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Problem spectrum

age   45
congestive heart failure?   yes
takes  aspirin
smoking?  no
gender   M
exercise?  yes
allergies?  no
number of past strokes   2
diabetes? yes

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave



Neural networks
With minor pre-processing, all 
methods have similar performance

Very sparse models (trees, scoring systems)

Problem spectrum

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data



• …But don’t they lose accuracy?

- Explainable Machine Challenge (credit scoring data from FICO) 

- Florida COMPAS data (criminal recidivism)



Glenn Rodriguez was denied parole because 
of a miscalculated “COMPAS” score.

How accurate is COMPAS? 

A typographical error in a COMPAS score can 
lead to years of extra prison time.



COMPAS vs. CORELS

CORELS:  (Certifiably Optimal RulE ListS, with 
Elaine Angelino, Nicholas Larus-Stone, Daniel 
Alabi, and Margo Seltzer, KDD 2017 & JMLR 2018)

Here is the machine learning model:

COMPAS: (Correctional Offender 
Management Profiling for 

Alternative Sanctions) 

If age=19-20 and sex=male, then predict arrest
else if age=21-22 and priors=2-3 then predict arrest
else if priors >3 then predict arrest
else predict no arrest



Prediction of re-arrest within 2 years



Prediction of re-arrest within 2 years
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The Extremes of 
Interpretability:

•Optimal decision trees
•Scoring systems

Seizure

1. Any cEEG Pattern with Frequency 2 Hz 1 point · · ·
2. Epileptiform Discharges 1 point + · · ·
3. Patterns include [LPD, LRDA, BIPD] 1 point + · · ·
4. Patterns Superimposed with Fast or Sharp Activity 1 point + · · ·
5. Prior Seizure 1 point + · · ·
6. Brief Rhythmic Discharges 2 points + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6+
RISK <5% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

1. Brief Rhythmic Discharges 2 points · · ·
2. Patterns Include LPD 2 points + · · ·
3. Prior Seizure 1 point + · · ·
4. Epileptiform Discharge 1 point + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6
RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%
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rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

Friday?

trafficno traffic

NY
traffic

construction?

Y N

Wrong split? Too bad!

Optimal Sparse Decision Trees
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Optimal sparse decision trees is NP hard. 
Factorial in the number of variables.



rain?
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construction?

:

construction?
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NY

Splitting conditions

Greedy construction: both the splitting 
and pruning conditions are based on 
statistical testing.
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Pruning conditions

Greedy construction: both the splitting 
and pruning conditions are based on 
statistical testing.



Automatic Interaction Detection (AID) (Morgan & Sonquist, 1963) regression trees 

THeta Automatic Interaction Detection (THAID) (Messenger & Mandell, 1972), classification trees

CHi-squared Automatic Interaction Detector (CHAID) (Kass, 1980) 

Classification And Regression Trees (CART) (Breiman et al., 1984

ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993)

Ensemble methods: Random Forest, 
Boosted Decision Trees, BART

Global tree optimization, mid-1990’s

1994

Other problems:
longitudinal data, survival curves: 
Segal (1992), Simonoff (several papers) 

Improvements in splitting criteria for classification and regression
Hypothesis tests, de-biasing (Strobl), missing variables

Tutorials (Murthy 1998, Loh 2014, L. Rokach & O. Maimon 2004 - beware) 

Bennett, Street, Mangasarian
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Ensemble methods: Random Forest, 
Boosted Decision Trees, BART

Global tree optimization, mid-1990’s

Other problems:
longitudinal data, survival curves: 
Segal (1992), Simonoff (several papers) 

Improvements in splitting criteria for classification and regression
Hypothesis tests, de-biasing (Strobl), missing variables

Bennett, Street, Mangasarian

What I hope:
“Trees are sometimes 10% worse than ensembles.”
“We can’t tell how close to optimality our trees are.”
“We need new splitting criteria for each objective.” 

“Trees sometimes choose irrelevant variables.”

Fully optimal decision trees. User picks objective: 

Regularize with sparsity for interpretability.

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Adapt to handle missing data / biases, etc.

Adapt to other problems



Fully optimal decision trees. User picks objective: 

Regularize with sparsity for interpretability.

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.



Fully optimal decision trees. User picks objective: 

Regularize with sparsity for interpretability.

classification accuracy, weighted accuracy, F-
score, AUC, partial AUC, precision, recall, etc.

