
normal approximations
for

stochastic iterative estimators

(& martingales)

krishna balasubramanian

dept of statistics, uc davis

1



references and acknowledgement

. Normal Approximation for Stochastic Gradient Descent via
Non-Asymptotic Rates of Martingale CLT.
A. Anastasiou, K. B. and M. A. Erdogdu.
Computational Learning Theory (COLT), 2019.

. Unbiased Normal Approximation for Euler-Discretization of Itô
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Overview
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Research Agenda

Provide algorithm-specific, non-asymptotically valid, and
user-friendly confidence sets/bands/intervals for parameter

estimation and prediction using stochastic iterative algorithms.
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problem

Population version of M-Estimation (Stochastic Optimization):

θ∗ = argmin
θ∈Rd

{
f (θ) = E Y [F (θ,Y )] =

∫
F (θ,Y ) dP(Y )

}
.

. F (θ,Y ) is a random function depending on the random vector
Y ∈ Rd . Example: negative log-likelihood function.

. Goal: Provide confidence sets for estimating θ∗ , to quantify
uncertainty.
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motivation

. Sample M-estimation (also ERM or Sample-Average
Approximation): Get N i.i.d samples Yi and compute

θ̂N = argmin
θ∈Rd

{
1

N

N∑
i=1

F (θ,Yi )

}

. Asymptotic properties of θ̂N , in particular consistency and
asymptotic normality, have been studied for decades in the
math stat literature – useful for asymptotic uncertainty
quantification.

. Drawback: Results are typically established for the actual
minimizer θ̂N and not the computational algorithm used.

. One still needs an algorithm to compute some θ̃N that is close
to θ̂N .
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the sgd estimator

. Online/iterative approach:

θt = θt−1 − ηtg(θt)

where g(θt) is the stochastic gradient at iteration t, i.e., a
rough estimate of ∇f (θt−1), typically based on one random
sample Yt .

. Polyak-Ruppert averaging: θ̄t = t−1(
∑t

i=1 θi )

. What is known about this estimator:

. When ηt is chosen properly, ‖θ̄t − θ∗‖
a.s.
= 0

. Non-asymptotic rates on ‖θ̄t − θ∗‖, (in expectation (most
times) or high-probability (sometimes).
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what about optimality and inference ?

. Polyak and Juditsky (1992) and Ruppert (1998) showed that
the following is true:

√
t

(
1

t

t∑
i=1

θi − θ∗

)
d→ N(0,V )

where V = ∇2f (θ∗)
−1cov[∇f (θ∗)]∇2f (θ∗)

−1.

. (Asymptotic) Martingale CLT plays a crucial role in proving
the above result.

. Related results also by Roger Wets, Alex Shapiro, Vaclav
Fabian, Kai Lai Chung, Jerome Sacks and few others.

. Some recent works: Toulis and Airoldi (2017); Duchi and
Ruan (2018).
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what about practical inference ?

. Variance V is asymptotically optimal (i.e., achieves
Cramer-Rao lower bound) but requires knowledge of θ∗.

. Bootstrap style algorithms have been proposed recently by
Fang et al. (2018); Su and Zhu (2018).

. What about the validity of confidence sets based on
asymptotic normality ? – Justifiable only asymptotically.
Similar to traditional normality or bootstrap results for
M-estimators.

. This work: non-asymptotic uncertainty quantification.
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informal result

Informally speaking, we prove the following non-asymptotic normal
approximation result in [ABE,’19]:

sup
A∈A
|P(θ̄t ∈ A)− P(Z ∈ A)| ≤ C

d2

√
t

where A is the set of all measurable convex subsets of Rd and
Z ∼ N(0, Id) and some constant C > 0.
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Results for linear setting
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linear equations

. Consider a simpler problem: Given a positive definite matrix
A ∈ Rd×d , find the θ∗ which is the solution to the system
Aθ = b.

