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Overview




RESEARCH AGENDA

Provide algorithm-specific, non-asymptotically valid, and
user-friendly confidence sets/bands/intervals for parameter
estimation and prediction using stochastic iterative algorithms.



PROBLEM

Population version of M-Estimation (Stochastic Optimization):

0. = aregééljn {f(&) =Ey[F(0,Y)] = / F(0,Y) dP(Y)} .

> F(6,Y) is a random function depending on the random vector
Y € RY. Example: negative log-likelihood function.

> Goal: Provide confidence sets for estimating 6, , to quantify
uncertainty.



MOTIVATION

> Sample M-estimation (also ERM or Sample-Average
Approximation): Get N i.i.d samples Y; and compute

N
~ . 1
Oy = argmin {N Zl F(0, Y,)}

0cRd

> Asymptotic properties of é\N, in particular consistency and
asymptotic normality, have been studied for decades in the
math stat literature — useful for asymptotic uncertainty
quantification.

> Drawback: Results are typically established for the actual
minimizer @y and not the computational algorithm used.

> One still needs an algorithm to compute some @y that is close
to Oy.



THE SGD ESTIMATOR

> Online/iterative approach:

O =0t_1 — ntg(9t)

where g(6;) is the stochastic gradient at iteration t, i.e., a
rough estimate of Vf(6:_1), typically based on one random
sample Y;.

> Polyak-Ruppert averaging: 0, = t1(>./_, ;)

> What is known about this estimator:
> When 7 is chosen properly, ||0; — 6] = 0

> Non-asymptotic rates on ||f; — 6.||, (in expectation (most
times) or high-probability (sometimes).
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WHAT ABOUT OPTIMALITY AND INFERENCE 7

> Polyak and Juditsky (1992) and Ruppert (1998) showed that
the following is true:

Vi <11_L ie,- — 9*> = N, V)
where V = sz(e*)*lc_ov[Vf(H*)]Vzf(e*)*l.

> (Asymptotic) Martingale CLT plays a crucial role in proving
the above result.

> Related results also by Roger Wets, Alex Shapiro, Vaclav
Fabian, Kai Lai Chung, Jerome Sacks and few others.

> Some recent works: Toulis and Airoldi (2017); Duchi and
Ruan (2018).



WHAT ABOUT PRACTICAL INFERENCE 7

> Variance V is asymptotically optimal (i.e., achieves
Cramer-Rao lower bound) but requires knowledge of 0..

> Bootstrap style algorithms have been proposed recently by
Fang et al. (2018); Su and Zhu (2018).

> What about the validity of confidence sets based on
asymptotic normality ? — Justifiable only asymptotically.
Similar to traditional normality or bootstrap results for
M-estimators.

> This work: non-asymptotic uncertainty quantification.
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INFORMAL RESULT

Informally speaking, we prove the following non-asymptotic normal
approximation result in [ABE,"19]:

_ d?
sup|P(0: € A)— P(Z e A)| < C—
AGAI (0 € A) — P( )| 7

where A is the set of all measurable convex subsets of R? and
Z ~ N(0, I4) and some constant C > 0.

11



Results for linear setting
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LINEAR EQUATIONS

> Consider a simpler problem:

Given a positive definite matrix

A € R9%9  find the 6, which is the solution to the system

Af = b.

> Stochastic Iterative update:

O = O0t—1 — Neysr,

yie = A0i_1 — b+ (s,
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ASSUMPTION

> Let the noise (; is a martingale difference sequence with

E [CtCtT’]:t—l} =V oand  E[||G|3] < yd¥?

> Assume that A and V are such that

al < [ATTVATY = 1.
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MAIN THEOREM FOR LINEAR SETTING

Theorem [ABE19]: Let A; =0, — 0,. If 5, =nt~%, c3 € (0,1),
we have
Ih(v Ay) — h(A—1v1/2Z)|]

230 ) by ) [+ K ) €

where K4 & Ks are some absolute constants, and M;(h) & Ma(h)
are constants depending only on function h.
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BERRY-ESSEEN BOUND

> From the previous result, we can get Berry-Esseen bound by
approximating indicator functions with carefully constructed
twice-differentiable functions (following the idea of Bentkus
(2003)) and obtain:
- d?
sup|P(Ar € A)— P(Z e A)| < C—
AcA

S
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PROOF IDEA

> The following decomposition for A; is easy to obtain:

t—1
Vil = ——BAo+—= ZA G+ ZWf@
\f Vts NG =

h b 73,

where B; and th are matrices that are functions of A and 7);.

> Using the triangle inequality,
‘E [ h(VA, )] [h(A—lvl/QZ)”
< ’E [h()] — E [a(A-1V122)] ‘ + ‘E [h (VER) = h(b)] ’

martingle clt
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Martingale Results

18




MULTIVARIATE MARTINGALE DEFINITIONS

> Let X1, X2, ..., Xo € RY be a martingale difference sequence
adapted to a filtration Fg, F1, ..., F,, with almost surely

Y = E[Xe Xy | Fr1l-

> Let S, = 27:1 X;, and the variance of the summation be
Y, = VAR(Sp).

