

Learning via non-convex min-max games

Meisam Razaviyayn

University of Southern California

Maher Nouiehed
USC → AUB

Tianjian Haung
USC

Mazyar Sanjabi
USC → EA

Sina Baharlouei
USC

Jimmy Ba
University of Toronto
Vector Institute

Jason Lee
Princeton

Jong-Shi Pang
USC

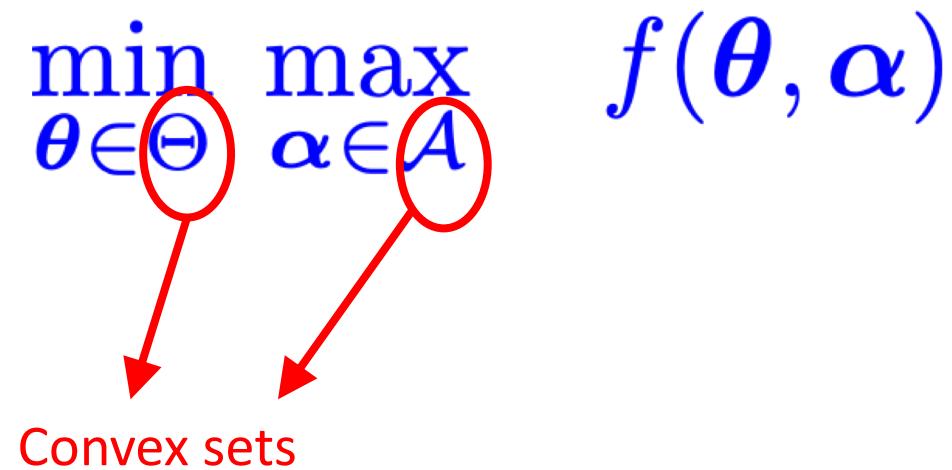
Non-convex min-max games/optimizations

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

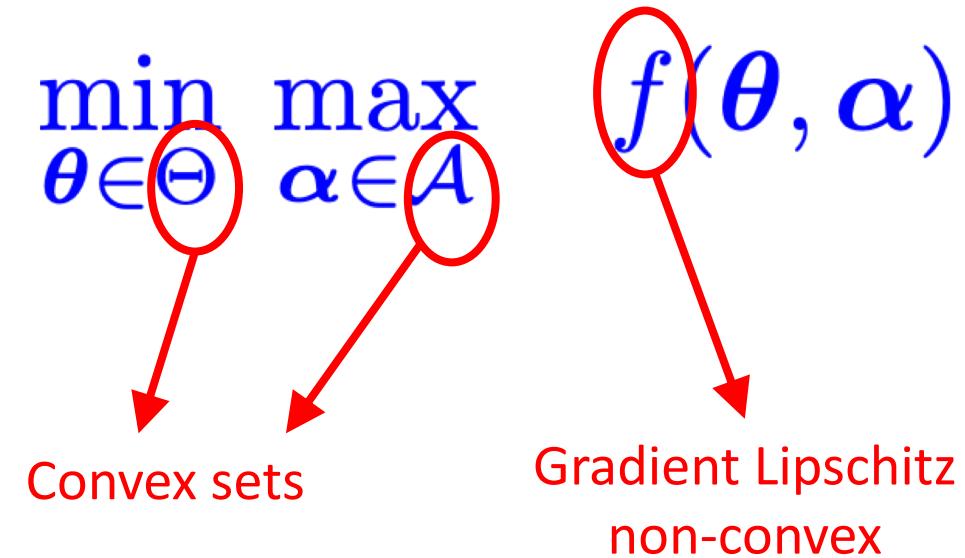
Non-convex min-max games/optimizations

$$\min_{\theta \in \Theta} \max_{\alpha \in A} f(\theta, \alpha)$$

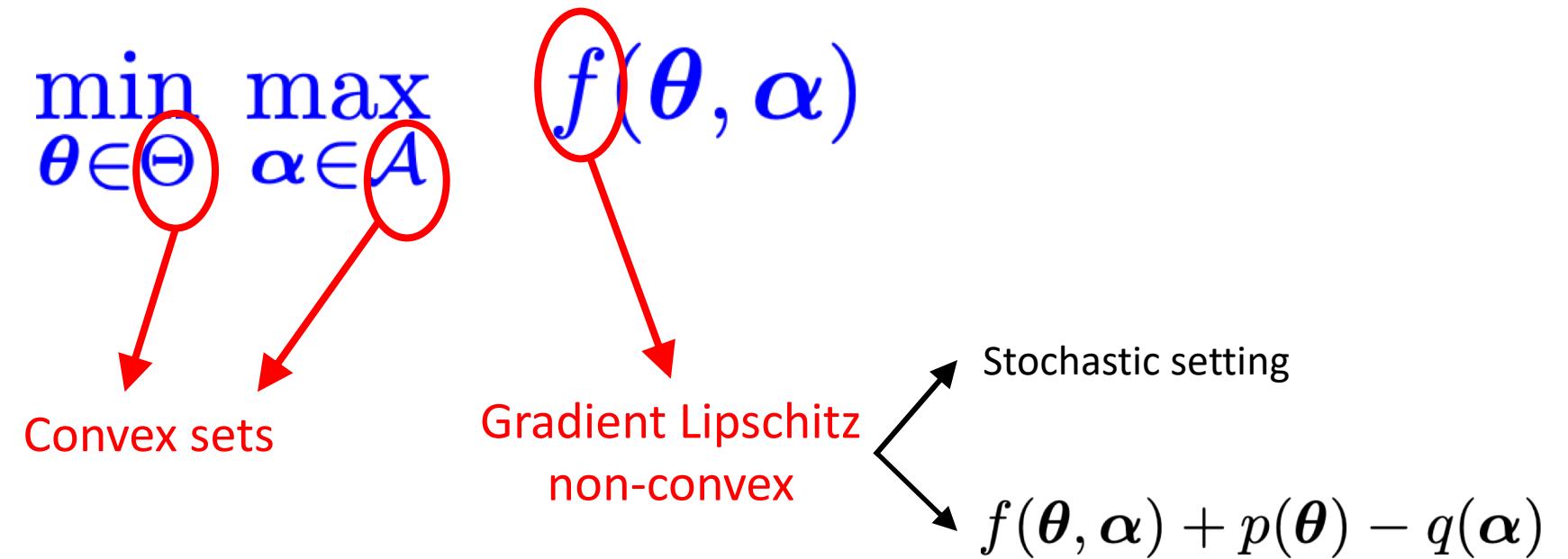
Convex sets



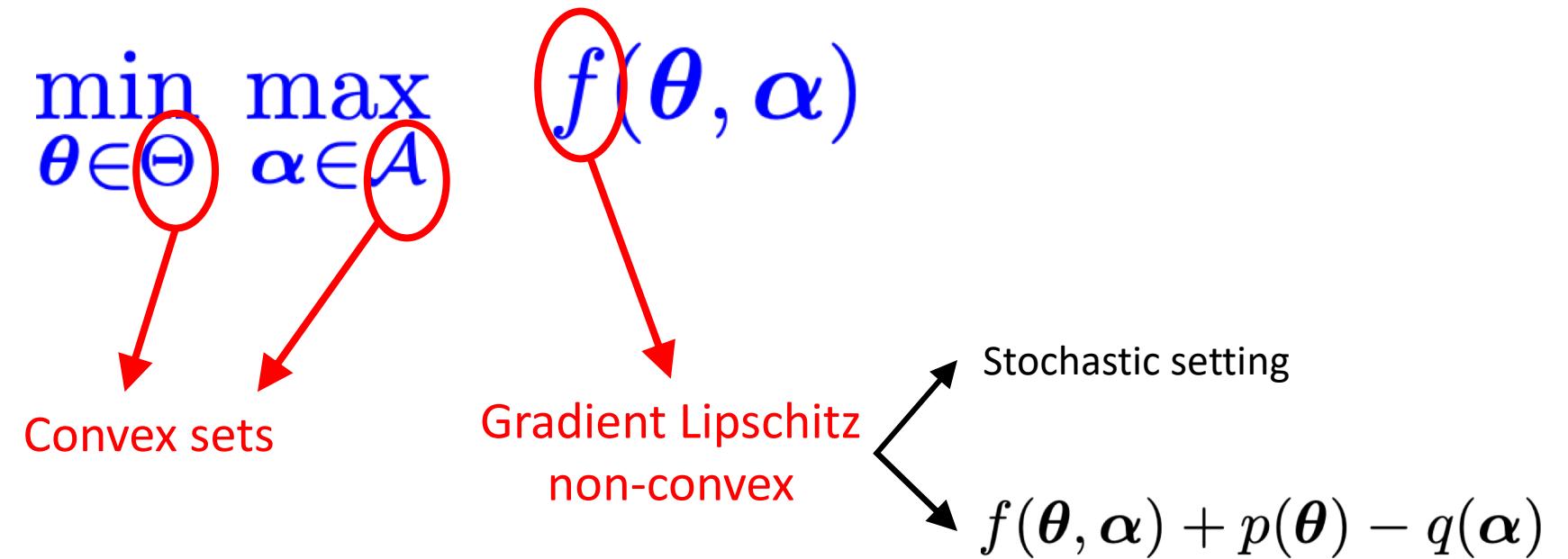
Non-convex min-max games/optimizations



Non-convex min-max games/optimizations



Non-convex min-max games/optimizations



- Why is this problem important? *Recent Applications?*
- Why is it challenging?

Application 1: Min-max problems and robustness

- Design a system with a robust performance against changes in certain parameters

Application 1: Min-max problems and robustness

- Design a system with a robust performance against changes in certain parameters

- Design for nominal value:
$$\min_{\theta \in \Theta} f(\theta, \alpha_0)$$

- Robust design:
$$\min_{\theta \in \Theta} \max_{\|\alpha - \alpha_0\| \leq \delta} f(\theta, \alpha)$$

