Algorithmic Challenges in High-Dimensional
Inference Models. Insights from Statistical
Physics

David Gamarnik

MIT
Operations Research Center and IDSS

MADDD Seminar
Joint work with Quan Li (MIT), llias Zadik (NYU),

Subhabrata Sen (Harvard), Aukosh Jagannath (U of
Waterloo)



Computational Challenges in High-Dimensional Infrerence




Computational Challenges in High-Dimensional Infrerence

Modern day inference challenges are characterized by



Computational Challenges in High-Dimensional Infrerence

Modern day inference challenges are characterized by

@ Model size (BIG Data)

@ Structure of parameters (sparsity, discreteness,
low-dimensionality, etc.)
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Modern day inference challenges are characterized by

@ Model size (BIG Data)

@ Structure of parameters (sparsity, discreteness,
low-dimensionality, etc.)

@ Uncertainty (thus NP-completeness is not useful)
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Computational Challenges in High-Dimensional Infrerence

We need a new theory addressing computational hardness and
tractability
@ High-dim problems are computationally challenging, giving
arise to the so-called Information Theoretic vs
Computation gap.
@ What's the reason?
@ Statistical Physics can help: topology of the solution
space and phase transition, Overlap Gap Property (OGP)
phase transition



Example I: Largest Submatrix Problem

Given m x n matrix J

J11 J1n
Jd = : : ,
Jm‘] Jmn
Find a k x ¢ submatrix
[ J11 J1n i
Ji Pl
| It Jmn |

with the largest average entry Ave(J; ) = >y Jit, i
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Who cares?..

@ Bi-clustering: applications in genetics, drug design,
energy and social networks.

@ Genomics: J is gene vs expression data.
m=2,500 — 15,000, n = 10 — 150 Madeira & Oliveira
survey [2004], Fortunato et al [2010], Shabalin et al [2009].

s S
] A B c D E F [ H
1 [AciD Expl Exp2 Exp3 Expd ExpS Expb
2 [NM_007818 6754085 7052409 8024376 35012  5697.47 242672
3 |NM_001105160| 81183 80136 74071 12867 10442 10133
4_|Nm_028089 15041 21106 23619 9.05 23.33 8.44
5 |NM_016696 66.77 57.56 10108 7505 65984 49189
6 |NM_013458 33 1123 183 73582 81646 11822
7_|NM_007809 4534 36.12 5102 24527 37213 33567
& |Nm_009999 103.04 37021 20029 17.09 13.33 8.44
S |NM_133960 TI0878 697638  6569.00 1731 164181 185355
10 |NM_027881 1R 1016 2456 26833 18662 13511
11 |NM_054053 EET) 2483 1984 32368 42878 11611
12 |NM_ 007377 4781 89,17 7086 37093 37879 279.72
13 |NM_028064 70395 689.62 66229 21411 16885 14461
14 |NM_008182 22256 33973 22675 30.16 63.32 2633,
5 nm_o013661 1236 1129 85 9751 77.76 7178,
16 |NM_007815 20613.09 2521813 3154046 520907  7680.3 63122

[J Finding optimal solution takes a lot of time (days)
0 Many, many heuristics used (Div-Conq, Greedy,
Clust-Comb, Dist-ldent, Exh-Enum)
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@ Drug activity. Chemical compounds vs descriptor,
m ~ 10,000, n =~ 30, Liu & Wang [2003]

RBA and va

“Table 2. Observed and calculated Io

s of the three selected descriptors, PW2, Morl Sm and GAP-10 for the 23 progestins

ID** name Ref.  logRBA*  log RBA W2 MorlSm  GAP-10/eV
Obs. 5

¥ Progesieronc B 1602 1194 0620 0198 0094
2 17-Acctoxyprogestcrone 6 1204 1236 0620 0401 0139
3 17Hydroxyprogesterone 6 0079 0094 0631
4% 21Hydroxyprogesterone 6 1089 0954 0612
5 1IBHydroxyprogesterone 6 Liss Lax 0621
6 Methoxyprogesterone acetate s 2061 1418 062
7 Chloromadinone acetate 7 19750 2330 062:
8 Cyproterone acetate 7 L4 1228 0629
9 Testosterone 68 0097 0009 0624
108 5p-Pregnane-3.20-dione 6 0350 1092 0620
1 Ld-Pregnadine-3.20-dione 6 1318 1502 0620
12# 4.6-Pregnadine-3.20-dione 6 1310 1218 0620
13 Promegestone (R5020) 2000 2075 0604
14 16a-Ethyl-21-hydroxy-19-nor-4-pregnenc-320-ione 5.9 2504 255 0597

(Organon 2058)
15% Levonorg s 2079 2474 0605 0295 0046
16 19-Norprogesi 68 1827 1794 0610 0302 s
17 Norhisierone 10 1.866 1582 0615 0267 0099
18 3Keto-desogestrel 10 2827 253 0,607 0523 0079
19% Gestodene 10 2799 0605 0217 0074
20° 3Keto-allylestrenol 79 1886 2188 0.606 0199 0055
21 Norethinodrel 7 0845 1476 0615 0445 0153
2 19-Norestosterone 68 0944 0827 0613 0369 0243
23 Metribolone (RISS1) 7 2.146° 211 0625 0945 0112

