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Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-
nomenon. In machine learning, Leo Breiman used this term to characterize problems More
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Problem spectrum

Very sparse models (trees, scoring systems)

Neural networks
With minor pre-processing, all
methods have similar performance

Tabular: Al features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability &

maintenance, etc.
- features include counts, categorical data

- pixels/voxels, words, a bit of a sound wave



* ...But don’t they lose accuracy?

- Explainable Machine Challenge (credit scoring data from FICO)

- Florida COMPAS data (criminal recidivism)



&he New York Times

When a Computer
Program Keeps You in Jail

G ces e Glenn Rodriguez was denied parole because
of a miscalculated “COMPAS” score.

/

A typographical error in a COMPAS score can
lead to years of extra prison time.

June 13, 2017

How accurate is COMPAS?




COMPAS vs. CORELS

71

COMPAS: (Correctional Offender
Management Profiling for
Alternative Sanctions)

\

CORELS: (Certifiably Optimal RulE ListS, with
Elaine Angelino, Nicholas Larus-Stone, Daniel
Alabi, and Margo Seltzer, KDD 2017 & JMLR 2018)

Here is the machine learning model:

If age=19-20 and sex=male, then predict arrest

else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest

else predict no arrest




Prediction of re-arrest within 2 years
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If age=19-20 and sex=male, then predict arres
else if age=21-22 and priors=2-3 then predict arres

else if priors >3 then predict arrest
else predict no arrest
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Problem spectrum

The Rashomon effect occurs when many different explanations exist for the same phe-
nomenon. In machine learning, Leo Breiman used this term to characterize problems where
many accurate-but-different models exist to describe the same data. In this work, we study
how the Rashomon effect can be useful for understanding the relationship between training
and test , and the ibility that simple-yet-accurate models exist for many
problems. We consider the Rashomon set—the set of almost-equally-accurate models for
a given problem—and study its properties and the types of models it could contain. We
present the Rashomon ratio as a new measure related to simplicity of model classes, which
is the ratio of the volume of the set of accurate models to the volume of the hypothesis
space; the Rashomon ratio is different from standard complexity measures from statisti-
cal learing theory. For a hicrarchy of hypothesis spaces, the Rashomon ratio can help
modelers to navigate the trade-off between simplicity and accuracy. In particular, we find
empirically that a plot of empirical risk vs. Rashomon ratio forms a characteristic I-shaped
Rashomon curve, whose elbow seems to be a reliable model selection criterion. When the
Rashomon set is large, models that are accurate—but that also have various other useful
properties—can often be obtained. These models might obey various constraints such as
interpretability. fairness. or monotonicity.

congestive heart failure? yes
takes aspirin
smoking? no
gender M
exercise? yes
allergies? no
number of past strokes 2
diabetes? yes

Tabular: All features are interpretable

- many problems in criminal justice, healthcare,
social sciences, equipment reliability &
maintenance, etc.

features include counts, categorical data

RaW: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave



The Extremes of ”~ S

Interpretability: f 0%

Predict No Arrest yes

no

* Optimal decision trees «~

Any juvenile crimes

*Scoring systems S .

1. Any cEEG Pattern with Frequency 2 Hz 1 point
2. Epileptiform Discharges 1point | +
3. Patterns include [LPD, LRDA, BIPD] 1point | +
4. Patterns Superimposed with Fast or Sharp Activity 1point | +
t 5. Prior Seizure 1 point | +
! 6.  Brief Rhythmic Discharges 2 points | +
SCORE | =
SCORE 0 1 2 3 4 5 6+

RISK <5% | 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3%




Optimal Sparse Decision Trees

no traffic  traffic



construction? rush hour?
N N
traffic  no traffic construction? no traffic
N
traffic Friday?
\
Optimal sparse decision trees is NP hard. no traffic traffic

Factorial in the number of variables.



Greedy construction: both the splitting
and pruning conditions are based on
statistical testing.

rain?

/\
construction? rush hour? —

N Friday?

. . holiday?
traffic  no traffic ° daY
construction?

—

Splitting conditions



Greedy construction: both the splitting
and pruning conditions are based on
statistical testing.

rain?
/\
Pruning conditions construction? rush hour?
N
Friday? no traffic construction? no traffic
N m
no traffic  traffic traffic Friday?