Application 1: Min-max problems and robustness

- Design a system with a robust performance against changes in certain parameters

$$\min_{\theta \in \Theta} \quad f(\theta, \alpha_0)$$

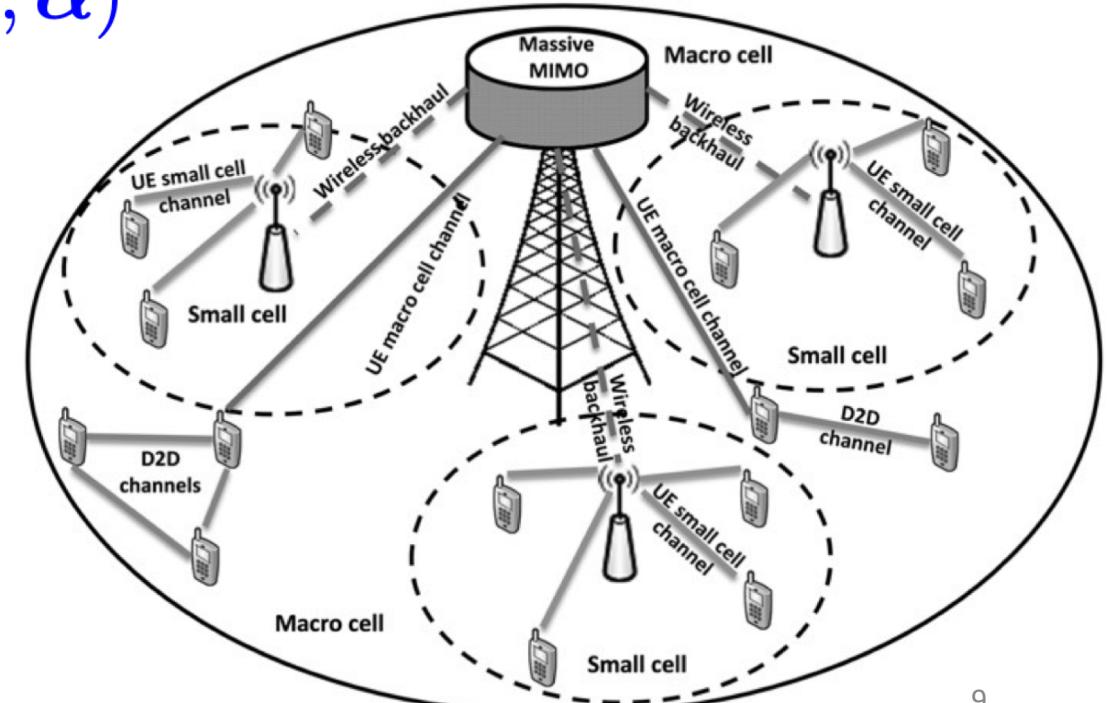
- Design for nominal value:

$$\min_{\theta \in \Theta} \quad \max_{\|\alpha - \alpha_0\| \leq \delta} \quad f(\theta, \alpha)$$

- Robust design:

- Massive MIMO application

$$\min_{\mathbf{w}} \quad \max_{\mathbf{H} \in \mathcal{H}} \quad \ell(\mathbf{w}, \mathbf{H})$$



Application 1: Min-max problems and robustness

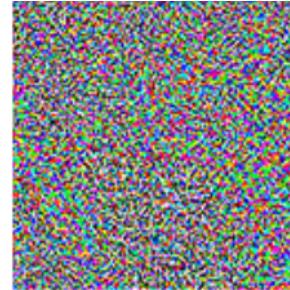
- Adversarial attacks to neural networks

