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Computational Challenges in High-Dimensional Infrerence

Modern day inference challenges are characterized by

Model size (BIG Data)
Structure of parameters (sparsity, discreteness,
low-dimensionality, etc.)
Uncertainty (thus NP-completeness is not useful)
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Computational Challenges in High-Dimensional Infrerence

We need a new theory addressing computational hardness and
tractability

High-dim problems are computationally challenging, giving
a rise to the so-called Information Theoretic vs
Computation gap.
What’s the reason?
Statistical Physics can help: topology of the solution
space and phase transition, Overlap Gap Property (OGP)
phase transition
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Example I: Largest Submatrix Problem

Given m × n matrix J

J =

 J11 . . . J1n
...

. . .
...

Jm1 . . . Jmn

 ,
Find a k × ` submatrix


J11 . . . J1n

...

 ∗ . . . ∗
... J∗k ,`

...
∗ . . . ∗

 ...

Jm1 . . . Jmn

 ,

with the largest average entry Ave(J∗n,k ) = 1
k`
∑

Ji`1 ,j`2
4 / 34



Who cares?..

Bi-clustering: applications in genetics, drug design,
energy and social networks.
Genomics: J is gene vs expression data.
m = 2,500− 15,000,n = 10− 150 Madeira & Oliveira
survey [2004], Fortunato et al [2010], Shabalin et al [2009].

Finding optimal solution takes a lot of time (days)
Many, many heuristics used (Div-Conq, Greedy,
Clust-Comb, Dist-Ident, Exh-Enum)
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Who cares?..

Drug activity. Chemical compounds vs descriptor,
m ≈ 10,000,n ≈ 30, Liu & Wang [2003]
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Theory Background

[Sun, Nobel [2013],[Bhamidi, Dey & Nobel 2013]
J = N (0, In)

Global optimum when m = n, k = ` = o(log n)

Ave(J∗n,k ) ≈ 2

√
log n

k
, with high probability as n→∞
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Algorithms

Several algorithms analyzed in G & Li [2016]
The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.
Nothing better is known.
Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Algorithms

Several algorithms analyzed in G & Li [2016]

The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.
Nothing better is known.
Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Algorithms

Several algorithms analyzed in G & Li [2016]
The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.
Nothing better is known.
Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Algorithms

Several algorithms analyzed in G & Li [2016]
The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.

Nothing better is known.
Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Algorithms

Several algorithms analyzed in G & Li [2016]
The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.
Nothing better is known.

Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Algorithms

Several algorithms analyzed in G & Li [2016]
The best of the three algorithms produces a matrix with
average entry

Ave(CALG
n,k ) ≈ 4

√
2

3

√
log n

k

< 2

√
log n

k
≈ OPT.

as 4
√

2/3 = 1.885... < 2.
Nothing better is known.
Problem has roots in the Largest Clique problem
introduced by Karp [1977], still unsolved.

8 / 34



Example II: Spiked Matrix Detection

Random matrix with sparse rank-1 signal:

J = λθ∗ · (θ∗)T + W , θ∗ ∈ {0,1}n, s − sparse, W d
= N (0, In)

J = λ



1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

...
1 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


+

 J11 . . . J1n
...

. . .
...

Jn1 . . . Jnn

 ,

Problem: Learn θ∗ from J.
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Background

Problem studied widely in recent years:
Lelarge, Miolane [2009]
Butucea & Ingster [2013],
Deshphande & Montanari [2014]
Lesieur, Krzakala, Zdeborova [2015,2017]
Dia, Macris, Krzakala, Lesieur, Zdeborova [2016]
Montanari, Reichman, Zeitouni [2015]
Jagannath, Lopato, Milane [2018]
G, Jagannath, Sen [2019]
State of the art understanding

MLE (computed by brute force) recovers θ∗ reliably if and
only if λ ≥ λINFO, G, Jagannath, Sen [2019]
Fast (poly-time) algorithm recovers θ∗ reliably when
λ > λCOMP Deshphande & Montanari [2014]
The regime λINFO < λ < λCOMP is not understood. Does a
fast algorithm exist? Info/theory vs Computation gap
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Example III: Sparse High-Dimensional Linear Regression

Model Y = Xβ∗ + W

 Y1
...

Yn

 =

 X11 X12 . . . X1p
...

...
. . .

...
Xn1 Xn2 . . . Xnp


 β∗1

...
β∗p

+

 W1
...

Wn


Goal: Recover β∗ from observed X and Y .
Sparsity: β∗ is sparse:

‖β∗‖0 ≤ k .
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Background

MLE: solve (hard) quadratic minimization problem

min
β
‖Y − Xβ‖2

Subject to: ‖β‖0 = k .