Approaches:
- Genetic programming (e.g., Fan & Gray, 2005, Janikow & Malatkar, 2011), or neural networks

- no optimality gap
- For classification data that is able to be perfectly separated: SAT solvers (Narodytska et al., 2018, Janota 2020) 

- Mathematical programming solvers (Bennett mid-1990’s, Blanquero et al., 2018, Menickelly et al., 2018; Vilas 
Boas et al., 2019, Verwer & Zhang, BinOCT 2019) 

- Dynamic programming / Branch and Bound 
- Garofalakis et al., DTC, 2003 (less relevant since it just finds subtrees of greedy-grown trees)
- Nijssen & Fromont, DL8, 2007, Nijssen et al., DL8.5, 2020
- Angelino et al, CORELS, 2018, Hu et al., OSDT 2019, Lin et al., GOSDT, 2020

with Jimmy Lin, Chudi Zhong, Diane Hu, Margo Seltzer



An example of an optimal tree on the Broward 
County Florida re-arrest data

Misclassification error Sparsity

L̂(tree,{(xi , yi )}i ) =
1
n i=1

n

∑1[tree(xi )≠ yi ]
+C(# leaves in tree)

min
tree
L̂(tree,{(xi , yi )}i ) where



Start with the full dataset and a naive label

Dynamic programming / Branch and Bound 



Split it into subsets using each feature

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label



Split it into subsets using each feature

Keep splitting (if permitted)

Can’t 
split 

anymore

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label



Split it into subsets using each feature

Keep splitting (if permitted)

Consolidate any duplication found. Identical 
subproblems

Dynamic programming / Branch and Bound 

Start with the full dataset and a naive label

Can’t 
split 

anymore



Dynamic programming / Branch and Bound 



The solution to each 
subproblem yields the best 
feature to split on. 

Dynamic programming / Branch and Bound 



The optimal solution is found after all 
subproblems are “completed” 

Dynamic programming / Branch and Bound 

The solution to each 
subproblem yields the best 
feature to split on. 

Some subproblems can be 
proven to yield non-optimal 
solutions



Dynamic programming / Branch and Bound 

Theorems show that some partial trees can never be extended to form optimal trees.

Analytical Bounds Reduce the Search Space
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Dynamic programming / Branch and Bound 

Theorems show that some partial trees can never be extended to form optimal trees.

Analytical Bounds Reduce the Search Space



Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

tornado?

Not enough data

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

If the amount of data traveling through an internal node is < 2C  (where C is the 
regularization parameter), the tree cannot achieve the minimum of the objective.

“Theorem”: 



rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

tornado?

Not accurate data

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

If a proposed split leads to < C correctly classified data going to either side of the split, then 
this split can be excluded, and we can exclude that feature anywhere further down the tree 
extending that leaf. 

“Theorem”: 



rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

tornado?

One step lookahead

Analytical Bounds Reduce the Search Space

Theorems show that some partial trees can never be extended to form optimal trees.

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Consider a tree with lower bound b ≤ Rcurrent best. 
If b + C ≥ Rcurrent best, we can prune all of its child trees. 

“Theorem”: 



Represent a tree by its leaves

rain?

Y N

no traffic

rush hour?

NY
Construction?

no traffictraffic

NY

Friday?

trafficno traffic

NY
traffic

construction?

Y N

rain & construction & traffic

rain & no construction & no traffic

no rain & rush hour & construction & traffic

no rain & rush hour & no construction & Friday and no traffic

no rain & rush hour & no construction & Friday and traffic

no rain & no rush hour & no traffic

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)



Permutation map: Discover identical trees already evaluated

rain?

Y N

no traffic

rush hour?

NY
Construction?

no traffictraffic

NY

Friday?

trafficno traffic

NY
traffic

construction?

Y N

rain & construction & traffic

rain & no construction & no traffic

no rain & rush hour & construction & traffic

no rain & rush hour & no construction & Friday and no traffic

no rain & rush hour & no construction & Friday and traffic

no rain & no rush hour & no traffic

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)



Bit-vectors describe data represented by each leaf

rain?

Y N

no traffic

rush hour?

NY
construction?

no traffictraffic

NY

Friday?

trafficno traffic

NY
traffic

construction?