Application 1: Min-max problems and robustness

- Adversarial attacks to neural networks

“panda”
57.7% confidence

$$+ 0.007 \times$$

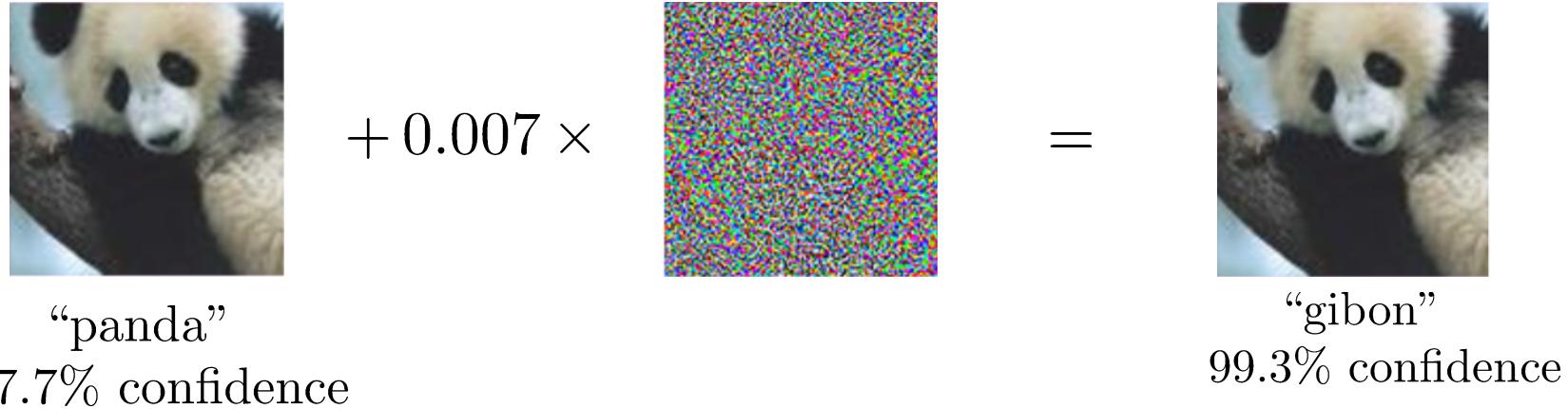


=

“gibbon”
99.3% confidence

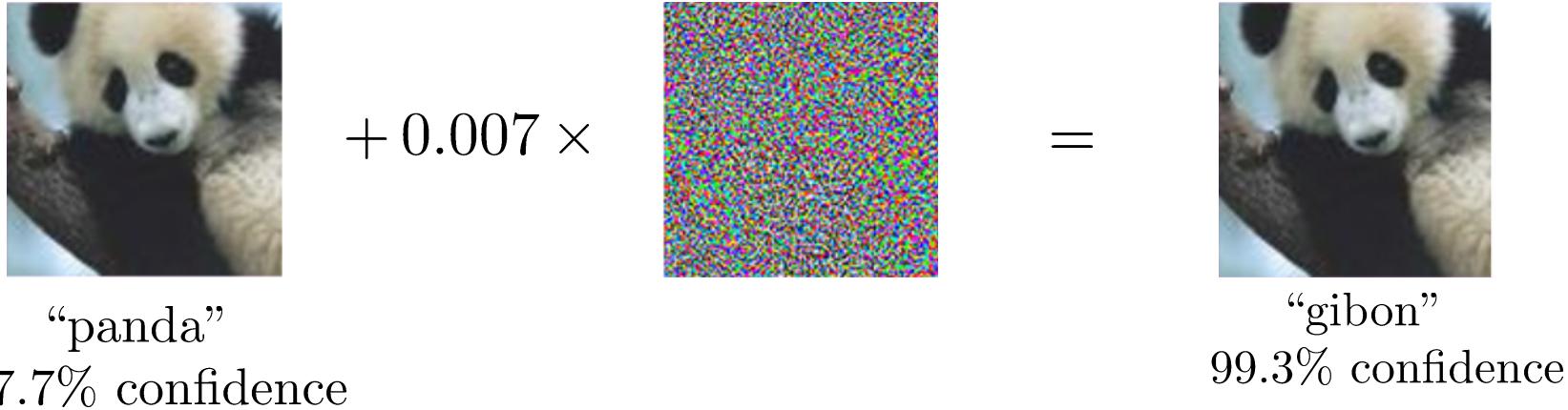
Application 1: Min-max problems and robustness

