Algorithmic Challenges in High-Dimensional Inference Models. Insights from Statistical Physics

David Gamarnik

MIT Operations Research Center and IDSS

MADDD Seminar

Joint work with Quan Li (MIT), Ilias Zadik (NYU), Subhabrata Sen (Harvard), Aukosh Jagannath (U of Waterloo)

Computational Challenges in High-Dimensional Infrerence

Computational Challenges in High-Dimensional Infrerence

Modern day inference challenges are characterized by

Modern day inference challenges are characterized by

- Model size (BIG Data)
- Structure of parameters (sparsity, discreteness, low-dimensionality, etc.)

Modern day inference challenges are characterized by

- Model size (BIG Data)
- Structure of parameters (sparsity, discreteness, low-dimensionality, etc.)
- Uncertainty (thus NP-completeness is not useful)

Computational Challenges in High-Dimensional Infrerence

• High-dim problems are computationally challenging, giving a rise to the so-called *Information Theoretic vs Computation gap*.

- High-dim problems are computationally challenging, giving a rise to the so-called *Information Theoretic vs Computation gap*.
- What's the reason?

- High-dim problems are computationally challenging, giving a rise to the so-called *Information Theoretic vs Computation gap*.
- What's the reason?
- Statistical Physics can help: topology of the solution space and phase transition, Overlap Gap Property (OGP) phase transition

Example I: Largest Submatrix Problem

Given $m \times n$ matrix J

$$J = \begin{bmatrix} J_{11} & \dots & J_{1n} \\ \vdots & \ddots & \vdots \\ J_{m1} & \dots & J_{mn} \end{bmatrix},$$

Find a $k \times \ell$ submatrix

$$\begin{bmatrix} J_{11} & \dots & J_{1n} \\ \vdots & \begin{bmatrix} * & \dots & * \\ \vdots & J_{k,\ell}^* & \vdots \\ * & \dots & * \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \\ J_{m1} & \dots & J_{mn} \end{bmatrix},$$

with the largest average entry Ave $(J_{n,k}^*) = \frac{1}{k\ell} \sum J_{i_{\ell_1}, j_{\ell_2}}$

• Bi-clustering: applications in genetics, drug design, energy and social networks.

- Bi-clustering: applications in genetics, drug design, energy and social networks.
- Genomics: *J* is gene vs expression data.
 m = 2,500 15,000, *n* = 10 150 Madeira & Oliveira survey [2004], Fortunato et al [2010], Shabalin et al [2009].

J15		🛟 🕄 🕲 🌔 fx						
1	A	В	С	D	E	F	G	H
1	Acc ID	Exp1	Exp2	Exp3	Exp4	Exp5	Exp6	
2	NM_007818	67540.89	70924.09	80243.76	3501.2	5697.47	2426.72	
3	NM_001105160	811.93	801.36	740.71	128.67	104.42	101.33	
4	NM_028089	190.41	211.06	236.19	9.05	23.33	8.44	
5	NM_016696	66.77	57.56	101.09	750.9	659.84	491.89	
6	NM_013459	3.3	11.29	1.89	735.82	816.46	118.22	
7	NM_007809	45.34	36.12	51.02	245.27	372.13	335.67	
8	NM_009999	103.04	370.21	200.29	17.09	13.33	8.44	
9	NM_133960	7708.78	6976.38	6569.04	1731	1641.81	1853.55	
10	NM_027881	31.32	10.16	24.56	268.39	186.62	135.11	
11	NM_054053	31.32	24.83	19.84	323.68	428.78	116.11	
12	NM_007377	47.81	89.17	70.86	370.93	378.79	279.72	
13	NM_028064	703.95	689.62	662.29	214.11	168.85	144.61	
14	NM_008182	222.56	339.73	226.75	30.16	63.32	26.39	
15	NM_013661	12.36	11.29	8.5	97.51	77.76	71.78	
16	NM_007815	20613.09	25218.13	31540.46	5209.07	7680.3	6312.2	

- Finding optimal solution takes a lot of time (days)
- Many, many heuristics used (Div-Conq, Greedy, Clust-Comb, Dist-Ident, Exh-Enum)