LY

no traffic  traffic



Automatic Interaction Detection (AID) (Morgan & Sonquist, 1963) regression trees

v

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972), classification trees

A 4

CHi-squared Automatic Interaction Detector (CHAID) (Kass, 1980)

\ 4

Classification And Regression Trees (CART) (Breiman et al., 1984

v

ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993)

‘/\-

Other problems:
longitudinal data, survival curves:

Global tree optimization, mid-1990’s Segal (1992), Simonoff (several papers)

Bennett, Street, Mangasarian ) o o L )
Improvements in splitting criteria for classification and regression

Global Tree Optimization: Hypothesis tests, de-biasing (Strobl), missing variables
A Non-greedy Decision Tree Algorithm
Kristin P. Benpett Tutorials (Murthy 1998, Loh 2014, L. Rokach & O. Maimon 2004 - beware)
1994 Depart nlli‘;"::;'imlnl'l ),(\‘{l;::‘l.llj-:::.i;ii.(l’..‘nllnﬁt iences

Rensselaer Polytechnic Institute
Iroy, NY 12180 *
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Other problems:
longitudinal data, survival curves:

Global tree optimization, mid-1990’s Segal (1992), Simonoff (several papers)

Bennett, Street, Mangasarian ) o o o )
Improvements in splitting criteria for classification and regression

Hypothesis tests, de-biasing (Strobl), missing variables



‘/\

Global tree optimization, mid-1990’s

Bennett, Street, Mangasarian

What | hope:

Fully optimal decision trees. User picks objective:

classification accuracy, weighted accuracy, F-

score, AUC, partial AUC, precision, recall, etc.

Regularize with sparsity for interpretability.

~

J

Other problems:
longitudinal data, survival curves:
Segal (1992), Simonoff (several papers)

Improvements in splitting criteria for classification and pegression

Hypothesis tests, de-biasing (Strobl), missing variable

}

“Trees sometimes choose irrelevant variables.”
“Trees are sometimes 10% worse than ensembljes.”
“We can’t tell how close to optimality our treegs are.”

“We need new splitting criteria for each obj¢ctive.”

1\
~—

Adapt to handle missing data / biases, etc.

\ Adapt to other problems




Fully optimal decision trees. User picks objective:

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Regularize with sparsity for interpretability.

N\

J




Fully optimal decision trees. User picks objective:

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Regularize with sparsity for interpretability.

\_ J

Approaches:
- Genetic programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), or neural networks
- no optimality gap
- For classification data that is able to be perfectly separated: SAT solvers (Narodytska et al., 2018, Janota 2020)

- Mathematical programming solvers (Bennett mid-1990’s, Blanquero et al., 2018, Menickelly et al., 2018; Vilas
Boas et al., 2019, Verwer & Zhang, BinOCT 2019)

- Dynamic programming / Branch and Bound
- Garofalakis et al., DTC, 2003 (less relevant since it just finds subtrees of greedy-grown trees)
- Nijssen & Fromont, DL8, 2007, Nijssen et al., DL8.5, 2020
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020

with Jimmy Lin, Chudi Zhong, Diane Hu, Margo Seltzer



min ﬁ(tree,{(xi, y.)}.) where

tree
1 n
L(tree,{(x.,y.)} )= ;Zl[ wee(x ey, + C(f#leaves in tree)
\ i=1 / \ /
Prior offenses > 3 Y Y
V s Misclassification error  Sparsity
Age< 26 Predict Arrest

/ %S
no
Prior offenses > 1

Predict No Arrest yes
V PredictArest  4gmmmm AN €xample of an optimal tree on the Broward
Any juvenile crimes County Florida re-arrest data

o N\

Predict No Arrest Predict Arrest



Dynamic programming / Branch and Bound

Start with the full dataset and a naive label o ®



Dynamic programming / Branch and Bound

Start with the full dataset and a naive label .':.o. A
L)
o en . .o"o .0: o° 0%
Split it into subsets using each feature 0c®. .S | 0e%..° ole o




Dynamic programming / Branch and Bound

Start with the full dataset and a naive label .':.o. A
®e
oy ey . ..Q. ..:..
Split it into subsets using each feature ::, ° 0ol .®
o® 0 O o® o
Keep splitting (if permitted) .':: - ::: o oo
N
Can’t
split
anymore




Dynamic programming / Branch and Bound

Start with the full dataset and a naive label .':.o. A
L)
o en . .o'.o .o: o° 0%
Split it into subsets using each feature ..', ° 0e®. .° .‘:. °
e® o o® o o® o o® 0
Keep splitting (if permitted) ."’: o .‘.‘: o .‘:.' . ::: Bl
N | \\ /‘
Consolidate any duplication found. Can't Identical

split  subproblems
anymore




Dynamic programming / Branch and Bound




Dynamic programming / Branch and Bound

The solution to each
subproblem yields the best
feature to split on.