- Adversarial attacks to neural networks



Application 1: Min-max problems and robustness

- Adversarial attacks to neural networks

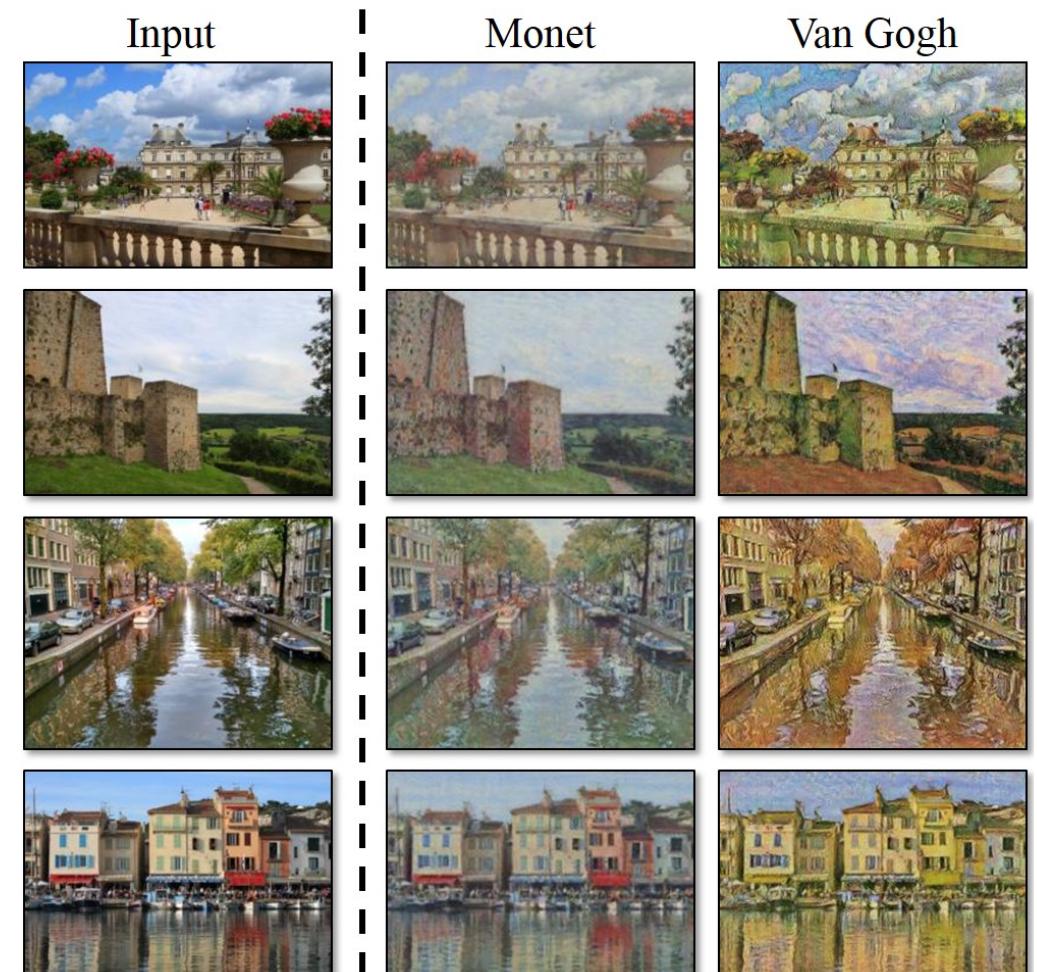


Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbb{P}_x$

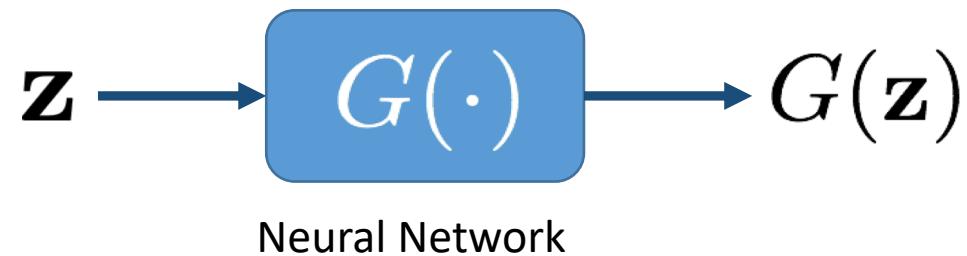
Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbb{P}_x$