> For k € {1,..., n}, partial covariance is P, = Y i, X;.
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RATES OF MULTIVARIATE MARTINGALE CLT

Theorem [ABE19]: If we assume that P; = ¥, almost surely,
then for Z ~ N(0,/4) and h: R? — R a twice differentiable
function, we have

‘E h(Z,%S,) — Eh(2)

3m u _ _
< 5 VaMa(h) Y BRI X B,
k=1
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RATES FOR MULTIVARIATE MARTINGALE CLT

Corollary [ABE19]: For a martingale difference sequence
satisfying
al X = pl

almost surely for all k € [n] and
E [IXkl3] < vd®?,

we have

3 d?
W?{;\z/BMz(h)

En(s,Y2%s,) — E h(Z)‘ <=

=
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REMARKS

> Proof technique is based on a combination of standard
Lindeberg's telescoping sum along with Stein’s method.

> The following two assumptions could be relaxed: (i) the
eigenvalues of the conditional covariances ¥ are bounded
away from 0, i.e., Xy = a/, and (ii) the summation of the
conditional covariances are deterministic, i.e., P; = ¥ ,,.
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RELAXING ASSUMPTIONS

Corollary [ABE19]: Assume there are constants 3 and ¢ such
that almost surely

E [ X3 Fa—1] < BV STRACE( Vi)

then, we have
_ My (h 1
Eh(Z,”?S,) — E h(Z)’ < 2\1}”) TRACE(;Z,,)I/Z

+ ¥5ﬁnM2(h)||Z;1/2|\g [TRACE(EL,) + 5%/3]
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Results in strongly convex setting
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STOCHASTIC GRADIENT DESCENT

Statistical Estimation or Stochastic Optimization:

0, = argmin {f(e) = Ey[F(0,Y)] = / F(0,Y) dP(Y)} .

SGD algorithm: Given 6y € R

Or =01 — mg(Qt)

Here, (; is mean-zero i.i.d random noise vector and

g(0:) = VI(0:-1) + Ce.

25



STRONGLY-CONVEX SETTING: DEFINITIONS

> Xi :=[E [VFf(0k-1)] — VF(0k—1) — (k] is a martingale
difference sequence. Let E [||Xk||3|Fk—1] < K.

> Y, = Z,t(:l Vi where V/ corresponds to the covariance
matrix of Xj:

VS E [ka[\fk_l} . Vke{l,...t).

> Define
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STRONGLY-CONVEX SETTING: MAIN RESULT

Theorem [ABE19]: For a twice differentiable function
h:R?Y — R, we have the following non-asymptotic bound,

E [Ih(=; " &e) - H(2)]

<c\FdZE[HzV2 PO (V2RO o2 (o)) X 3]

|!Z§1/2||2 [E || Aol|2] LHijl
C + K , t
i 7o \/ﬂ 4 &l )
GI= 12 [[E A2 L2 nj
3H ; ||2 [ || ZOHZ] HZ =17 + Kd 0(777 t) .
t m 2u
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STRONGLY-CONVEX SETTING: REMARKS

> Proof is similar to the linear setting (with an extra term to
handle).

> Theorem is stated for any step-size sequence 7).

> Typically, the dominant term is the first term, arising from the
martingale rates.

> Similar to the linear setting, one can get Berry-Esseen bound
by approximating indicators by twice-differentiable functions.

> Similar result could be derived for online bootstrap algorithms
(Fang et al. (2018); Su and Zhu (2018)), to get practically
computable and non-asymptotically valid confidence intervals
for SGD.
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ONLINE BOOTSTRAP: HIGRAD [SU AND ZHU (2018)]

(1SR oL

T'g“ 1) = Wl + wy B + (D

....... R

T‘B[l 2) = wph” + w1 + w2

G[Q oo 8[?1]

. 3 2,1)
T'gﬂll = wgd? + 1w 012 + wpdl

* i B _
e LET = wigh? + un 01 4 w22

Figure 3: Graphical illustration of the HiGrad algorithm. Here we have three levels and at
the end of each level, each segment is split into two segments. Averages are obtained for each
level and at each leaf a weighted average is calculated. The weights w; are detailed in Seetion
2.3.
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RESEARCH AGENDA

> Research agenda: Provide algorithm-specific,
non-asymptotically valid, and user-friendly confidence
sets/intervals for parameter estimation and prediction done
via stochastic iterative algorithms.

> Some take-home messages (at least to me!):

> Asymptotics hides a lot! Be non-asymptotic in your
analyses.

> SGD is not an algorithm to compute mle. SGD is the
estimator.

> Establish non-asymptotic posterior results
(concentration or confidence bands) for the actual
sampling or approximate inference algorithm used.
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SUMMARY

> In this talk, we discussed
> Non-asymptotic normality of SGD algorithm.

> Non-asymptotic normality of Euler-Discretization of [t6

diffusions.
> Ongoing work:

> Establish results for other stochastic iterative estimators
(both optimization and sampling).

> Leverage structure to obtain faster rates: Often times we
are interested in only specific functionals of the estimated
parameter (e.g., max-norm of the SGD estimator).
Ongoing work with Miles Lopes.
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