Y N

rain & construction & traffic
[1000010001001110000………………………0]
rain & no construction & no traffic
[0110001000000000110………………………1]
no rain & rush hour & construction & traffic
[0001000100000001000………………………0]
no rain & rush hour & no construction & Friday and no traffic
[0000100000000000001………………………0]
no rain & rush hour & no construction & Friday and traffic
[0000000010000000000………………………0]
no rain & no rush hour & no traffic
[0000000000011000000………………………0]

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)



Incremental computation of objective and bounds

rain?

Y N

no traffic

rush hour?

NY
construction?

no trafficFriday

NY

Friday?

trafficno traffic

NY
traffic

construction?

Y N
no traffictraffic

NY

bound=0.24
vector = [01110010101010001]

bound = compute_bound(   ,  )
vector = compute_captures ( )

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

L̂(tree,{(xi , yi )}i ) =
1
n i=1

n

∑1[tree(xi )≠ yi ]
+C(# leaves in tree)



Strong analytical bounds

Leaf-based representation

Permutation map

Caching of intermediate results

Incremental computation

Consolidation of repeated subproblems 

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Fast Implementation



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

• Can optimize any loss function monotonically increasing in FP and FN (Balanced 
accuracy, weighted accuracy, F-1, precision, …)

• Can optimize rank statistics (AUC and partial AUC under the ROC convex hull)



GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

• Can optimize any loss function monotonically increasing in FP and FN (Balanced 
accuracy, weighted accuracy, F-1, precision, …)

• Can optimize rank statistics (AUC and partial AUC under the ROC convex hull)

Main experimental results:
- Similar classification error to black box methods. 
- For custom losses, much better loss values than greedy decision trees. 
- Sparser than all heuristic methods
- Orders of magnitude faster than the next best method.



Optimal but 
not scalable

Scalability

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Scalable
+

Optimal

Scalable but 
not optimal

Note: BinOCT too slow to include.

Improvements in 
orders of 
magnitude 

(s
ec

)



Scalable
+

Optimal

Scalable but 
not optimal

Optimal but 
not scalable

Scalability

GOSDT - Generalized and Scalable Optimal Sparse Decision Trees
(Lin et al., ICML 2020)

Note: BinOCT too slow to include.

Improvements in 
orders of 
magnitude 



In this talk

•Optimal decision trees
•Scoring systems

Seizure

1. Any cEEG Pattern with Frequency 2 Hz 1 point · · ·
2. Epileptiform Discharges 1 point + · · ·
3. Patterns include [LPD, LRDA, BIPD] 1 point + · · ·
4. Patterns Superimposed with Fast or Sharp Activity 1 point + · · ·
5. Prior Seizure 1 point + · · ·
6. Brief Rhythmic Discharges 2 points + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6+
RISK <5% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

1. Brief Rhythmic Discharges 2 points · · ·
2. Patterns Include LPD 2 points + · · ·
3. Prior Seizure 1 point + · · ·
4. Epileptiform Discharge 1 point + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6
RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%
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Scoring systems
10





Pennsylvania Commission on Sentencing, 2013
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Pennsylvania Commission on Sentencing 

FACTOR Score *
Gender

Female 0
Male 1

Age
Less than 24 3
24-29 2
30-49 1
50+ 0

County
Rural counties 0
Smaller, urban counties 1
Allegheny and 
Philadelphia 
Counties 

2

Total number of prior arrests 
0 0
1 1
2 to 4 2
5 to 12 3
13+ 4

Prior property arrests
No 0
Yes 1

Prior drug arrests
No 0
Yes 1

Property offender
No 0
Yes 1

Offense gravity score (OGS)
4+ 0
1 to 3 1

* Total Possible Range is 0 to 14. 

Table 1.  Risk Scale 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Validation 1 Sample: 2004-2006  
 
Sample Description.  Table 2 shows the description of the Development sample [N=17,798] and the first 
validation sample [N=17,750].  The samples are virtually identical, with no significant differences 
between them.  In both samples, most of the offenders were male [86%], from an urban county [83%], 
and had a mean age of 31.  Almost half, 45%, were Black, 44% were white, and about 9% were Hispanic.  
The average Offense Gravity Score was 5 [based on a scale of 1- 8 used for this sample], with the largest 
number of offenders being convicted of a drug offense [42%], followed by property [28%], personal 
[18%], firearms [4%], and other [6%] offenses.  About 47% of the sample had more than one current 
conviction.  The majority [85%] of offenders had at least one prior arrest, and had a previous arrest for a 
personal [53%], property [60%], and/or drug [54%] offense. Most of the offenders had prior convictions 
[70%], with a mean PRS of 2 [on a scale of 0 to 6].  The most common sentence imposed was jail [56%], 
with the remaining offenders receiving prison [12%], probation [19%], and county intermediate 
punishment [11%].   About 52% of the offenders in the sample were re-arrested within three years. 