Dynamic programming / Branch and Bound

The solution to each
subproblem yields the best
feature to split on.

The optimal solution is found after all

subproblems are “completed” /

Some subproblems can be -,
proven to yield non-optimal .o'o.’
solutions ¢



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



Dynamic programming / Branch and Bound

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

rain?

A
construction? rush hour?

traffic  no traffic topsado? no traffic

“ ’9 Not enough data
Theorem”:

If the amount of data traveling through an internal node 1s <2C (where C i1s the
regularization parameter), the tree cannot achieve the minimum of the objective.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

rain?

/\
construction? rush hour?
NN Py
traffic  no traffic torrado? no traffic

“Theorem”: Not accurate data

If a proposed split leads to < C correctly classified data going to either side of the split, then
this split can be excluded, and we can exclude that feature anywhere further down the tree
extending that leaf.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

rain?

T

construction? rush hour?

N m
traffic  no traffic topsado? no traffic

One step lookahead

“Theorem”: Consider a tree with lower bound b < R rent best-
Ifb + C >R yent bests WE can prune all of its child trees.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Represent a tree by its leaves
rain & construction & traffic rain?
rain & no construction & no traffic /\
no rain & rush hour & construction & traffic ]
Construction? rush hour?

no rain & rush hour & no construction & Friday and no traffic
N M
no rain & rush hour & no construction & Friday and traffic

traffic  no traffic construction? no traffic

no rain & no rush hour & no traffic

N

traffic Friday?

LN

no traffic  traffic



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Permutation map: Discover identical trees already evaluated
rain & construction & traffic rain?
rain & no construction & no traffic /\
no rain & rush hour & construction & traffic ]
Construction? rush hour?

no rain & rush hour & no construction & Friday and no traffic
N N
no rain & rush hour & no construction & Friday and traffic

traffic  no traffic construction? no traffic

no rain & no rush hour & no traffic

N

traffic Friday?

LN

no traffic  traffic



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Bit-vectors describe data represented by each leaf

rain & construction & traffic rain?

(1000010001001110000........c..oorrerrree 0]
rain & no construction & no traffic /\
(0110001000000000110.......occcosrerrree 1]

no rain & rush hour & construction & traffic

[0001000100000001000.......cvvvesevereseve 0] construction? rush hour?

no rain & rush hour & no construction & Friday and no traffic N
[0000100000000000001........crrre 0] V\ N
no rain & rush hour & no construction & Friday and traffic

[0000000010000000000..........cccuivmnnnes 0] trafflc no trafflc COhStrUCtlon? no trafflc

no rain & no rush hour & no traffic
[0000000000011000000.............ooovvveeee 0] N

traffic Friday?

LN

no traffic  traffic



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Incremental computation of objective and bounds

. 1 .
L(tree,{(x,,y.)},) = ;;l[tree(xi#yi] + C(#leaves in tree) rain?

T

construction? rush hour?
Ny Py
bound=0.24 . . . .
vector = [01110010101010001] Friday  no traffic construction? no traffic

2N\ PN

b b (tra)ffic no traffic traffic Friday?

ound = compute_bound( ,

vector = compute_captures () N
/ no traffic  traffic




GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Strong analytical bounds

Leaf-based representation

Permutation map = Fast Implementation
Caching of intermediate results

Incremental computation

Consolidation of repeated subproblems



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees

(Lin et al., ICML 2020)

rtlllég L(tree, {(x;,v;,)};) where
L(tree, {(x;,v)};) = €(tree, {(x;, y;)};) + A(# leaves in tree)

e Can optimize any loss function monotonically increasing in FP and FN (Balanced

accuracy, weighted accuracy, F-1, precision, ...

e Can optimize rank statistics (AUC and partial AUC under the ROC convex hull)