. Stochastic Iterative update:

θt = θt−1 − ηtyt , yt = Aθt−1 − b + ζt ,

θ̄t =
1

t

t−1∑
i=0

θi .
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assumption

. Let the noise ζt is a martingale difference sequence with

E
[
ζtζ
>
t |Ft−1

]
a.s.
= V and E

[
‖ζk‖32

]
≤ γd3/2

. Assume that A and V are such that

αI �
[
A−1VA−1

]
� βI .
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main theorem for linear setting

Theorem [ABE19]: Let ∆̄t = θ̄t − θ∗. If ηt = ηt−c3 , c3 ∈ (0, 1),
we have

E
[
|h(
√
t ∆̄t)− h(A−1V 1/2Z )|

]
≤2.36 γ

√
β

α2
M2(h)

d2

√
t

+ K4 M1(h)

√
d

t
+ K5 M2(h)

d

t
,

where K4 & K5 are some absolute constants, and M1(h) & M2(h)
are constants depending only on function h.
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berry-esseen bound

. From the previous result, we can get Berry-Esseen bound by
approximating indicator functions with carefully constructed
twice-differentiable functions (following the idea of Bentkus
(2003)) and obtain:

sup
A∈A
|P(∆̄t ∈ A)− P(Z ∈ A)| ≤ C

d2

√
t
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proof idea

. The following decomposition for ∆̄t is easy to obtain:

√
t∆̄t =

1√
tη0

Bt∆0︸ ︷︷ ︸
I1

+
1√
t

t−1∑
j=1

A−1ζj︸ ︷︷ ︸
I2

+
1√
t

t−1∑
j=1

W t
j ζj︸ ︷︷ ︸

I3

,

where Bt and W t
j are matrices that are functions of A and ηj .

. Using the triangle inequality,∣∣∣E [h(
√
t∆̄t)

]
− E

[
h(A−1V 1/2Z )

]∣∣∣
≤
∣∣∣E [h(I2)]− E

[
h(A−1V 1/2Z )

]∣∣∣︸ ︷︷ ︸
martingle clt

+
∣∣∣E [h (√t∆̄t

)
− h(I2)

]∣∣∣
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Martingale Results
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multivariate martingale definitions

. Let X1,X2, ...,Xn ∈ Rd be a martingale difference sequence
adapted to a filtration F0,F1, ...,Fn with almost surely

Σk = E [XkX
>
k |Fk−1].

. Let Sn =
∑n

i=1 Xi , and the variance of the summation be
Σn = var(Sn).

. For k ∈ {1, . . . , n}, partial covariance is Pk =
∑n

i=k Σi .
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rates of multivariate martingale clt

Theorem [ABE19]: If we assume that P1 = Σn almost surely,
then for Z ∼ N(0, Id) and h : Rd → R a twice differentiable
function, we have ∣∣∣E h(Σ

−1/2
n Sn)− E h(Z )

∣∣∣
≤ 3π

8

√
dM2(h)

n∑
k=1

E ‖Σ1/2
n P−1k Σ

1/2
n ‖1/22 ‖Σ

−1/2
n Xk‖32.
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rates for multivariate martingale clt

Corollary [ABE19]: For a martingale difference sequence
satisfying

αI � Σk � βI

almost surely for all k ∈ [n] and

E
[
‖Xk‖32

]
≤ γd3/2,

we have ∣∣∣E h(Σ
−1/2
n Sn)− E h(Z )

∣∣∣ ≤ 3πγ
√
β

4α2
M2(h)

d2

√
n
.
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remarks

. Proof technique is based on a combination of standard
Lindeberg’s telescoping sum along with Stein’s method.