Drug activity. Chemical compounds vs descriptor, m ≈ 10,000, n ≈ 30, Liu & Wang [2003]

Table 2. Observed and calculated I	og RBA and values of the three	selected descriptors, PW2, Mor15n	n and GAP-10 for the 23 progestins
------------------------------------	--------------------------------	-----------------------------------	------------------------------------

ID**	name	Ref.	log RBA * Obs.	log RBA Calc.	PW2	Mor15m	GAP-10/ eV
1#	Progesterone	5	1.602	1.194	0.620	0.198	0.094
2	17-Acetoxyprogesterone	6	1.204	1.236	0.620	0.401	0.139
3	17-Hydroxyprogesterone	6	0.079	0.094	0.631	0.535	0.256
4#	21-Hydroxyprogesterone	6	1.049	0.954	0.612	0.424	0.246
5	11β-Hydroxyprogesterone	6	1.158	1.432	0.621	0.252	0.066
6	Methoxyprogesterone acetate	5	2.061	1.418	0.622	0.389	0.095
7	Chloromadinone acetate	7	1.975*	2.330	0.622	0.720	0.046
8	Cyproterone acetale	7	1.447 ^b	1.228	0.629	0.852	0.187
9	Testosterone	6,8	-0.097	-0.009	0.624	0.227	0.246
10#	5β-Pregnane-3,20-dione	6	0.380	1.092	0.620	-0.046	0.048
11	1,4-Pregnadine-3,20-dione	6	1.318	1.502	0.620	0.341	0.086
12#	4,6-Pregnadine-3,20-dione	6	1.310	1.218	0.620	0.441	0.152
13	Promegestone (R5020)	5	2.000	2.075	0.604	0.673	0.206
14	16α-Ethyl-21-hydroxy-19-nor-4-pregnene-3,20-dione (Organon 2058)	5,9	2.544	2.557	0.597	0.454	0.133
15#	Levonorgestrel	5	2.079	2.474	0.605	0.295	0.046
16	19-Norprogesterone	6,8	1.827	1.794	0.610	0.342	0.118
17	Norethisterone	10	1.866	1.542	0.615	0.267	0.099
18	3-Keto-desogestrel	10	2.827	2.534	0.607	0.523	0.079
19#	Gestodene	10	2.799	2.249	0.605	0.277	0.074
20#	3-Keto-allylestrenol	7,9	1.8864	2.188	0.606	0.199	0.055
21	Norethinodrel	7	0.8454	1.476	0.615	0.445	0.153
22	19-Nortestosterone	6,8	0.944	0.827	0.613	0.369	0.243
23	Metribolone (R1881)	7	2.146°	2.111	0.625	0.945	0.112

Confidence limits:⁹(1.906-2.035);⁶(1.322-1.544);^c(1.775-1.975);^d(0.544-1.021);⁴(2.021-2.276);[#]The seven test set molecules; **The remaining 16 molecules belong to the training set.

Theory Background

[Sun, Nobel [2013], [Bhamidi, Dey & Nobel 2013] J = N(0, I_n)

- [Sun, Nobel [2013], [Bhamidi, Dey & Nobel 2013]
 J = N(0, I_n)
- Global optimum when $m = n, k = \ell = o(\log n)$

$$\operatorname{Ave}(J_{n,k}^*) \approx 2\sqrt{\frac{\log n}{k}},$$

with high probability as $n \to \infty$

• Several algorithms analyzed in G & Li [2016]

- Several algorithms analyzed in G & Li [2016]
- The best of the three algorithms produces a matrix with average entry

$$egin{aligned} \mathsf{Ave}(\mathcal{C}_{n,k}^{\mathrm{ALG}}) &pprox rac{4\sqrt{2}}{3}\sqrt{rac{\log n}{k}} \ &< 2\sqrt{rac{\log n}{k}} \ &pprox ext{OPT.} \end{aligned}$$

- Several algorithms analyzed in G & Li [2016]
- The best of the three algorithms produces a matrix with average entry

$$egin{aligned} \mathsf{Ave}(\mathcal{C}_{n,k}^{\mathrm{ALG}}) &pprox rac{4\sqrt{2}}{3}\sqrt{rac{\log n}{k}} \ &< 2\sqrt{rac{\log n}{k}} \ &pprox \mathrm{OPT}. \end{aligned}$$

• as $4\sqrt{2}/3 = 1.885... < 2$.