 
 

 

 
 
 

Pennsylvania Commission on Sentencing 

Risk 
score N

% 
Arrested N

% 
Arrested N

% 
Arrested 

0 3 0.0 2 0.0 1 0.0
1 47 17.0 35 22.9 12 0.0
2 181 9.9 138 12.3 43 2.3
3 436 23.6 348 21.8 88 30.7
4 737 24.8 591 25.4 146 22.6
5 1,036 32.4 846 33.3 190 28.4
6 1,067 40.7 877 41.4 190 37.4
7 1,434 47.2 1,136 48.2 298 43.3
8 1,934 55.5 1,552 54.5 382 59.4
9 2,103 62.3 1,724 61.9 379 64.1
10 1,829 69.9 1,529 68.5 300 77.0
11 1,098 72.2 961 71.7 137 75.9
12 278 79.1 254 78.4 24 87.5
13 25 80.0 23 78.3 2 100.0
14 3 66.7 3 66.7 0 --

12,211 52.9 10,019 53.0 2,192 52.1

Jail only

Table 6. The Recidivsm rate by risk score for offenders who were incarcerated.

The two lowest and two highest risk scores are not depicted in 
figure due the low number of cases.

Incarceration Prison only
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Recidivism rate by risk score for prison and jail 
sentences.

prison

jail

The impact analysis was conducted for all possible risk categories where the recidivism rate was lower 
than the overall recidivism rate of 52%.  Thus, the analysis was conducted for all groupings of risk 
categories from 0-1 through 0-7.  The overall impact for all categories was to decrease incarceration, 
particularly jail sentences [See Appendix A for details in the shift in sentencing for each risk category].  
The number of offenders estimated to move from incarceration to probation ranged from 14 [lower risk 
defined as 0-1] to 1,052 [lower risk defined as 0-7]. 
 
However, it is important to also examine the recidivism rates and the False Positive/False Negative Ratio 
for these categories, along with the impact.   The False Positive/False Negative Ratio represents the 
number of offenders incorrectly predicted to reoffend for each person incorrectly predicted not to 
reoffend. For example, if we define lower risk as having a risk score of 0-1, the error rate for 
overpredicting arrest is high; for every person incorrectly predicted to not recidivate, there were 710 
offenders incorrectly predicted to recidivate.    The recidivism rate of 14% for this risk group of 0-1, 
however, is much lower than the overall average of 52%.    On the other hand, if lower risk is defined as 
having a risk score of 0-7, the error rate is low; for every offender incorrectly predicted to not recidivate, 
there was one offender incorrectly predicted to recidivate. However, the recidivism rate for this group is 
much higher at 35%, and includes offenders with recidivism rates of 47% [risk score of 7], close to the 
52% average recidivism rate.  If the major issue in determining the cut-off point for low risk is trying to 
ensure the lowest recidivism rate, this could result in overincarceration.  If the major issue is trying to 
reduce incarceration, then this could result in higher recidivism rates. These two examples are the 
extremes, and the cut-off point for defining lower risk offenders would most likely lie between these 
groups, balancing the issues of recidivism and incarceration.  
 
Approach 2: Incarcerated Offenders 
 
An alternative approach to the identification of lower risk offenders would be to identify those offenders 
appropriate for diversion from incarceration.  For this approach, only those offenders who were 
incarcerated were included in the analysis.  [There were 320 offenders who had an Offense Gravity Score 
of 9 who were removed from this analysis, as they were deemed to be inappropriate candidates for 
diversion].   
 
Table 6 shows the number of offenders incarcerated [prison and jail combined], as well as the number 
sentenced to prison and jail separately, by risk score.  The overall recidivism rate was virtually the same 
for offenders going to prison [52%] and jail [53%].   Further, the recidivism rate by risk score was similar 
regardless of sentence type.    
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Violence Risk Appraisal Guide (Quinsey et al, 2006)

Page 4 of 14 
 

*Source: American Psychological Association; Quinsey, Harris, Rice and Cormier, 2nd Edition (2006); Violent Offenders: 
Appraising and Managing Risk; APA, Washington D.C. 
 

