSF engineering and 3D imaging Limited-angle CT reconstruction Conclusions

Algorithm development — Speed-up by adaptive method 2

BS is computationally expensive, considering that L1 − αL2

minimization is conducted for multiple times.

To speed up, we propose a variant of L1/L2-BS, which involves two
simple steps:

x(t+1) = arg min
x

{
‖x‖1 −

〈
x,
α(t)x(t)

‖x(t)‖2

〉
+
β

2
‖x− x(t)‖2

2 s.t. Ax = b

}
α(t+1) = ‖x(t+1)‖1/‖x(t+1)‖2.

This algorithm is referred to as L1/L2-A2.
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Connections to generalized inverse power methods

Inverse power: minimize Rayleigh quotient q(x) = 〈x,Bx〉
‖x‖2 by

iteratively solving

x(k+1) = arg min
x

{
1

2
〈x,Bx〉 − 〈x(k), x〉

}
Generalized inverse power1 : q(x) = r(x)

s(x) via

x(k+1) = arg min
x

{
r(x)− α(k)〈∇s(x(k)), x〉

}
L1/L2-A1 is the generalized inverse power when
r(x) = g(x), s(x) = ‖x‖2.

L1/L2-A2 is the modified generalized inverse power2

1Hein & Büler, NIPS (2010)
2Bresson, et al. NIPS (2012)
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Connections to gradient-based methods

Equivalent form on the KKT conditions of L1/L2 model:{
0 ∈ ∂‖x∗‖1 − ‖x

∗‖1

‖x∗‖2

x∗

‖x∗‖2
+ AT ŝ

0 = Ax∗ − b

where ŝ = ‖x∗‖2s

This is also an optimality condition to

min
x

g(x) + w(x), (2)

where ∇w(x) = −‖x‖1

‖x‖2

x
‖x‖2

L1/L2-A1 is a generalized conditional gradient method3 on (2)

L1/L2-A2 is a proximal gradient method on (2).

3Bredies, et al, COA (2009)
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Convergence analysis

Theorem

Given a sequence {x(k), α(k)} generated by L1/L2-A1. If {x(k)} is
bounded, it has a convergent subsequence.

Theorem

Given a sequence {x(k), α(k)} generated by L1/L2-A2. If {x(k)} is
bounded, there exists a subsequence, denoted by {x(ki )}, that
converges to a critical point.
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L1/L2 on the gradient

(L1/L2-con) min
u

‖∇u‖1

‖∇u‖2
s.t. Au = f .

We introduce d,h to be equal to ∇u, thus leading to

min
u,d,h

‖d‖1

‖h‖2
s.t. Au = f , d = ∇u, h = ∇u.

The augmented Lagrangian is expressed as

L(u,d,h;w ,b1,b2) =
‖d‖1

‖h‖2
+ 〈λw , f − Au〉+

λ

2
‖Au − f ‖2

2

+ 〈ρ1b1,∇u − d〉+
ρ1

2
‖d−∇u‖2

2

+ 〈ρ2b2,∇u − h〉+
ρ2

2
‖h−∇u‖2

2.

SISC 2019.
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Different splitting

The L1/L2-con model is equivalent to

min
u,h

‖∇u‖1

‖h‖2
+ ΠAu=f (u) s.t. h = ∇u,

where ΠS(t) is an indicator function enforcing t into the feasible
set S , i.e.,

ΠS(t) =

{
0 if t ∈ S

+∞ otherwise.

The augmented Lagrangian function is given by

Lcon(u,h; b2) =
‖∇u‖1

‖h‖2
+ΠAu=f (u)+〈ρ2b2,∇u−h〉+ρ2

2
‖h−∇u‖2

2.

arXiv:2006.00601.
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ADMM iterates as follows,
u(k+1) = arg minu Lcon(u,h(k); b

(k)
2 )

h(k+1) = arg minh Lcon(u(k+1),h; b
(k)
2 )

b
(k+1)
2 = b

(k)
2 +∇u(k+1) − h(k+1).

The u-subproblem can be expressed as

u(k+1) = arg min
u

‖∇u‖1

‖h(k)‖2
+
ρ2

2
‖h(k) −∇u − b

(k)
2 ‖

2
2 s.t. Au = f .



42/49

PSF engineering and 3D imaging Limited-angle CT reconstruction Conclusions

Convergence analysis

Theorem (convergence of L1/L2-box )

Under the Assumptions A1, A3, and a sufficiently large ρ2, the
sequence {u(k),h(k)} generated by the splitting scheme of
L1/L2-box always has a subsequence convergent to a critical point
of L1/L2-box.

Theorem (convergence of inexact scheme in L1/L2-box)

Under the Assumptions A1-A3 and a sufficiently large ρ2, one can
solve the u-subproblem within an error tolerance εk and feasible
set, i.e., ‖ũ(k+1) − u(k+1)‖2

2 ≤ εk and ũ(k+1) ∈ [c, d ]. If∑
k εk < +∞, then the resulting sequence {ũ(k),h(k)} has a

subsequence convergent to a critical point of L1/L2-box.
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Standard phantoms

We discretize both phantoms at a resolution of 256× 256. The
forward operator A is generated with a parallel beam geometry
sampled at θMax/30 over a range of θMax, resulting in a
sub-sampled data of size 362× 31. The simulation process is
available in the IR and AIR toolbox

Figure: Ground truth of Shepp-Logan (SL) phantom, FORBILD (FB)
head phantom and real data walnut with the gray scale window of [0, 1],
[1.03, 1.10], and [0, 1.5], respectively.
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Comparison

Table: CT reconstruction of the parallel beam in the SL phantom by
SART, L1, L1-L2, and L1/L2.

noise range SART L1 L1-L2 L1/L2
SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

0.5%
90◦ 0.56 13.81% 0.88 7.52% 0.78 8.75% 0.96 1.74%

150◦ 0.58 10.57% 0.98 3.75% 0.88 3.43% 0.98 1.05%

0.1%
90◦ 0.58 13.68% 0.96 4.12% 0.88 7.16% 1.00 0.29%

150◦ 0.60 10.37% 0.98 3.48% 0.99 0.76% 1.00 0.11%

SART: simultaneous algebraic reconstruction technique, 1984.
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Synthetic data

SART L1 L1/L2

Figure: CT reconstruction from 90◦ (top) and 135◦ (bottom) projection
range for the FB phantom with 0.1% noise.
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Experimental data

SART L1

L1-L2 L1/L2

Figure: CT reconstruction of a walnut in the range of projection 150◦.
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Conclusions

PSF:

Develop novel nonconvex regularization method based on
Kullback-Leibler Divergence (KL-NC)
Iterative scheme for estimating flux

Limited-angle CT:

Compressed sensing approach to handle limited observed data
issue
Explore the performance of L1/L2 from signal processing to
medical imaging reconstruction
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Stories still continue...(on-going projects at UCD)

1 Quantitative Susceptibility Mapping (QSM) in MRI
(cooperated with Prof. Audrey Fan in Dept. BME)

2 Extension of L1/L2 (cooperated with Prof. Shiqian Ma in
Dept. Math)
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Thank you


	PSF engineering and 3D imaging
	Background
	Problem Statement
	Optimization scheme

	Limited-angle CT reconstruction
	L1/L2 on signal processing 
	L1/L2 on image processing

	Conclusions

	anm0: 
	anm1: 
	anm2: 