Accuracy

priors > 3

age < 26

/2043 juvenile crimes = 0

6/121

priors: 2-3

PN

455/692 212/119

Balanced accuracy

priors > 3

age < 26

priors: 2-3

/\

age <21 319

288/517 296/251

536/1030 854/547 388/18

AUC convex hull

juvenile crimes = 0

N

671/272 priors =0

T

age < 26 age <23

RN

priors > 3 priors =1 349/1158 218/301

NN

87 180/216



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

rtnin L(tree, {(x;,v;)};) where
ree

L(tree, {(x;,v)};) = €(tree, {(x;, y;)};) + A(# leaves in tree)

e Can optimize any loss function monotonically increasing in FP and FN (Balanced
accuracy, weighted accuracy, F-1, precision, ...)
e Can optimize rank statistics (AUC and partial AUC under the ROC convex hull)

Main experimental results:
- Similar classification error to black box methods.
- For custom losses, much better loss values than greedy decision trees.
- Sparser than all heuristic methods
- Orders of magnitude faster than the next best method.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees

(Lin etal., ICML 2020) Time vs Number of Features
fico
Scalabili Lol Optimal but ( )
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. Py e ’ / /
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0 25 50 75 100 125 150
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Note: BinOCT too slow to include.



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
Time vs Number of Features

(Lin et al., ICML 2020)

Scalability

Improvements in
orders of
magnitude

Time

Note: BinOCT too slow to include.

100

80 1

60 1

40 -

201

0.

(compas)
Optimal but " cart
not scalable di85
v gosdt
s+ osdt
pygosdt
Scalable Scalable but
+ not optimal
ik Optimal
W ‘A A A /
missatY v v y vy yw ¥ ¥ ¥ T
0 50 100 150 200

Number of Features



In this talk

* Optimal decision trees “,

*Scoring systems

Prior offenses > 3

e

Age< 26

Predict Arrest

/ b
no
Prior offenses > 1

Predict No Arrest

no

yes

Predict Arrest

Any juvenile crimes

S

Predict No Arrest

1. Any cEEG Pattern with Frequency 2 Hz 1 point
2. Epileptiform Discharges 1point | +
3. Patterns include [LPD, LRDA, BIPD] 1point | +
4. Patterns Superimposed with Fast or Sharp Activity 1point | +
5. Prior Seizure 1point | +
i 6.  Brief Rhythmic Discharges 2 points | +
SCORE | =
SCORE 0 1 2 3 4 5 6+
RISK <5% | 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3%

Predict Arrest



Scoring systems
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| point if person

has social type
with below
average parole
violation rate

SociaL Tyrr VioraTioN |

RaTe

AT DOTROTIE . o oot s A e i S e S e e s 28.5%

Nessdoawells - o0 G g s e e 25.6 &
Mean CItiZBn. ..o oo oottt ittt i et 30.0
By 5 g R b SRR SR SRR e 38.9
i i ol R S o A SR 23.2
Hooont IMMIRFANL. .ot cii i e S s e o ot s et 16.7
F N N i 0% SN A WS N N R NS P 10.2
............................................... 66.7

total score

over all 21
significant factors
predicts

success at parole

PoIinTs ror
NUMBER OF Fa Con :“N&"‘
FaAcToRs Parole

16-21 08.5

14-156 97.8

13 01.3

12 84.9

11 77.3

10 65.9

7-9 56.1

56 32.9

“ 'o

2-4

Burgess. Factors determining success or failure on parole.1928



FACTOR Score *

Gender
Female 0
Male 1
Age
Less than 24 3
24-29 2 Risk %
30-49 1 score N Arrested
50+ 0 0 3 0.0
County 1 47 17.0
Rural counties 0
Smaller, urban count 1 2 181 9.9
Allegheny and 3 436 23.6
Philadelphia 2 4 737 24.8
Counties 5 1,036 32.4
Total number of prior arrests 6 1,067 40.7
: ° 7 1,434  47.2
2t04 2 8 1,934 55.5
5to 12 3 9 2,103 62.3
13+ 4 10 1,829 69.9
Prior property arrests 11 1,098 72.2
No 0 12 278 79.1
ves ! 13 | 25 80.0
Prior drug arrests
No 14 3 66.7
Yes 1
Property offender
No
Yes 1

Offense gravity score (OGS)
4+ 0 Pennsylvania Commission on Sentencing, 2013



1. Lived with both biological parents to age 16
(except for death of parent):

.2
.43
Evidence:
2. Elementary School Maladjustment:
No Problems.........ccccooviiiiiiiiiiice -1
Slight (Minor discipline or attendance)
or Moderate Problems.............ccccocoeeenn +2

Severe Problems (Frequent disruptive
behavior and/or attendance or behavior
resulting in expulsion or serious
SUSPENSIONS) ..ot +5
(Same as CATS Item)