Questions:
(a) Is the optimal solution βOPT a good approximation of the

ground truth β∗?
(b) How to solve this problem fast (poly-time)?
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Background

Spectacular success of convex optimization based
techniques, Donoho, Tanner, Wainwright, Hastie,
Tibshirani, Candes, Tao:
Replace ‖β‖0 = k with a convex constraint ‖β‖1 = k and
solve the convex minimization problem.
Suppose entries of X and Y are i.i.d. Gaussian.
The method recovers the ground truth: βOPT = β∗.
Works when

n > 2k log p , nConvex,

(assuming k � n� p).
On the other hand (brute force) MLE solves the problem
when

n >
2k log p

log
(

1 + k
σ2

) =
nConvex

log(1 + k/σ2)
, nINFO

Rad [2011], G, Zadik [2017].
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Challenging Regime

No algorithms are known in the regime (except noiseless
case)

nINFO ,
nConvex

log
(

1 + k
σ2

) < n < nConvex

Info/theory vs Computation gap.
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Who is he culprit? Topological obstruction to algorithms

Many other examples: Random K-Sat, MaxCut on random
graphs, Stochastic Block Model, Planted Clique, Spiked
Tensor problem, Sparse Covariance Estimation problem,
Locally Computable One Way Functions, etc, etc.
Many of these problems appear to exhibit a complex
solution space topology in the hard regime and do not
exhibit it in the tractable regime
Topological obstruction come in the form of Overlap Gap
Property (OGP)
Discovered in the field of statistical mechanics (spin glass
theory)
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Overlap Gap Property

Generic minimization problem with random input X

min
θ∈Θ
L(θ,X ).

OGP holds if there exists R > 0, such that the set

{θ : L(θ,X ) ≤ min
θ∈Θ
L(θ,X ) + R}

is disconnected.

That is the set of R-optimal solutions is partitioned into
separate connected components.
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OGP in models with planted signal

Ground truth signal θ∗ is observed via a noisy observation
X d

= X|θ∗.
Inferring signal θ∗ involves solving a minimization problem

θ̂ = arg min
θ∈Θ
L(θ, θ∗,X ).

with the hope that θ̂ is close to θ∗.
When is it ”hard” to find signal θ∗?
For every ζ ∈ [0,1] consider

Γ(ζ) : min
θ:‖θ−θ∗‖=ζ

L(θ, θ∗,X ).

Plot Γ.
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OGP in models with planted signal

Suppose Γ is not monotone.
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OGP in models with planted signal

Non-monotonicity leads to OGP: every R-optimal solution is
either τ1-close or τ2-far from the ground signal θ∗.
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Overlap Gap Property

OGP is a provable obstacle to

local algorithms in sparse random graphs G & Sudan
[2014,2017], Rahman & Virag [2014], Coja-Oghlan,
Haqshenas & Hetterich [2016],
Markov Chain Monte Carlo methods G, Jagannath & Sen
[2019], G & Zadik [2019]
Approximate Message Passing type algorithm for finding
ground states in p-spin models G & Jagannath [2019]
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OGP for the Largest Submatrix Problem

Fix α ∈ (0,1) and two k × k submatrices C1,C2 with

Ave(C1) ≈ Ave(C2) ≈ αOPT.

Theorem (G & Li [2016])
For each 0 < y1, y2 < 1, the expected number of such pairs
C1,C2 with y1k common rows and y2k common columns is

exp (f (α, y1, y2) k log n) ,

where

f (α, y1, y2) = 4− y1 − y2 −
1

1 + y1y2
α2.

f (α, y1, y2) < 0 implies no such pairs whp.
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No OGP when 0 < α < 0.9625...

Color points correspond to positive value of f .

1y

2y

No OGP when 0 < α < 0.9625... .
Includes algorithmically achievable value 0.9425... .
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OGP when 0.9625... < α < 1

The set of overlaps exhibits a gap.
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OGP in High-Dimensional Sparse Regression Problem

Consider the optimization problem parametrized by
ζ ∈ (0,1)

Γ(ζ) , min
β
‖Y − Xβ‖2

Subject to: ‖β‖0 = k ,
‖β∗ − β‖0 = 2kζ.
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Plot of Γ. Monotonicity

When n > nConvex
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Plot of Γ. Non-monotonicity and OGP

When nINFO < n < nConvex
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Plot of Γ. Non-monotonicity and OGP

When n < nINFO
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OGP Theorem

Theorem (G & Zadik [2017])
The OGP provably takes place when n ≤ cnConvex for
sufficiently small constant c > 0.
As a consequence, (a variant of) Gradient Descent
algorithm fails to find the ground truth regression vector β∗.
Conjecturally MCMC fails as well.
On the other hand, when n ≥ cnConvex and c is sufficiently
large,

No local minimum exist except β∗.
The algorithm based on local improvement finds the ground
truth vector fast.
The model does not exhibit the OGP.
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The OGP in Spiked Matrix Detection

For a certain range of values λINFO < λ < λCOMP the model
exhibits the OGP

ρ2 ρ
q

E(q; ρ, λ)

0
q1 q2

Ethreshold

G, Jagannath, Sen [2019]
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Conclusions

Lessons learned:

Statistical physics offers a ”new theory” of complexity of
inference problems arising in high-dimensional statistical
models
Challenge: the link between this new complexity theory
and the classical complexity paradigms such as
NP-hardness needs to be understood.
Conjecture: optimization problems with random input are
hard when they exhibit OGP.
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