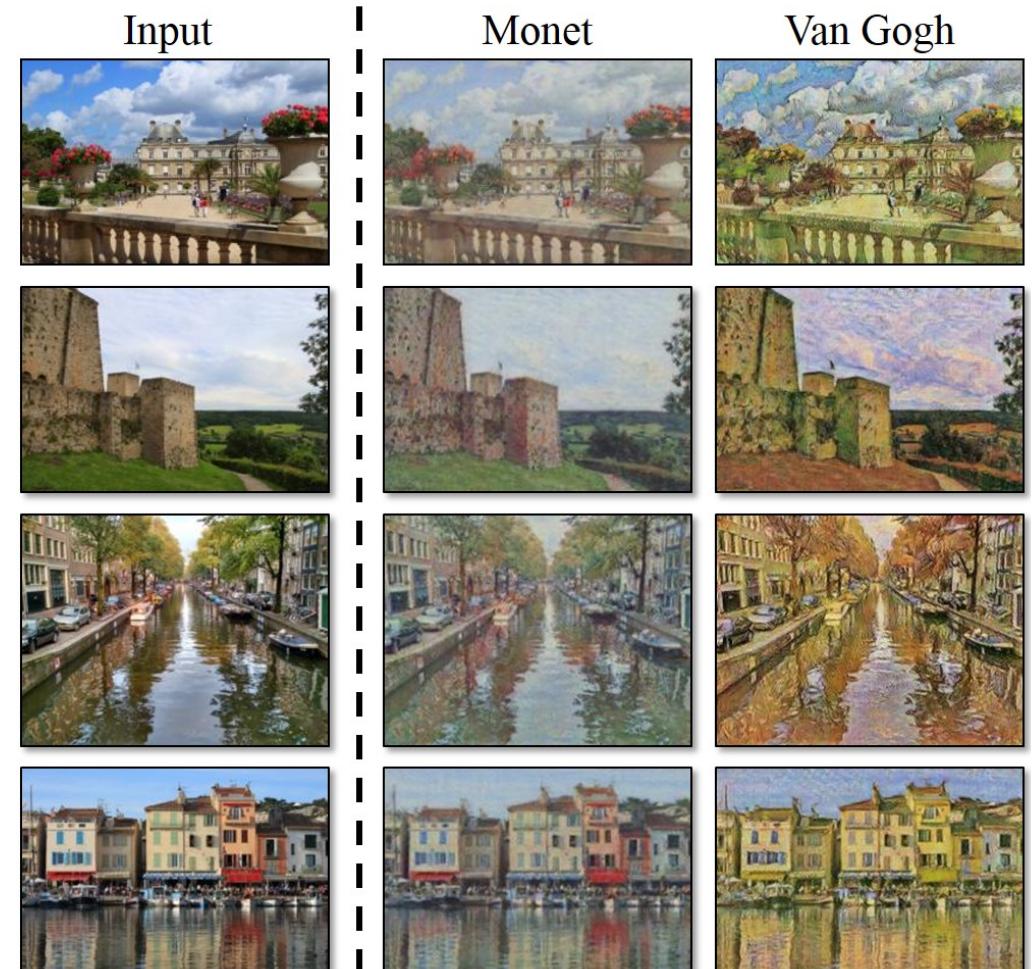


Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbb{P}_x$

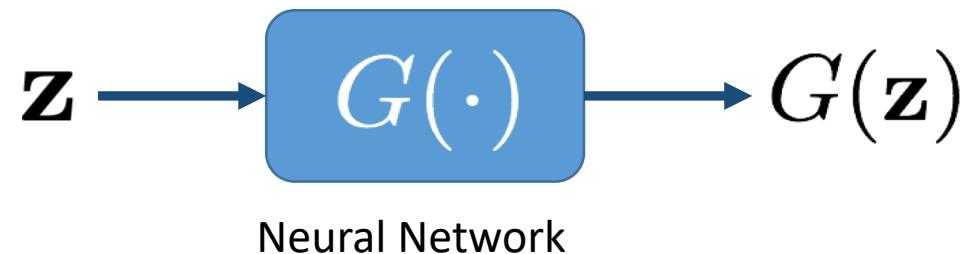


We need $G(\mathbf{z})$ to have the same distribution as \mathbb{P}_x

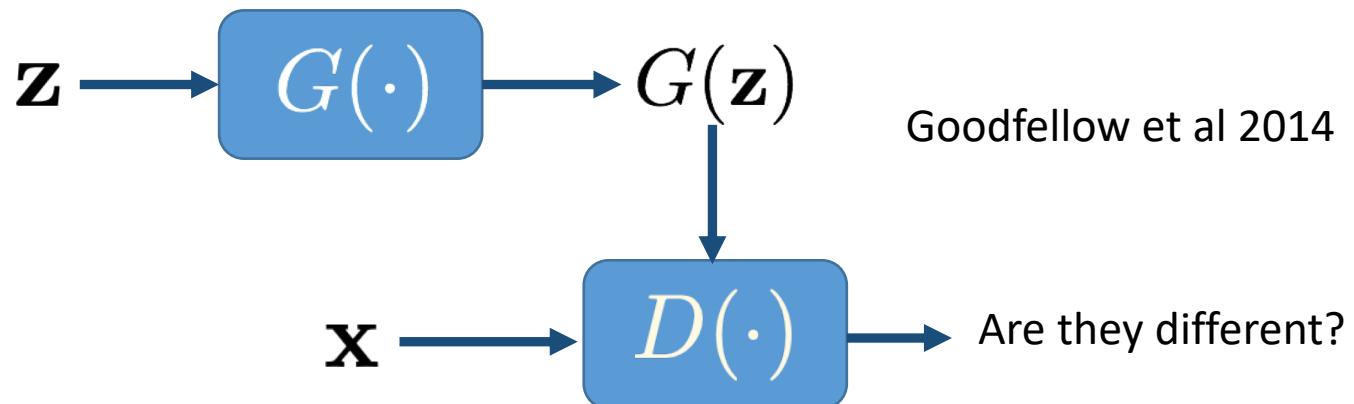
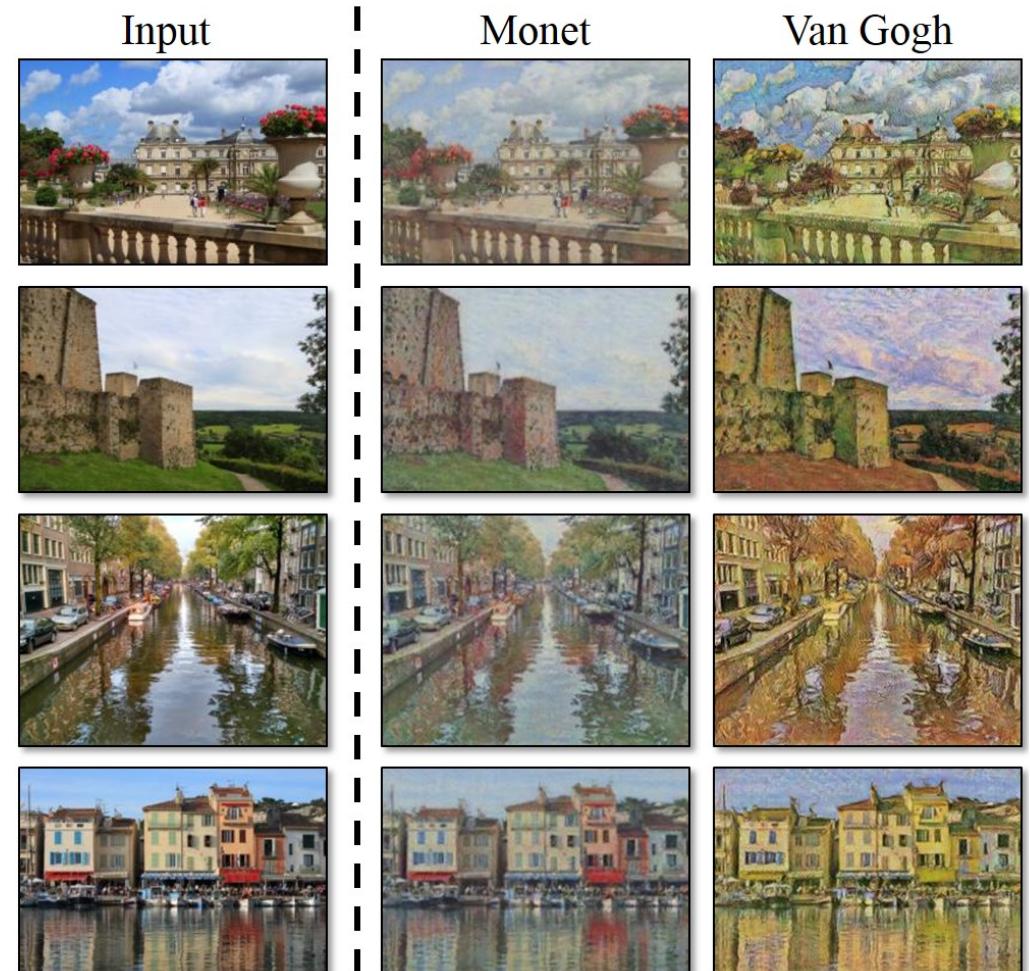


Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbb{P}_x$

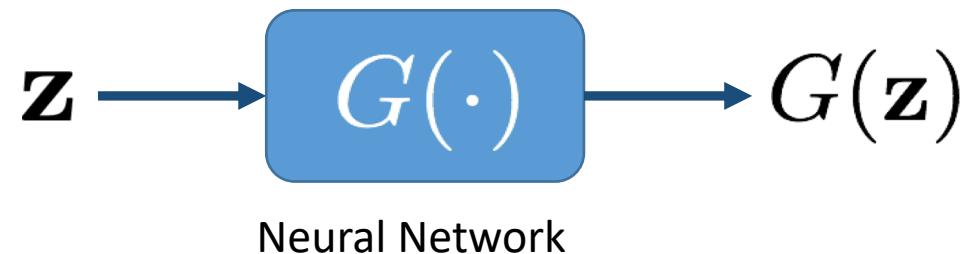


We need $G(\mathbf{z})$ to have the same distribution as \mathbb{P}_x

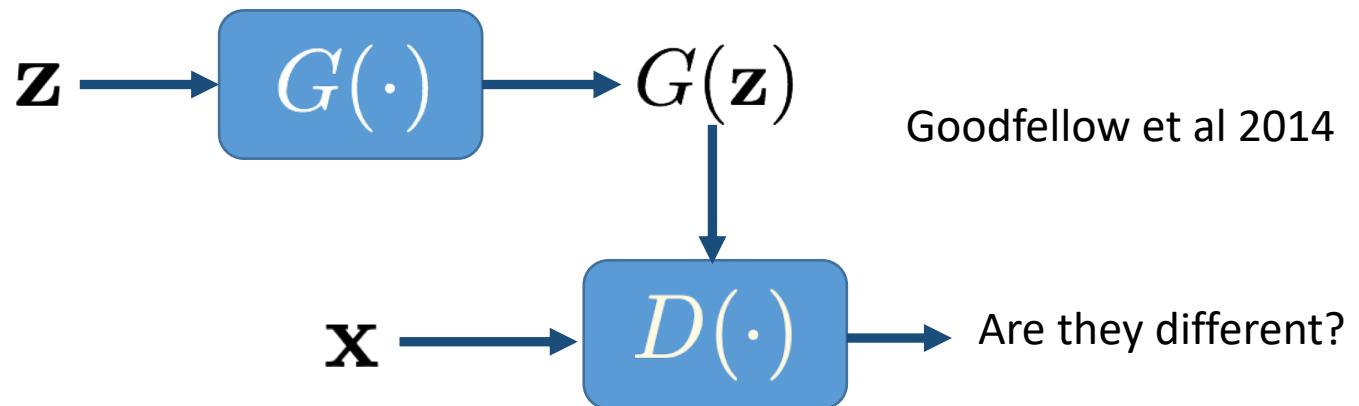
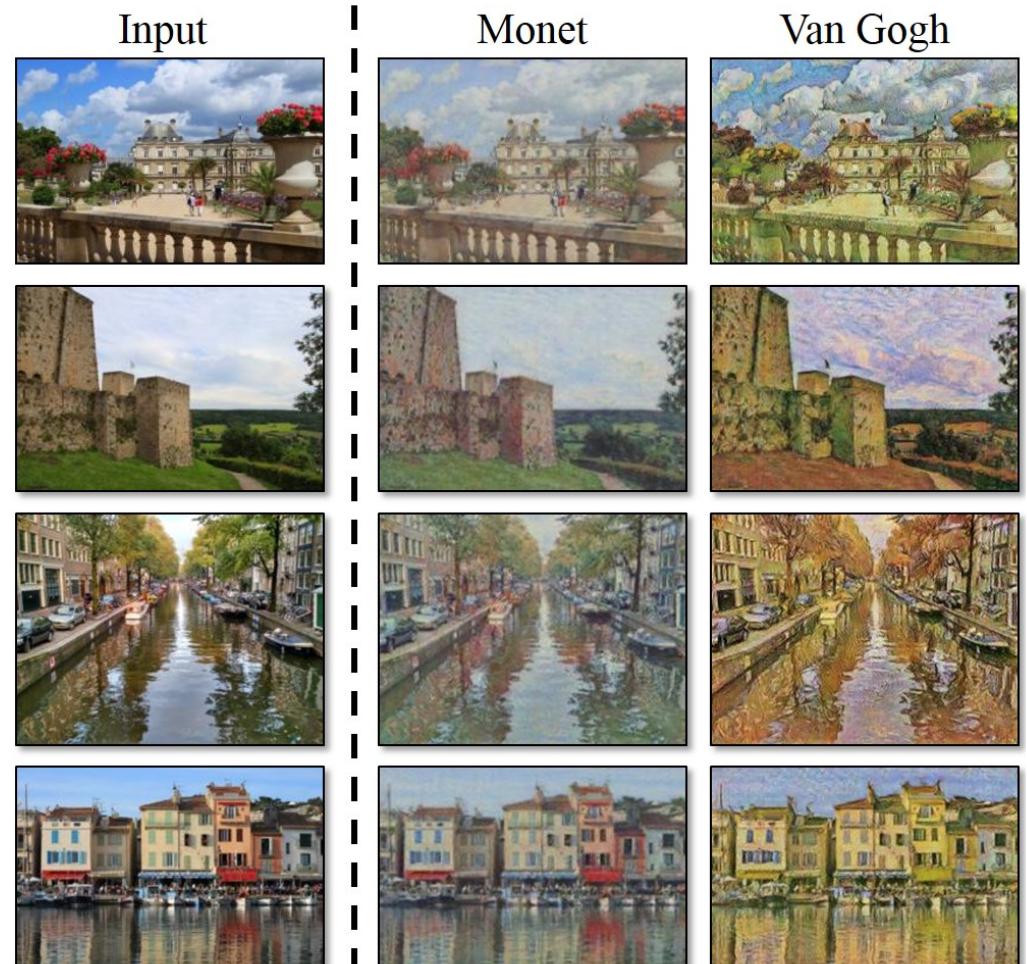