Violence Risk Appraisal Guide (VRAG) Items: 
 
1. Lived with both biological parents to age 16 
(except for death of parent): 
Yes ........................................................... -2 
No ............................................................ +3 
Evidence: 
 
2. Elementary School Maladjustment: 
No Problems............................................. -1 
Slight (Minor discipline or attendance) 
or Moderate Problems............................. +2 
Severe Problems (Frequent disruptive 
behavior and/or attendance or behavior 
resulting in expulsion or serious 
suspensions) ........................................... +5 
(Same as CATS Item) 
 
3. History of alcohol problems (Check if 
present): 
˜ Parental Alcoholism  ˜ Teenage Alcohol Problem 
˜ Adult Alcohol Problem  ˜ Alcohol involved in prior offense 
˜ Alcohol involved in index offense 

No boxes checked.................................... -1 
1 or 2 boxes checked .............................. . 0 
3 boxes checked ..................................... +1 
4 or 5 boxes checked .............................. +2 
Evidence: 

 
4. Marital status (at the time of or prior to index 
offense): 
Ever married (or lived common law in the 
same home for at least six months) ......... -2 
Never married.......................................... +1 
Evidence: 
 
5. Criminal history score for nonviolent 
offenses prior to the index offense 
Score 0 ..................................................... -2 
Score 1 or 2...............................................  0 
Score 3 or above ..................................... +3 
(from the Cormier-Lang system, see below) 
 
6. Failure on prior conditional release (includes 
parole or probation violation or revocation, 
failure to comply, bail violation, and any new 
arrest while on conditional release): 
No...............................................................0 
Yes .......................................................... +3 
Evidence: 
 
7. Age at index offense 
Enter Date of Index Offense: ___/___/_____ 
Enter Date of Birth: ___/___/_____ 
Subtract to get Age: 
39 or over ................................................. -5 
34 - 38 ...................................................... -2 
28 - 33 ...................................................... -1 
27 ...............................................................0 
26 or less.................................................  +2 

8. Victim Injury (for index offense; the most 
serious is scored): 
Death........................................................ -2 
Hospitalized................................................0 
Treated and released............................... +1 
None or slight (includes no victim)........... +2 
Note: admission for the gathering of forensic 
evidence only is NOT considered as either 
treated or hospitalized; ratings should be 
made based on the degree of injury. 
Evidence: 
 
9. Any female victim (for index offense) 
Yes ........................................................... -1 
No (includes no victim)............................. +1 
Evidence: 
 
10. Meets DSM criteria for any personality 
disorder (must be made by appropriately 
licensed or certified professional) 
No............................................................. -2 
Yes .......................................................... +3 
Evidence: 
 
11. Meets DSM criteria for schizophrenia (must 
be made by appropriately licensed or 
certified professional) 
Yes ........................................................... -3 
No ............................................................ +1 
Evidence: 
 
12. a. Psychopathy Checklist score (if available, 
otherwise use item 12.b. CATS score)........ 
4 or under ................................................. -3 
5 – 9.......................................................... -3 
10-14 ........................................................ -1 
15-24 ......................................................... 0 
25-34 ....................................................... +4 
35 or higher ........................................... +12 
Note: If there are two or more PCL scores, 
average the scores. 
Evidence: 
 
12. b. CATS score (from the CATS worksheet) 
0 or 1 ........................................................ -3 
2 or 3 ..........................................................0 
4 ...............................................................+2 
5 or higher ............................................... +3 
 
 
12. WEIGHT (Use the highest circled weight 
from 12 a. or 12 b.) .........................  _____ 
 
TOTAL VRAG SCORE (SUM CIRCLED 
SCORES FOR ITEMS 1 – 11 PLUS THE 
WEIGHT FOR ITEM 12):   _________ 

Page 9 of 14 
 

*Source: American Psychological Association; Quinsey, Harris, Rice and Cormier, 2nd Edition (2006); Violent Offenders: 
Appraising and Managing Risk; APA, Washington D.C. 
 