3. History of alcohol problems (Check if

present):
~ Parental Alcoholism ~ Teenage Alcohol Problem
~ Adult Alcohol Problem ~ Alcohol involved in prior offense

~ Alcohol involved in index offense
No boxes checked............c.cooviiiiinns
1 or 2 boxes checked
3 boxes checked ....
4 or 5 boxes checked
Evidence:

4. Marital status (at the time of or prior to index
offense):

Ever married (or lived common law in the
same home for at least six months) .
Never married

Evidence:

5. Criminal history score for nonviolent
offenses prior to the index offense

Score 0 ...
Score 1 or
Score 3 or above . .
(from the Cormier-Lang system, see below)

6. Failure on prior conditional release (includes
parole or probation violation or revocation,
failure to comply, bail violation, and any new
arrest while on conditional release):

Evidence:

7. Age at index offense

Enter Date of Index Offense: __ /[

Enter Date of Birth: ___ /[

Subtract to get Ag

39 or over

[NE=R=N NG|

+

26 or less.

8. Victim Injury (for index offense; the most
serious is scored):

Treated and released.
None or slight (includes no victim).
Note: admission for the gathering of forensic
evidence only is NOT considered as either
treated or hospitalized; ratings should be
made based on the degree of injury.
Evidence:

9. Any female victim (for index offense)

Yes -1
No (includes no victim .+
Evidence:
10. Meets DSM criteria for any personality
disorder (must be made by appropriately
licensed or certified professional)
.2
.+3

Evidence:

11. Meets DSM criteria for schizophrenia (must
be made by appropriately licensed or
certified professional)

YES oo -3
NO Lo +1
Evidence:

12. a. Psychopathy Checklist score (if available,
otherwise use item 12.b. CATS score)........
4 or under ..

35 or higher
Note: If there ar
average the scores.
Evidence:

12. b. CATS score (from the CATS worksheet)
Oort..
20r3
4 ..

5 or higher

12. WEIGHT (Use the highest circled weight
from12a.0r12b.) e
TOTAL VRAG SCORE (SUM CIRCLED
SCORES FOR ITEMS 1 - 11 PLUS THE
WEIGHT FOR ITEM 12):

Violence Risk Appraisal Guide (Quinsey et al, 2006)

VRAG Score Category of Risk
-24 Low
-23 Low
-22 Low
-20 Low
-19 Low
-18 Low
-17 Low
-16 Low
-15 Low
-14 Low
-13 Low
-12 Low
-11 Low
-10 Low
-9 Low
-8 Low
-7 Medium
-6 Medium
-5 Medium
-4 Medium
-3 Medium
-2 Medium
-1 Medium

0 Medium
1 Medium
2 Medium
3 Medium
4 Medium
5 Medium
6 Medium
7 Medium
8 Medium
9 Medium
10 Medium
11 Medium
2 Medium
13 Medium
14 High
15 High
16 High
17 High
18 High
19 High
20 High
21 High
22 High
23 High
24 High
25 High
26 High
28 High
32 High
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Register  LogIn

NEWS & PERSPECTIVE DRUGS & DISEASES CME & EDUCATION ACADEMY VIDEO

D’ Discover new treatment options, trends, and technologies

You're invited to view these innovative programs from Industry

READ MORE

Drugs & Diseases

Calculators

By Category  Alphabetically

Addiction Medicine V4
Anesthesiology vV
Cardiac Surgery N7
Cardiology VvV
COVID-19 Vv
Critical Care V

Emergency v



> Intracerebral Hemorrhage

> lIschemic Stroke

> Movement Disorder

> Multiple Sclerosis & Demyelinating Disease

> Neurophysiology

A Seizure
2HELPS2B Score
Phenytoin Adjustment in Renal Failure

Seizure vs Syncope

> Subarachnoid Hemorrhage

Obstetrics & Gynecology A4
Oncology AV
Orthopedics VvV
Otolaryngology (ENT) vV
___ Patholoav & Lab Medicine NZ




2HELPS2B Score ° = .
Estimate duration of EEG monitoring needed to detect 95% of seizures
Calculator References/About

O 1. Frequency of any periodic or >
rhythmic pattern of more
than 2 Hz except
generalized rhythmic delta

1. Frequency of any periodic or rhythmic
pattern of more than 2 Hz except
generalized rhythmic delta activity?

activity?
% ‘ Yes
O 2. Independent sporadic > ‘ No
epileptiform discharges?
O 3. Lateralized Periodic > [ Next Question ->

Discharges (LPDs), Bilateral
Independent Periodic
Discharges (BIPDs), or
Lateralized Rhythmic Delta
Activity (LRDA)?