- Several algorithms analyzed in G & Li [2016]
- The best of the three algorithms produces a matrix with average entry

$$egin{aligned} \mathsf{Ave}(\mathit{C}_{n,k}^{\mathrm{ALG}}) &pprox rac{4\sqrt{2}}{3}\sqrt{rac{\log n}{k}} \ &< 2\sqrt{rac{\log n}{k}} \ &pprox \mathrm{OPT}. \end{aligned}$$

- as $4\sqrt{2}/3 = 1.885... < 2$.
- Nothing better is known.

- Several algorithms analyzed in G & Li [2016]
- The best of the three algorithms produces a matrix with average entry

$$egin{aligned} \mathsf{Ave}(\mathcal{C}^{\mathrm{ALG}}_{n,k}) &pprox rac{4\sqrt{2}}{3}\sqrt{rac{\log n}{k}} \ &< 2\sqrt{rac{\log n}{k}} \ &pprox ext{OPT.} \end{aligned}$$

- as $4\sqrt{2}/3 = 1.885... < 2$.
- Nothing better is known.
- Problem has roots in the Largest Clique problem introduced by Karp [1977], still unsolved.

Example II: Spiked Matrix Detection

• Random matrix with sparse rank-1 signal:

$$J = \lambda \theta^* \cdot (\theta^*)^T + W, \ \theta^* \in \{0,1\}^n, \ s - sparse, \ W \stackrel{d}{=} \mathcal{N}(0, I_n)$$

• Random matrix with sparse rank-1 signal:

$$J = \lambda \theta^* \cdot (\theta^*)^T + W, \ \ \theta^* \in \{0,1\}^n, \ s - sparse, \ \ W \stackrel{d}{=} \mathcal{N}(0, I_n)$$

$$J = \lambda \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} + \begin{bmatrix} J_{11} & \dots & J_{1n} \\ \vdots & \ddots & \vdots \\ J_{n1} & \dots & J_{nn} \end{bmatrix},$$

• Random matrix with sparse rank-1 signal:

$$J = \lambda \theta^* \cdot (\theta^*)^T + W, \ \ \theta^* \in \{0,1\}^n, \ s - sparse, \ \ W \stackrel{d}{=} \mathcal{N}(0, I_n)$$

$$J = \lambda \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} + \begin{bmatrix} J_{11} & \dots & J_{1n} \\ \vdots & \ddots & \vdots \\ J_{n1} & \dots & J_{nn} \end{bmatrix},$$

• **Problem:** Learn θ^* from J.

 Problem studied widely in recent years: Lelarge, Miolane [2009] Butucea & Ingster [2013], Deshphande & Montanari [2014] Lesieur, Krzakala, Zdeborova [2015,2017] Dia, Macris, Krzakala, Lesieur, Zdeborova [2016] Montanari, Reichman, Zeitouni [2015] Jagannath, Lopato, Milane [2018] G, Jagannath, Sen [2019]

- Problem studied widely in recent years: Lelarge, Miolane [2009] Butucea & Ingster [2013], Deshphande & Montanari [2014] Lesieur, Krzakala, Zdeborova [2015,2017] Dia, Macris, Krzakala, Lesieur, Zdeborova [2016] Montanari, Reichman, Zeitouni [2015] Jagannath, Lopato, Milane [2018] G, Jagannath, Sen [2019]
- State of the art understanding

- Problem studied widely in recent years: Lelarge, Miolane [2009] Butucea & Ingster [2013], Deshphande & Montanari [2014] Lesieur, Krzakala, Zdeborova [2015,2017] Dia, Macris, Krzakala, Lesieur, Zdeborova [2016] Montanari, Reichman, Zeitouni [2015] Jagannath, Lopato, Milane [2018] G, Jagannath, Sen [2019]
- State of the art understanding
 - □ MLE (computed by **brute force**) recovers θ^* reliably if and only if $\lambda \ge \lambda_{INFO}$, G, Jagannath, Sen [2019]