 
VRAG 

 
 

VRAG Score Category of Risk 
  

-24 Low 
-23 Low 
-22 Low 
-20 Low 
-19 Low 
-18 Low 
-17 Low 
-16 Low 
-15 Low 
-14 Low 
-13 Low 
-12 Low 
-11 Low 
-10 Low 
-9 Low 
-8 Low 
-7 Medium 
-6 Medium 
-5 Medium 
-4 Medium 
-3 Medium 
-2 Medium 
-1 Medium 
0 Medium 
1 Medium 
2 Medium 
3 Medium 
4 Medium 
5 Medium 
6 Medium 
7 Medium 
8 Medium 
9 Medium 

10 Medium 
11 Medium 
2 Medium 

13 Medium 
14 High 
15 High 
16 High 
17 High 
18 High 
19 High 
20  High 
21 High 
22 High 
23 High 
24 High 
25 High 
26 High 
28 High 
32 High 

 
 









(Gage et al., 2001), CHADS2 score for stroke prediction: panel of experts

(Antman et al., 2000), TIMI risk score for unstable angina/non-ST elevation MI: preliminary 
feature selection, followed by logistic regression with the chosen features, scaling, and rounding 

Typical approach:

Key challenges:
• Constraints (e.g., FP<20%, fairness, etc.)
• Integrality 



Rounding can go against 
the performance gradient

Coefficient 1

Coefficient 2

5 6 7 8

3

4

5

6

Logistic loss 



SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD] 
+ 0.31 Prior Seizure 
+ 0.21 Epileptiform Discharges 
+ 0.26 Patterns Superimposed with Fast or Sharp Activity 
+ 0.25 Brief Rhythmic Discharges 
– 2.54

Elastic Net



SCORE = 1 Rhythmic Patterns Include [BiPD, LRDA, LPD] 
+ 0 Prior Seizure 
+ 0 Epileptiform Discharges 
+ 0 Patterns Superimposed with Fast or Sharp Activity 
+ 0 Brief Rhythmic Discharges 
– 3

Elastic Net + Rounding



SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD] 
+ 0.31 Prior Seizure 
+ 0.21 Epileptiform Discharges 
+ 0.26 Patterns Superimposed with Fast or Sharp Activity 
+ 0.25 Brief Rhythmic Discharges 
– 2.54

Elastic Net



SCORE = 6 Rhythmic Patterns Include [BiPD, LRDA, LPD] 
+ 1 Prior Seizure 
+ 1 Epileptiform Discharges 
+ 1 Patterns Superimposed with Fast or Sharp Activity 
+ 1 Brief Rhythmic Discharges 
– 10

Elastic Net + Scaling + Rounding



SCORE = 1.42 Rhythmic Patterns Include [BiPD, LRDA, LPD] 
+ 0.31 Prior Seizure 
+ 0.21 Epileptiform Discharges 
+ 0.26 Patterns Superimposed with Fast or Sharp Activity 
+ 0.25 Brief Rhythmic Discharges 
– 2.54

Elastic Net



RiskSLIM model (optimized)

Ustun & R, Optimized Risk Scores, JMLR 2019

(This one is better calibrated and has large AUC.)



Logistic 
Loss

Model 
Size

Small 
Integer 

Coefficients

Risk-Calibrated Supersparse Linear Integer Models (Risk-SLIM)
(Ustun, R, 2019)

(optional: additional constraints)

min
!∈#

$
$%&

'

log 1 + 𝑒()!𝒙!
⊺! + 𝐶 𝜆 +

𝜆 ∈ 𝐿

MINLP – really hard…  



Cutting Planes (Traditional)

min
!
$
$%&

'

log 1 + 𝑒()!𝒙!
⊺!



Model Coefficients
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Value

Traditional cutting planes
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⊺!
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Model Coefficients

Optimal Solution

Objective 
Value

Traditional cutting planes



• Something goes wrong when creating models with integer coefficients.



Model Coefficients

Objective 
Value

Traditional cutting planes



Model Coefficients

Objective 
Value

solver computes this

Traditional cutting planes
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Model Coefficients

Objective 
Value

Traditional cutting planes

MIP, not LP
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Ustun and Rudin

increasingly di�cult to optimize as the approximate loss function improves with each iter-
ation. On the d = 10 instance, CPA does not stall as the MIP solver is powerful enough
to solve the surrogate problem RiskSlimMIP

�
H

k(✓, �)
�

at all iterations. On the d = 20
instance, however, the time to solve RiskSlimMIP