*Confidence limits:2(1.906-2.035):2(1.322-1544):5(1.775 -1.975):9(0.544 - 1.021):€(2.021 - 2.276#The seven test set molecules: ®¥The remining 16

o the training set
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Theory Background

@ [Sun, Nobel [2013],[Bhamidi, Dey & Nobel 2013]
J == ./\/’(0, ln)
@ Global optimum when m = n, k = ¢ = o(log n)

Ave(Jp ) ~ 24/ Io%’ with high probability as n — oo
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@ Several algorithms analyzed in G & Li [2016]

@ The best of the three algorithms produces a matrix with
average entry

Ave(CAL) ~ 4? "’%

log n
<Ak

~ OPT.

@ as4/2/3 =1.885... < 2.
@ Nothing better is known.

@ Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.
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@ Random matrix with sparse rank-1 signal:

J=X0"- (0T + W, 6*{0,1}", s—sparse, W gN(O, In)

1 10 ...0
: Jiy
N 10 .0, ! I
= 0 ... 0 A
. . Jn1 -Jnn
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Example II: Spiked Matrix Detection

@ Random matrix with sparse rank-1 signal:

J=X0"- (0T + W, 6*{0,1}", s—sparse, W gN(O, In)

1 10 ...0
: Jig . d
N 10 .0, ! I
= 0 ..0 SR
T S Ini - Jnn
(0 ... 00 ... 0]

@ Problem: Learn 6* from J.
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@ Problem studied widely in recent years:
Lelarge, Miolane [2009]
Butucea & Ingster [2013],
Deshphande & Montanari [2014]
Lesieur, Krzakala, Zdeborova [2015,2017]
Dia, Macris, Krzakala, Lesieur, Zdeborova [2016]
Montanari, Reichman, Zeitouni [2015]
Jagannath, Lopato, Milane [2018]
G, Jagannath, Sen [2019]
@ State of the art understanding
[0 MLE (computed by brute force) recovers 6* reliably if and
only if A\ > Awro, G, Jagannath, Sen [2019]
[J Fast (poly-time) algorithm recovers 6* reliably when
A > Acomp Deshphande & Montanari [2014]
[l The regime Aivro < A < Acomp is ot understood. Does a

fast algorithm exist? Info/theory vs Computation gap
10/34
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Example lll: Sparse High-Dimensional Linear Regression

e Model Y = X3* + W

Yi X1 Xi2 ... Xip Ioh Wi

Yn Xn1 Xn2 an B; Wn

@ Goal: Recover g* from observed X and Y.
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Example lll: Sparse High-Dimensional Linear Regression

e Model Y = X3* + W

Yi X1 Xi2 ... Xip Ioh Wi

Yn Xn1 Xn2 an B; Wn

@ Goal: Recover g* from observed X and Y.
@ Sparsity: g* is sparse:

18%[lo < k.

11/34
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12/34



Background

@ MLE: solve (hard) quadratic minimization problem

mﬂin Y — XB5|2
Subject to: |||l = k.

@ Questions:

(a) Is the optimal solution Sopt @ good approximation of the
ground truth g*?
(b) How to solve this problem fast (poly-time)?

12/34
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Background

@ Spectacular success of convex optimization based
techniques, Donoho, Tanner, Wainwright, Hastie,
Tibshirani, Candes, Tao:

@ Replace ||5||o = k with a convex constraint ||3||1 = k and
solve the convex minimization problem.

@ Suppose entries of X and Y are i.i.d. Gaussian.

@ The method recovers the ground truth: Sopr = 8*.

@ Works when

n > 2klogp £ Nconvex,

(assuming k < n < p).
@ On the other hand (brute force) MLE solves the problem
when

2k |Og p Nconvex

log (1 n Lz) ~ log(1 + k/o?

loa

) = MNFO

13/34
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@ No algorithms are known in the regime (except noiseless
case)

Nconvex
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Challenging Regime

@ No algorithms are known in the regime (except noiseless
case)

Nconvex
log (1 + %)

@ Info/theory vs Computation gap.

A
MNFoO = < N < Nconvex

14/34
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Who is he culprit? Topological obstruction to algorithms

@ Many other examples: Random K-Sat, MaxCut on random
graphs, Stochastic Block Model, Planted Clique, Spiked
Tensor problem, Sparse Covariance Estimation problem,
Locally Computable One Way Functions, etc, etc.

@ Many of these problems appear to exhibit a complex
solution space topology in the hard regime and do not
exhibit it in the tractable regime

@ Topological obstruction come in the form of Overlap Gap
Property (OGP)

@ Discovered in the field of statistical mechanics (spin glass
theory)

15/34
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Overlap Gap Property

Generic minimization problem with random input X

min £(6, X).
0o

OGP holds if there exists R > 0, such that the set

{0:L£(0,%) < g;ig L(6,X)+ R}

is disconnected.