- Problem studied widely in recent years: Lelarge, Miolane [2009] Butucea & Ingster [2013], Deshphande & Montanari [2014] Lesieur, Krzakala, Zdeborova [2015,2017] Dia, Macris, Krzakala, Lesieur, Zdeborova [2016] Montanari, Reichman, Zeitouni [2015] Jagannath, Lopato, Milane [2018] G, Jagannath, Sen [2019]
- State of the art understanding
 - □ MLE (computed by **brute force**) recovers θ^* reliably if and only if $\lambda \ge \lambda_{INFO}$, G, Jagannath, Sen [2019]
 - □ Fast (**poly-time**) algorithm recovers θ^* reliably when
 - $\lambda > \lambda_{COMP}$ Deshphande & Montanari [2014]

- Problem studied widely in recent years: Lelarge, Miolane [2009] Butucea & Ingster [2013], Deshphande & Montanari [2014] Lesieur, Krzakala, Zdeborova [2015,2017] Dia, Macris, Krzakala, Lesieur, Zdeborova [2016] Montanari, Reichman, Zeitouni [2015] Jagannath, Lopato, Milane [2018] G, Jagannath, Sen [2019]
- State of the art understanding
 - □ MLE (computed by **brute force**) recovers θ^* reliably if and only if $\lambda \ge \lambda_{INFO}$, G, Jagannath, Sen [2019]
 - □ Fast (**poly-time**) algorithm recovers θ^* reliably when
 - $\lambda > \lambda_{COMP}$ Deshphande & Montanari [2014]
 - □ The regime $\lambda_{INFO} < \lambda < \lambda_{COMP}$ is not understood. Does a fast algorithm exist? Info/theory vs Computation gap

Example III: Sparse High-Dimensional Linear Regression
• Model $Y = X\beta^* + W$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \begin{bmatrix} \beta_1^* \\ \vdots \\ \beta_p^* \end{bmatrix} + \begin{bmatrix} W_1 \\ \vdots \\ W_n \end{bmatrix}$$

• Model $Y = X\beta^* + W$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \begin{bmatrix} \beta_1^* \\ \vdots \\ \beta_p^* \end{bmatrix} + \begin{bmatrix} W_1 \\ \vdots \\ W_n \end{bmatrix}$$

• **Goal:** Recover β^* from observed X and Y.

• Model $Y = X\beta^* + W$

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix} \begin{bmatrix} \beta_1^* \\ \vdots \\ \beta_p^* \end{bmatrix} + \begin{bmatrix} W_1 \\ \vdots \\ W_n \end{bmatrix}$$

• **Goal:** Recover β^* from observed X and Y.

• **Sparsity:** β^* is sparse:

 $\|\beta^*\|_0 \leq k.$

• MLE: solve (hard) quadratic minimization problem

$$\min_{\beta} \|Y - X\beta\|_2$$
Subject to: $\|\beta\|_0 = k$.

MLE: solve (hard) quadratic minimization problem

$$\min_{\beta} \|Y - X\beta\|_2$$

Subject to: $\|\beta\|_0 = k$.

Questions:

- (a) Is the optimal solution β_{OPT} a good approximation of the ground truth β^* ?
- (b) How to solve this problem fast (poly-time)?

 Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:

- Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:
- Replace ||β||₀ = k with a convex constraint ||β||₁ = k and solve the convex minimization problem.

- Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:
- Replace ||β||₀ = k with a convex constraint ||β||₁ = k and solve the convex minimization problem.
- Suppose entries of *X* and *Y* are i.i.d. Gaussian.

- Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:
- Replace ||β||₀ = k with a convex constraint ||β||₁ = k and solve the convex minimization problem.
- Suppose entries of *X* and *Y* are i.i.d. Gaussian.
- The method recovers the ground truth: $\beta_{\text{OPT}} = \beta^*$.

- Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:
- Replace ||β||₀ = k with a convex constraint ||β||₁ = k and solve the convex minimization problem.
- Suppose entries of *X* and *Y* are i.i.d. Gaussian.
- The method recovers the ground truth: $\beta_{\text{OPT}} = \beta^*$.
- Works when

$$n > 2k \log p \triangleq n_{\text{Convex}},$$

(assuming $k \ll n \ll p$).

- Spectacular success of convex optimization based techniques, Donoho, Tanner, Wainwright, Hastie, Tibshirani, Candes, Tao:
- Replace ||β||₀ = k with a convex constraint ||β||₁ = k and solve the convex minimization problem.
- Suppose entries of *X* and *Y* are i.i.d. Gaussian.
- The method recovers the ground truth: $\beta_{\text{OPT}} = \beta^*$.
- Works when

$$n > 2k \log p \triangleq n_{\text{Convex}},$$

(assuming $k \ll n \ll p$).

 On the other hand (brute force) MLE solves the problem when

$$n > \frac{2k \log p}{\log\left(1 + \frac{k}{\sigma^2}\right)} = \frac{n_{\text{Convex}}}{\log(1 + k/\sigma^2)} \triangleq n_{\text{INFO}}$$

Challenging Regime

• No algorithms are known in the regime (except noiseless case)

$$n_{\text{INFO}} \triangleq \frac{n_{\text{Convex}}}{\log\left(1 + \frac{k}{\sigma^2}\right)} < n < n_{\text{Convex}}$$

• No algorithms are known in the regime (except noiseless case)

$$n_{\text{INFO}} \triangleq \frac{n_{\text{Convex}}}{\log\left(1 + \frac{k}{\sigma^2}\right)} < n < n_{\text{Convex}}$$

• Info/theory vs Computation gap.

 Many other examples: Random K-Sat, MaxCut on random graphs, Stochastic Block Model, Planted Clique, Spiked Tensor problem, Sparse Covariance Estimation problem, Locally Computable One Way Functions, etc, etc.

- Many other examples: Random K-Sat, MaxCut on random graphs, Stochastic Block Model, Planted Clique, Spiked Tensor problem, Sparse Covariance Estimation problem, Locally Computable One Way Functions, etc, etc.
- Many of these problems appear to exhibit a complex solution space topology in the hard regime and do not exhibit it in the tractable regime

- Many other examples: Random K-Sat, MaxCut on random graphs, Stochastic Block Model, Planted Clique, Spiked Tensor problem, Sparse Covariance Estimation problem, Locally Computable One Way Functions, etc, etc.
- Many of these problems appear to exhibit a complex solution space topology in the hard regime and do not exhibit it in the tractable regime
- Topological obstruction come in the form of Overlap Gap Property (OGP)

- Many other examples: Random K-Sat, MaxCut on random graphs, Stochastic Block Model, Planted Clique, Spiked Tensor problem, Sparse Covariance Estimation problem, Locally Computable One Way Functions, etc, etc.
- Many of these problems appear to exhibit a complex solution space topology in the hard regime and do not exhibit it in the tractable regime
- Topological obstruction come in the form of Overlap Gap Property (OGP)
- Discovered in the field of statistical mechanics (spin glass theory)

Generic minimization problem with random input $\ensuremath{\mathcal{X}}$

 $\min_{\theta\in\Theta}\mathcal{L}(\theta,\mathcal{X}).$

Generic minimization problem with random input $\ensuremath{\mathcal{X}}$

 $\min_{\theta\in\Theta}\mathcal{L}(\theta,\mathcal{X}).$

OGP holds if there exists R > 0, such that the set

$$\{\theta: \mathcal{L}(\theta, \mathcal{X}) \leq \min_{\theta \in \Theta} \mathcal{L}(\theta, \mathcal{X}) + R\}$$

is disconnected.

Generic minimization problem with random input $\ensuremath{\mathcal{X}}$

 $\min_{\theta \in \Theta} \mathcal{L}(\theta, \mathcal{X}).$

OGP holds if there exists R > 0, such that the set

$$\{\theta: \mathcal{L}(\theta, \mathcal{X}) \leq \min_{\theta \in \Theta} \mathcal{L}(\theta, \mathcal{X}) + \mathbf{R}\}$$

is disconnected.