. The following two assumptions could be relaxed: (i) the
eigenvalues of the conditional covariances Σk are bounded
away from 0, i.e., Σk � αI , and (ii) the summation of the
conditional covariances are deterministic, i.e., P1

a.s.
= Σn.
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relaxing assumptions

Corollary [ABE19]: Assume there are constants β and δ such
that almost surely

E [‖Xk‖32|Fk−1] ≤ β ∨ δtrace(Vk)

then, we have∣∣∣E h(Σ
−1/2
n Sn)− E h(Z )

∣∣∣ ≤ 2
M1(h)√

n
trace(

1

n
Σn)

1/2

+
3π

4
δ
√
dnM2(h)‖Σ−1/2

n ‖32
[
trace( 1nΣn) + β2/3

]

23



Results in strongly convex setting

24



stochastic gradient descent

Statistical Estimation or Stochastic Optimization:

θ∗ = argmin
θ∈Rd

{
f (θ) = E Y [F (θ,Y )] =

∫
F (θ,Y ) dP(Y )

}
.

SGD algorithm: Given θ0 ∈ Rd

θt = θt−1 − ηtg(θt)

Here, ζt is mean-zero i.i.d random noise vector and

g(θt) = ∇f (θt−1) + ζt .
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strongly-convex setting: definitions

. Xk := [E [∇f (θk−1)]−∇f (θk−1)− ζk ] is a martingale
difference sequence. Let E

[
‖Xk‖22|Fk−1

]
≤ Kd .

. Σt :=
∑t

k=1 Vk where Vk corresponds to the covariance
matrix of Xk :

Vk
a.s.
= E

[
XkX

>
k |Fk−1

]
, ∀k ∈ {1, . . . , t}.

. Define

%(η, t) :=
t−1∑
i=1

{
e
−2c1

t−1∑
i=1
ηi

+

[
C ′

η1−c2j

t∑
i=j

mt
j e
−λmt

j (mi
j−mi−1

j )

]2}
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strongly-convex setting: main result

Theorem [ABE19]: For a twice differentiable function
h : Rd → R, we have the following non-asymptotic bound,

E
[
|h(Σ

−1/2
t ∆̄t)− h(Z )|

]
≤ C
√
d

t∑
k=1

E
[∥∥Σ

1/2
t P−1k Σ

1/2
t

∥∥1/2

2

(
[∇2f (θ∗)]−1Σt [∇2f (θ∗)]−1

)−1/2
Xk

∥∥3
2

]
+ C2

‖Σ−1/2
t ‖2
t

[
[E ‖∆0‖2]

η0
+

LH
∑t−1

j=1
√
ηj√

2µ
+
√

Kd %(η, t)

]

+
C3‖Σ−

1/2
t ‖22
t2

[[
E ‖∆0‖22

]
η20

+
L2H
∑t−1

j=1 ηj

2µ
+ Kd %(η, t)

]
.
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strongly-convex setting: remarks

. Proof is similar to the linear setting (with an extra term to
handle).

. Theorem is stated for any step-size sequence ηj .

. Typically, the dominant term is the first term, arising from the
martingale rates.

. Similar to the linear setting, one can get Berry-Esseen bound
by approximating indicators by twice-differentiable functions.

. Similar result could be derived for online bootstrap algorithms
(Fang et al. (2018); Su and Zhu (2018)), to get practically
computable and non-asymptotically valid confidence intervals
for SGD.
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online bootstrap: higrad [su and zhu (2018)]
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research agenda

. Research agenda: Provide algorithm-specific,
non-asymptotically valid, and user-friendly confidence
sets/intervals for parameter estimation and prediction done
via stochastic iterative algorithms.

. Some take-home messages (at least to me!):

. Asymptotics hides a lot! Be non-asymptotic in your
analyses.

. SGD is not an algorithm to compute mle. SGD is the
estimator.

. Establish non-asymptotic posterior results
(concentration or confidence bands) for the actual
sampling or approximate inference algorithm used.
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summary

. In this talk, we discussed

. Non-asymptotic normality of SGD algorithm.

. Non-asymptotic normality of Euler-Discretization of Itô
diffusions.

. Ongoing work:

. Establish results for other stochastic iterative estimators
(both optimization and sampling).

. Leverage structure to obtain faster rates: Often times we
are interested in only specific functionals of the estimated
parameter (e.g., max-norm of the SGD estimator).
Ongoing work with Miles Lopes.
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