O 4. "“Plus” features: >
superimposed rhythmic, fast,
or sharp activity only on
LRDA, LPDs, or BIPDs?

O 5. Prior seizure: a history of >
epilepsy or recent events
suspicious for clinical
seizures?

(O 6. BIRD: Brief potentially Ictal >

Rhythmic Discharges?
Created by ‘ QxMD




Key challenges:

M (o) M 1. Congestive Heart Failure 1 point cee
e Constraints (e.g., FP<20%, fairness, etc.) I mhon] I
. 3. Age> 75 1 point | + .-+
i | nteg ra | Ity 4. Diabetes Mellitus 1 point | + -
5. Prior Stroke or Transient Ischemic Attack 2 points |+ .-
ADD POINTS FROM ROWS 1-5 SCORE |= :--
1 . SCORE o | 1] 2]3]4 5 6
Ty p I Ca I a p p ro a C h * STROKE RISK |1.9% | 2.8% | 4.0% | 5.9% | 8.5% | 12.5% | 18.2%

(Gage et al., 2001), CHADS?2 score for stroke prediction: panel of experts

(Antman et al., 2000), TIMI risk score for unstable angina/non-ST elevation MI: preliminary
feature selection, followed by logistic regression with the chosen features, scaling, and rounding



Coefficient 2

Rounding can go against
the performance gradient

>

Logisti

c loss

8 Coefficient 1



Elastic Net

SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD]
+0.31 Prior Seizure
+0.21 Epileptiform Discharges
+0.26  Patterns Superimposed with Fast or Sharp Activity
+0.25  Brief Rhythmic Discharges
- 2.54



Elastic Net + Rounding

SCORE = 1 Rhythmic Patterns Include [BiPD, LRDA, LPD]
+0 Prior Seizure

o " .
e EII Suser gI'IE Sharp Activi

+0 Brief Bhvthmic Discl
-3



Elastic Net

SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD]
+0.31 Prior Seizure
+0.21 Epileptiform Discharges
+0.26  Patterns Superimposed with Fast or Sharp Activity
+0.25  Brief Rhythmic Discharges
- 2.54



SCORE

Elastic Net + Scaling + Rounding

6
+1
+1
+1
+1
- 10

Rhythmic Patterns Include [BiPD, LRDA, LPD]
Prior Seizure

Epileptiform Discharges

Patterns Superimposed with Fast or Sharp Activity
Brief Rhythmic Discharges



Elastic Net

SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD]
+0.31 Prior Seizure
+0.21 Epileptiform Discharges
+0.26  Patterns Superimposed with Fast or Sharp Activity
+0.25  Brief Rhythmic Discharges
- 2.54



RiskSLIM model (optimized)

1. BriefRhythmicDischarge 2 points
2. Patternsinclude LPD 2 points | +
3.  PriorSeizure 1 point -
4. EpiletiformDischarge 1 point —
SCORE | =
SCORE 0 1 2 3 4 5} 6

RISK 47% | 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3%

(This one is better calibrated and has large AUC.)

Ustun & R, Optimized Risk Scores, JMLR 2019



Risk-Calibrated Supersparse Linear Integer Models (Risk-SLIM)

(Ustun, R, 2019)

)+ CliAllg

A € L means that Vj, 1. €x=10,-9,...,0,...,9,10}

(optional: additional constraints)



Cutting Planes (Traditional)

m}nzn: log (1 + e‘yl'xTiA)
i=1
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Traditional cutting planes

4
Objective
Value

Optimal Solution ’
’
j g
T 4‘ -ﬂ————
>

Model Coefficients



 Something goes wrong when creating models with integer coefficients.