That is the set of *R*-optimal solutions is partitioned into separate connected components.

OGP in models with planted signal

OGP in models with planted signal

Ground truth signal θ^* is observed via a noisy observation $\mathcal{X} \stackrel{d}{=} \mathcal{X} | \theta^*$.

Ground truth signal θ^* is observed via a noisy observation $\mathcal{X} \stackrel{d}{=} \mathcal{X} | \theta^*$. Inferring signal θ^* involves solving a minimization problem

$$\hat{\theta} = \arg\min_{\theta\in\Theta} \mathcal{L}(\theta, \theta^*, \mathcal{X}).$$

with the hope that $\hat{\theta}$ is close to θ^* .

Ground truth signal θ^* is observed via a noisy observation $\mathcal{X} \stackrel{d}{=} \mathcal{X} | \theta^*.$

Inferring signal θ^* involves solving a minimization problem

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \mathcal{L}(\theta, \theta^*, \mathcal{X}).$$

with the hope that $\hat{\theta}$ is close to θ^* . When is it "hard" to find signal θ^* ? Ground truth signal θ^* is observed via a noisy observation $\mathcal{X} \stackrel{d}{=} \mathcal{X} | \theta^*$.

Inferring signal θ^* involves solving a minimization problem

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \mathcal{L}(\theta, \theta^*, \mathcal{X}).$$

with the hope that $\hat{\theta}$ is close to θ^* . When is it "hard" to find signal θ^* ? For every $\zeta \in [0, 1]$ consider

$${\sf F}(\zeta): \min_{ heta: \| heta- heta^*\|=\zeta} {\cal L}(heta, heta^*,{\cal X}).$$

Ground truth signal θ^* is observed via a noisy observation $\mathcal{X} \stackrel{d}{=} \mathcal{X} | \theta^*.$

Inferring signal θ^* involves solving a minimization problem

$$\hat{\theta} = \arg\min_{\theta \in \Theta} \mathcal{L}(\theta, \theta^*, \mathcal{X}).$$

with the hope that $\hat{\theta}$ is close to θ^* . When is it "hard" to find signal θ^* ? For every $\zeta \in [0, 1]$ consider

$$\Gamma(\zeta): \min_{ heta: \| heta- heta^*\|=\zeta} \mathcal{L}(heta, heta^*,\mathcal{X}).$$

Plot Γ.

Suppose Γ is not monotone.

Non-monotonicity leads to OGP: every *R*-optimal solution is either τ_1 -close or τ_2 -far from the ground signal θ^* .

Overlap Gap Property

 local algorithms in sparse random graphs G & Sudan [2014,2017], Rahman & Virag [2014], Coja-Oghlan, Haqshenas & Hetterich [2016],

- local algorithms in sparse random graphs G & Sudan [2014,2017], Rahman & Virag [2014], Coja-Oghlan, Haqshenas & Hetterich [2016],
- Markov Chain Monte Carlo methods G, Jagannath & Sen [2019], G & Zadik [2019]

- local algorithms in sparse random graphs G & Sudan [2014,2017], Rahman & Virag [2014], Coja-Oghlan, Haqshenas & Hetterich [2016],
- Markov Chain Monte Carlo methods G, Jagannath & Sen [2019], G & Zadik [2019]
- Approximate Message Passing type algorithm for finding ground states in p-spin models G & Jagannath [2019]

OGP for the Largest Submatrix Problem

OGP for the Largest Submatrix Problem

Fix $\alpha \in (0, 1)$ and two $k \times k$ submatrices C_1, C_2 with

Ave $(C_1) \approx \text{Ave}(C_2) \approx \alpha \text{OPT}.$

Fix $\alpha \in (0, 1)$ and two $k \times k$ submatrices C_1, C_2 with

Ave $(C_1) \approx \text{Ave}(C_2) \approx \alpha \text{OPT}.$

Theorem (G & Li [2016])