�
H

k(✓, �)
�

increases exponentially and
CPA eventually stalls at iteration k = 86. In this case, the best feasible solution returned
by CPA has a large optimality gap, and corresponds to a risk score model with poor per-
formance (which we would expect as it was fit by optimizing a surrogate problem with a
poor approximation of the original loss function).
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Figure 4: Performance of CPA when solving RiskSlimMINLP instances for simulated datasets
with d = 10 (left) and d = 20 (right) and N = 50’000 (see Appendix C). We show the
optimality gap (top) and time per iteration (bottom, in log-scale) for each iteration over
6 hours. CPA quickly solves the d = 10 instance, but stalls on the d = 20 instance as the
time to solve RiskSlimMIP to optimality increases exponentially starting at iteration 86.
In this case, the best solution found after 6 hours is a risk score with poor performance.

There is no easy fix to prevent cutting plane algorithms such as CPA from stalling
on non-convex problems. This is because these algorithms are designed in a way that
requires a provably optimal solution at each iteration to compute a valid lower bound and

13

Seconds per iteration

Optimality Gap

Stalling in traditional 
cutting planes



RiskSLIM’s Lattice Cutting Plane Algorithm  
(Ustun & Rudin, KDD 17)
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Lattice cutting plane algorithm



Ustun and Rudin

increasingly di�cult to optimize as the approximate loss function improves with each iter-
ation. On the d = 10 instance, CPA does not stall as the MIP solver is powerful enough
to solve the surrogate problem RiskSlimMIP

�
H

k(✓, �)
�

at all iterations. On the d = 20
instance, however, the time to solve RiskSlimMIP

�
H

k(✓, �)
�

increases exponentially and
CPA eventually stalls at iteration k = 86. In this case, the best feasible solution returned
by CPA has a large optimality gap, and corresponds to a risk score model with poor per-
formance (which we would expect as it was fit by optimizing a surrogate problem with a
poor approximation of the original loss function).
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Figure 4: Performance of CPA when solving RiskSlimMINLP instances for simulated datasets
with d = 10 (left) and d = 20 (right) and N = 50’000 (see Appendix C). We show the
optimality gap (top) and time per iteration (bottom, in log-scale) for each iteration over
6 hours. CPA quickly solves the d = 10 instance, but stalls on the d = 20 instance as the
time to solve RiskSlimMIP to optimality increases exponentially starting at iteration 86.
In this case, the best solution found after 6 hours is a risk score with poor performance.

There is no easy fix to prevent cutting plane algorithms such as CPA from stalling
on non-convex problems. This is because these algorithms are designed in a way that
requires a provably optimal solution at each iteration to compute a valid lower bound and
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≥ 6≤ 5

Logistic loss

Cutting Plane Approximation

1     2     1     5.5     6.3     3.8     1     0      9     7

5.5

(Ustun, R, JMLR 2019)

Risk-SLIM

2 subproblems

If a subproblem leads to a feasible integer solution, 
add a cutting plane.
Otherwise split into 2 subproblems (linear programs).
If min cutting planes = objective, solved!

RiskSLIM’s Lattice Cutting Plane Algorithm (LCPA)

min
!∈#

$
$%&

'

log 1 + 𝑒()!𝒙!
⊺!



• LCPA is the only method that generates solutions within a reasonable time.
• MINLP solvers don’t work
• standard cutting planes require solving larger and larger MIPs.

(Ustun, R, JMLR 2019)

Risk-SLIM



Polishing with SequentialRounding and Discrete Coordinate Descent (DCD)
(Ustun, R, 2019)

“1-opt solution”

1     2     1     5.5     6.3     3.8     1     0      9.8     7

1     2     1     5.5     6.3        4 1     0      9.8     7
1     2     1        5 6.3        4     1     0      9.8     7

1     2     1        5       7        4     1     0      9.8     7
1     2     1        5        7        4     1     0       10 7
1     2     1        5        7        4     2 0       10     7
1     2    4        5        7        4     1     0       10     7
1     1 4        5        7        4     1     0       10     7