That is the set of R-optimal solutions is partitioned into
separate connected components.

16/34
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Overlap Gap Property

L6, %)

AN

R

min L9, X)
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Overlap Gap Property

L6, %)

mi
0

£(6,X)
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Ground truth signal 6* is observed via a noisy observation
x 2 x|,
Inferring signal 6* involves solving a minimization problem

0 = arg min L£(6,0%, X).

with the hope that 4 is close to 6*.
When is it "hard” to find signal 6*?
For every ¢ € [0, 1] consider

r) min  £(0,0%, X).

6:(16—6*||=

Plot I'.
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OGP in models with planted signal

Suppose T is not monotone.
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OGP in models with planted signal

Non-monotonicity leads to OGP: every R-optimal solution is
either m-close or m»-far from the ground signal 6*.

T2 1 ¢

22/34
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Overlap Gap Property

OGP is a provable obstacle to

@ local algorithms in sparse random graphs G & Sudan
[2014,2017], Rahman & Virag [2014], Coja-Oghlan,
Hagshenas & Hetterich [2016],

@ Markov Chain Monte Carlo methods G, Jagannath & Sen
[2019], G & Zadik [2019]

@ Approximate Message Passing type algorithm for finding
ground states in p-spin models G & Jagannath [2019]

23/34
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OGP for the Largest Submatrix Problem

Fix o € (0, 1) and two k x k submatrices Cy, C> with

AVG(C1) ~ AVG(CQ) ~ aOPT.

Theorem ( )

Foreach 0 < yy,y> < 1, the expected number of such pairs
Cy, Co with y1k common rows and y»k common columns is

eXp(f(ay}’1aY2) k Iog n) )
where

1 2

fla,y1,y2) =4 — y4 *YZ*WOZ g
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OGP for the Largest Submatrix Problem
Fix o € (0, 1) and two k x k submatrices Cy, C> with
AVG(C1) ~ AVG(CQ) ~ aOPT.

Theorem ( )

Foreach 0 < yy,y> < 1, the expected number of such pairs
Cy, Co with y1k common rows and y»k common columns is

eXp(f(a7Y1aY2)k|09 n)7

where

1
fla,y1,y2) =4 — y4 *)@*WOZZ-

f(a, y1, y2) < 0 implies no such pairs whp.

24/34
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@ Color points correspond to positive value of f.
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@ Color points correspond to positive value of f.
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@ Color points correspond to positive value of f.

1
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@ No OGP when 0 < e < 0.9625... .
@ Includes algorithmically achievable value 0.9425... .
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OGP when 0.9625... < aa < 1

The set of overlaps exhibits a gap.

01 02 03 04 05 06 07 08 09 1
N
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OGP in High-Dimensional Sparse Regression Problem

@ Consider the optimization problem parametrized by

¢€(0,1)

r(¢) & min Y — X3l

Subject to: ||5]|0 = k,
18" = Bllo = 2k¢.

27/34



Plot of I'. Monotonicity

When n > Nconvex

0.2

0.4 0.6
¢ - mistaken overlap

0.8

28/34



Plot of . Non-monotonicity and OGP

When NNeo < N < Nconvex
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When n < ninro

0.8

0.2

0.4 0.6
¢ - mistaken overlap

0.8 1

30/34



OGP Theorem

31/34



OGP Theorem

Theorem (

31/34



OGP Theorem

Theorem ( )

@ The OGP provably takes place when n < Chconyex fOr
sufficiently small constant ¢ > 0.

31/34



OGP Theorem

Theorem ( )
@ The OGP provably takes place when n < Chconyex fOr
sufficiently small constant ¢ > 0.
@ As a consequence, (a variant of) Gradient Descent
algorithm fails to find the ground truth regression vector 3*.
Conjecturally MCMC fails as well.

31/34



OGP Theorem

Theorem ( )

@ The OGP provably takes place when n < Chconyex fOr
sufficiently small constant ¢ > 0.

@ As a consequence, (a variant of) Gradient Descent
algorithm fails to find the ground truth regression vector 3*.
Conjecturally MCMC fails as well.

@ On the other hand, when n > cnconvex @nd c is sufficiently
large,

e No local minimum exist except 3*.

e The algorithm based on local improvement finds the ground
truth vector fast.

e The model does not exhibit the OGP,

31/34
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The OGP in Spiked Matrix Detection

For a certain range of values Ainro < A < Acomp the model
exhibits the OGP

E(q;p, ) A

E'hreshold

v

0 X q
P q1 q2 P

G, Jagannath, Sen [2019]
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Conclusions

Lessons learned:

@ Statistical physics offers a "new theory” of complexity of
inference problems arising in high-dimensional statistical
models

@ Challenge: the link between this new complexity theory
and the classical complexity paradigms such as
NP-hardness needs to be understood.

@ Conjecture: optimization problems with random input are
hard when they exhibit OGP.
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Thank you