For each $0 < y_1, y_2 < 1$, the expected number of such pairs C_1, C_2 with y_1k common rows and y_2k common columns is

 $\exp\left(f\left(\alpha, y_{1}, y_{2}\right) k \log n\right),$

where

$$f(\alpha, y_1, y_2) = 4 - y_1 - y_2 - \frac{1}{1 + y_1 y_2} \alpha^2.$$

Fix $\alpha \in (0, 1)$ and two $k \times k$ submatrices C_1, C_2 with

Ave $(C_1) \approx \text{Ave}(C_2) \approx \alpha \text{OPT}.$

Theorem (G & Li [2016])

For each $0 < y_1, y_2 < 1$, the expected number of such pairs C_1, C_2 with y_1k common rows and y_2k common columns is

 $\exp\left(f\left(\alpha, y_{1}, y_{2}\right) k \log n\right),$

where

$$f(\alpha, y_1, y_2) = 4 - y_1 - y_2 - \frac{1}{1 + y_1 y_2} \alpha^2.$$

 $f(\alpha, y_1, y_2) < 0$ implies no such pairs whp.

• Color points correspond to positive value of *f*.

• Color points correspond to positive value of *f*.

• No OGP when 0 < α < 0.9625... .

• Color points correspond to positive value of *f*.

- No OGP when 0 < α < 0.9625... .
- Includes algorithmically achievable value 0.9425....

OGP when 0.9625... $< \alpha < 1$

The set of overlaps exhibits a gap.

OGP in High-Dimensional Sparse Regression Problem

• Consider the optimization problem parametrized by $\zeta \in (0, 1)$

$$\Gamma(\zeta) \triangleq \min_{\beta} \|Y - X\beta\|_{2}$$

Subject to: $\|\beta\|_{0} = k$,
 $\|\beta^{*} - \beta\|_{0} = 2k\zeta$.

Plot of Γ. Monotonicity

When $n > n_{\text{Convex}}$

Plot of Γ. Non-monotonicity and OGP

When $n_{INFO} < n < n_{Convex}$

Plot of Γ. Non-monotonicity and OGP

When $n < n_{INFO}$

OGP Theorem

OGP Theorem

Theorem (G & Zadik [2017])

Theorem (G & Zadik [2017])

 The OGP provably takes place when n ≤ cn_{Convex} for sufficiently small constant c > 0.

OGP Theorem

Theorem (G & Zadik [2017])

- The OGP provably takes place when n ≤ cn_{Convex} for sufficiently small constant c > 0.
- As a consequence, (a variant of) Gradient Descent algorithm fails to find the ground truth regression vector β*. Conjecturally MCMC fails as well.

Theorem (G & Zadik [2017])

- The OGP provably takes place when n ≤ cn_{Convex} for sufficiently small constant c > 0.
- As a consequence, (a variant of) Gradient Descent algorithm fails to find the ground truth regression vector β*. Conjecturally MCMC fails as well.
- On the other hand, when n ≥ cn_{Convex} and c is sufficiently large,
 - No local minimum exist except β^* .
 - The algorithm based on local improvement finds the ground truth vector fast.
 - The model does not exhibit the OGP.

The OGP in Spiked Matrix Detection

For a certain range of values $\lambda_{INFO} < \lambda < \lambda_{COMP}$ the model exhibits the OGP

G, Jagannath, Sen [2019]

Conclusions

Conclusions

Lessons learned:

Conclusions

Lessons learned:

 Statistical physics offers a "new theory" of complexity of inference problems arising in high-dimensional statistical models Lessons learned:

- Statistical physics offers a "new theory" of complexity of inference problems arising in high-dimensional statistical models
- Challenge: the link between this new complexity theory and the classical complexity paradigms such as NP-hardness needs to be understood.

Lessons learned:

- Statistical physics offers a "new theory" of complexity of inference problems arising in high-dimensional statistical models
- Challenge: the link between this new complexity theory and the classical complexity paradigms such as NP-hardness needs to be understood.
- **Conjecture**: optimization problems with random input are hard when they exhibit OGP.

Thank you