Traditional cutting planes
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Traditional cutting planes
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Traditional cutting planes
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Traditional cutting planes

ObjectiveA
Value
MIP, not LP
@ @ @ @ @ >
A

Model Coefficients



Stalling
d =20

10000

1000

Seconds per iteration 100
10
1

. < Stalling in traditional
0(;1 cutting planes

10 20 50 100 200 500
lteration

Seconds/Iteration




RiskSLIM’s Lattice Cutting Plane Algorithm
(Ustun & Rudin, KDD 17)



Lattice cutting plane algorithm
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Lattice cutting plane algorithm
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Lattice cutting plane algorithm
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Stalling
d =20
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No Stalling
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Risk-SLIM Objective |

Value

(Ustun, R, JMLR 2019) \
o x Logistic loss
. ] 1 VixiA \\\‘ -
min E 0 ( + e Jtti ) 2 il
I . g \ _@”

= o

Cutting Plane Approxi‘ion

& L @ @ @ >
RiskSLIM’s Lattice Cutting Plane Algorithm (LCPA) 5.5 A
Model Coefficients
1 2 1 55 63 38 1 0 9 7
/ \ If a subproblem leads to a feasible integer solution,

<5 >6 add a cutting plane.
Otherwise split into 2 subproblems (linear programs).

2 subproblems If min cutting planes = objective, solved!



Risk-SLIM

(Ustun, R, JMLR 2019)

* LCPA is the only method that generates solutions within a reasonable time.
* MINLP solvers don’t work
 standard cutting planes require solving larger and larger MIPs.



Polishing with SequentialRounding and Discrete Coordinate Descent (DCD)

(Ustun, R, 2019)
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SequentialRounding

DCD

“1-opt solution”



Preventing Brain Damage in Critically Ill Patients

CT-angiography, Anterior Communicating
Saccular Aneurysm

Head CT without contrast showing
Subarachnoid Hemorrhage

e Seizure are common (20%)
* Seizure—> Brain Damage
* Need EEG to detect seizures

Need to use EEG data to predict
seizures, determine EEG duration

EEG is expensive and limited: 24hrs of
monitoring is $1600-54000



2HELPS2B was not created by doctors

It is a ML model

It is just as accurate as black box models.
Doctors can decide themselves whether
to trust it

Doctors can calibrate the score with
information not in the database

Score can be explained to non-physicians

2HELPS2B

1. Any cEEG Pattern with Frequency 2 Hz 1 point

2. Epileptiform Discharges 1point | +

3. Patterns include [LPD, LRDA, BIPD] 1point | +

4.  Patterns Superimposed with Fast or Sharp Activity 1 point | +

5. Prior Seizure 1 point | +

6.  Brief Rhythmic Discharges 2points | +
SCORE | =

SCORE 0 1 2 3 4 5 6+

RISK <5% | 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3%




There are many

variables to

choose from.

Variable

PDR

BRDs

Unreactive background
Prior Sz

GRDA

LRDA

GPDs

LPDs

BIPDs

Infection
Inflammation
Neoplasm

ICH

Metabolic encephalopathy
Stroke

SAH

SDH

TBI
Hypoxic/ischemic
IVH

Hydrocephalus
Discharges
Frequency (>2Hz)*




Preventing Brain Damage in Critically Ill Patients

L S T e S o SIS Py

2HELPS2B=3 (high-risk)

4

* Placed on Continuous EEG for >72H
* Start on preventative medications

CT-angiography, Anterior Communicating Head CT without contrast showing
Saccular Aneurysm Subarachnoid Hemorrhage



So far...

» 2HELPS2B validated on independent

multicenter cohort (N=2111)

Implemented: University of Wisconsin,
Massachusetts General Hospital/Harvard
Medical School

Ongoing implementation: Emory University,
Duke University, Medical University of South
Carolina, Free University of Brussels (Belgium)

Resulted in 63.6% reduction in duration of EEG
monitoring per patient

* $1,134.831 saving per patient?!
2.82 X More Patients Monitored

1;otal Duraltion cEEIG: Seizulre Risk-(}alibration

O Validation Study (N=2111)

0.9 | O Initial Study (N=5427)

— - Ideal Classifer

2HELPS2B=4

Probability of Seizure-Observed
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Problem spectrum

Very sparse models (trees, scoring systems)

Neural networks
With minor pre-processing, all
methods have similar performance

Tabular: Al features are interpretable

- many problems in criminal justice, healthcare, RaW: Features are individually uninterpretable
social sciences, equipment reliability &

maintenance, etc.
- features include counts, categorical data

- pixels/voxels, words, a bit of a sound wave



Interpretable neural networks?



looks like

looks Iikg)_
looks Iike_)‘
p s N




NeurlPS 2019 (spotlight)

arXiv.org > c¢s > arXiv:1806.10574 Search or Articl

Computer Science > Machine Learning

This looks like that: deep learning for
interpretable image recognition

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, Cynthia Rudin
(Submitted on 27 Jun 2018)

When we are faced with challenging image classification tasks, we often
explain our reasoning by dissecting the image, and pointing out prototypical
aspects of one class or another. The mounting evidence for each of the classes
helps us make our final decision. In this work, we introduce a deep network
architecture that reasons in a similar way: the network dissects the image by
finding prototypical parts, and combines evidence from the prototypes to
make a final classification. The algorithm thus reasons in a way that is
qualitatively similar to the way ornithologists, physicians, geologists,
architects, and others would explain to people on how to solve challenging
image classification tasks. The network uses only image-level labels for
training, meaning that there are no labels for parts of images. We demonstrate
the method on the CIFAR-10 dataset and 10 classes from the CUB-200-2011
dataset.