SequentialRounding

DCD



• Seizure are common (20%)
• Seizureà Brain Damage
• Need EEG to detect seizures

Need to use EEG data to predict 
seizures, determine EEG duration

EEG is expensive and limited: 24hrs of 
monitoring is $1600-$4000

Preventing Brain Damage in Critically Ill Patients

CT-angiography, Anterior Communicating 
Saccular Aneurysm

Head CT without contrast showing 
Subarachnoid Hemorrhage



Seizure

1. Any cEEG Pattern with Frequency 2 Hz 1 point · · ·
2. Epileptiform Discharges 1 point + · · ·
3. Patterns include [LPD, LRDA, BIPD] 1 point + · · ·
4. Patterns Superimposed with Fast or Sharp Activity 1 point + · · ·
5. Prior Seizure 1 point + · · ·
6. Brief Rhythmic Discharges 2 points + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6+
RISK <5% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

1. Brief Rhythmic Discharges 2 points · · ·
2. Patterns Include LPD 2 points + · · ·
3. Prior Seizure 1 point + · · ·
4. Epileptiform Discharge 1 point + · · ·

SCORE = · · ·

SCORE 0 1 2 3 4 5 6
RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

4

• 2HELPS2B was not created by doctors
• It is a ML model
• It is just as accurate as black box models.
• Doctors can decide themselves whether 

to trust it
• Doctors can calibrate the score with 

information not in the database
• Score can be explained to non-physicians

2HELPS2B



There are many 
variables to 
choose from.



CT-angiography, Anterior Communicating 
Saccular Aneurysm

Head CT without contrast showing 
Subarachnoid Hemorrhage

1-Hour Screening EEG

2HELPS2B=3 (high-risk)

• Placed on Continuous EEG for >72H
• Start on preventative medications

Preventing Brain Damage in Critically Ill Patients



So far…

• Resulted in 63.6% reduction in duration of EEG 
monitoring per patient
• $1,134.831 saving per patient1

• 2.82 X More Patients Monitored
• $6.1M estimated savings in FY 2018 at MGH,UW

• Implemented: University of Wisconsin, 
Massachusetts General Hospital/Harvard 
Medical School 

• Ongoing implementation: Emory University, 
Duke University, Medical University of South 
Carolina, Free University of Brussels (Belgium)

12016 Medicare Reimbursement Most Common Professional Code

• 2HELPS2B validated on independent 
multicenter cohort (N=2111)



Neural networks
With minor pre-processing, all 
methods have similar performance

Very sparse models (trees, scoring systems)

Problem spectrum

Raw: Features are individually uninterpretable
- pixels/voxels, words, a bit of a sound wave

Tabular: All features are interpretable
- many problems in criminal justice, healthcare, 

social sciences, equipment reliability & 
maintenance, etc. 

- features include counts, categorical data



Interpretable neural networks?





Chaofan

Oscar

NeurIPS 2019 (spotlight)

Accuracy  black box baselines ~~
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Base model: VGG-16



Base model: DenseNet161



- Even for computer vision, we can still have an interpretable model of 
the same accuracy as a black box.



The Idea
• Create a latent space that tells us how it is disentangling concepts
• Form the latent space so that its axes represent known concepts
• It’s easy to do: Just replace a batch normalization step with a 

“Concept Whitening” step.
• Instead of normalizing, whiten and rotate.

Nature Machine Intelligence, accepted, Oct 2020



Aaron F. Struck, Berk Ustun, ….., Cynthia Rudin, M Brandon Westover.
Association of an Electroencephalography-Based Risk Score With Seizure Probability in Hospitalized 
Patients. JAMA Neurology, 2017

Summary
• Trees: Modern decision tree methods are not your old CART.
• Scoring systems: Rounding linear model coefficients can go against 

the performance gradient. LCPA helps.
• Interpretable neural networks for computer vision: yes, they exist.

Thanks!

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo Seltzer
Generalized and Scalable Optimal Sparse Decision Trees. ICML, 2020. 

Berk Ustun and Cynthia Rudin
Learning Optimized Risk Scores. JMLR, 2019. Shorter version at KDD 2017. 

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Barnett, Jonathan Su, Cynthia Rudin
This Looks Like That: Deep Learning for Interpretable Image Recognition. NeurIPS, 2019.

Zhi Chen, Yijie Bei, Cynthia Rudin
Concept Whitening for Interpretable Image Recognition. Nature Machine Intelligence, accepted 2020.

https://jamanetwork.com/journals/jamaneurology/fullarticle/2656833?utm_source=jps&utm_medium=email&utm_campaign=author_alert-jamanetwork&utm_content=author-author_engagement&utm_term=1m
https://arxiv.org/abs/2006.08690
http://jmlr.org/papers/v20/18-615.html
https://arxiv.org/abs/1806.10574