Chaofan

Accuracy=black box baselines



Why is this bird classfied as a red-bellied woodpecker?

Evidence for this bird being a red-bellied woodpecker:

Original image Prototype  Training image Activation map Similarity Class Points
(box showing part that where prototype score connection contributed
looks like prototype) comes from

w5

6.499 x 1.180 = 7.669

4.392 x 1.127 = 4.950

3.890 x 1.108 = 4.310

Total points to red-bellied woodpecker: 32.736



Why is this bird classfied as a Wilson's warbler?

Evidence for this bird being a Wilson's warbler:

Original image Prototype  Training image Activation map  Similarity Class Points
(box showing part that where prototype score connection contributed
looks like prototype) comes from

- !- . 3.341 x 1.443 = 4821

3.302 x 1.450 = 4.788

2.159 x 1442 = 3.113

Total points to Wilson's warbler: 19.473

Base model: VGG-16



Why is this bird incorrectly classified as a prothonotary
warbler, instead of a Wilson's warbler?

Evidence for this bird being a Wilson's warbler:

Original image Prototype  Training image Activation map  Similarity Class Points
(box showing part that where prototype score connection contributed

looks like prototype) comes from

ﬁ. 1342 x 1357 = 1.821
', I 1.189 x 1.247 = 1.483
N ,

'\;{.@ - 1.189 x 1.247 = 1.483

Total points to Wilson's warbler: 9.744

Base model: DenseNetl161



- Even for computer vision, we can still have an interpretable model of
the same accuracy as a black box.



Concept Whitening for Interpretable Image Recognition

[
e Zhi Chen' Yijie Bei’ Cynthia Rudin'?
ot o °
(o]
] e—> bed Abstract The questions listed above are important, but it is not clear
that they would naturally have satisfactory answers when
o Wl 3 What does a neural network encode about a con- performing posthoc analysis on a pretrained neural net-
(o] ° =y cept as .we-traverse. through. the. layers? Inter- work. In fact, there are several reasons why various types of
° pretability in machine leaming is undoubtedly posthoc analyses would not answer these questions.

Nature Machine Intelligence, accepted, Oct 2020

person

The Idea
* Create a latent space that tells us how it is disentangling concepts

* Form the latent space so that its axes represent known concepts

* |It’s easy to do: Just replace a batch normalization step with a
“Concept Whitening” step.
* Instead of normalizing, whiten and rotate.



summary

* Trees: Modern decision tree methods are not your old CART.

 Scoring systems: Rounding linear model coefficients can go against

the performance gradient. LCPA helps.

* Interpretable neural networks for computer vision: yes, they exist.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo Seltzer
Generalized and Scalable Optimal Sparse Decision Trees. ICML, 2020.

Berk Ustun and Cynthia Rudin
Learning Optimized Risk Scores. JMLR, 2019. Shorter version at KDD 2017.

Aaron F. Struck, Berk Ustun, ....., Cynthia Rudin, M Brandon Westover.

Association of an Electroencephalography-Based Risk Score With Seizure Probability in Hospitalized
Patients. JAMA Neurology, 2017

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Barnett, Jonathan Su, Cynthia Rudin
This Looks Like That: Deep Learning for Interpretable Image Recognition. NeurlIPS, 2019.

Zhi Chen, Yijie Bei, Cynthia Rudin
Concept Whitening for Interpretable Image Recognition. Nature Machine Intelligence, accepted 2020.

" Thanks!



https://jamanetwork.com/journals/jamaneurology/fullarticle/2656833?utm_source=jps&utm_medium=email&utm_campaign=author_alert-jamanetwork&utm_content=author-author_engagement&utm_term=1m
https://arxiv.org/abs/2006.08690
http://jmlr.org/papers/v20/18-615.html
https://arxiv.org/abs/1806.10574