Application 2: Min-max and GANs

Goal: Generate samples that look like real samples $\mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbb{P}_x$



We need $G(\mathbf{z})$ to have the same distribution as \mathbb{P}_x



- The two neural networks are playing a zero-sum game

Application 2: Min-max and GANs

- MMD GANs

$$\min_G \max_D \left\| \mathbb{E}[D(G(\mathbf{z}))] - \mathbb{E}[D(\mathbf{x})] \right\|$$

- Jensen-Shannon GANs:

$$\min_G \max_{D \in \mathbb{D}} \mathbb{E}_{\mathbf{x}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z}} \log (1 - D(G(\mathbf{z})))$$

\mathbb{D} = set of all functions with range $(0, 1)$

- Wasserstein GANs:

$$\min_G \max_{\gamma} \mathbb{E}_{\mathbf{x}} [\gamma(\mathbf{x})] - \mathbb{E}_{\mathbf{z}} [\gamma(G(\mathbf{z}))]$$

s.t. $\gamma(\mathbf{x}) - \gamma(\mathbf{y}) \leq \|\mathbf{x} - \mathbf{y}\|_2, \forall \mathbf{x}, \mathbf{y}$

All are non-convex min-max problems!

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} \quad f(\theta, \alpha)$$

$$\min_{\beta \in \mathcal{B}} \quad h(\beta)$$

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

$$\min_{\beta \in \mathcal{B}} h(\beta)$$

➤ Apply (projected) gradient descent

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- What should we do? Gradient descent/ascent?

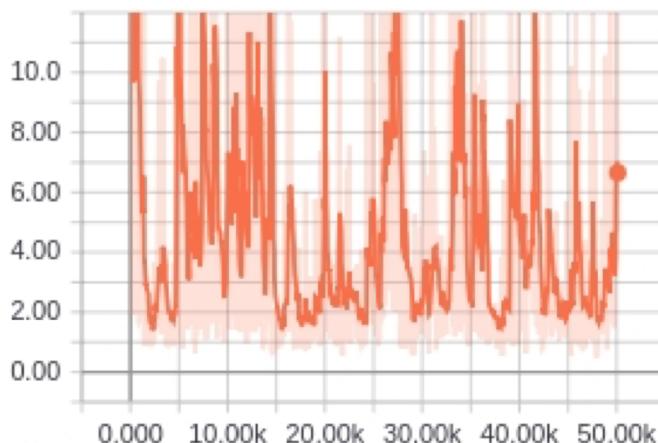
$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- What should we do? Gradient descent/ascent?



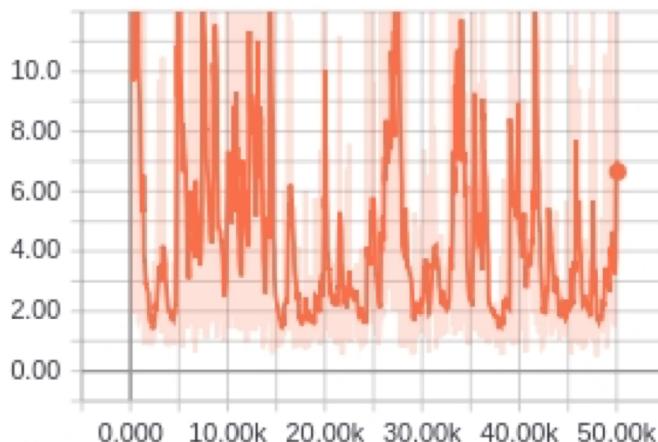
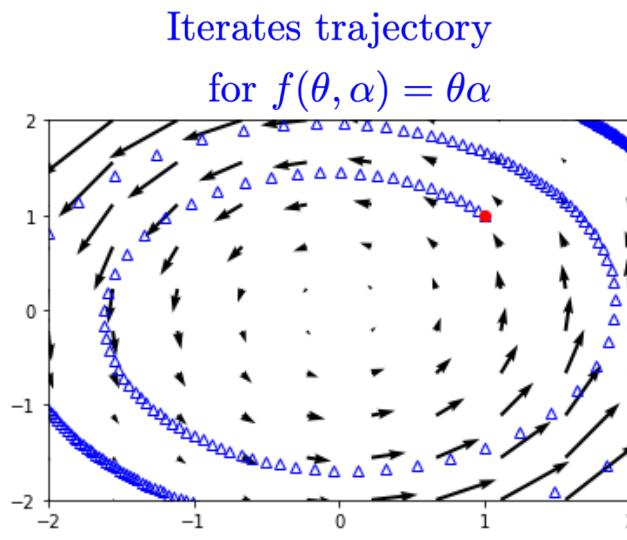
$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds

Why are non-convex min-max problems challenging?

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- What should we do? Gradient descent/ascent?



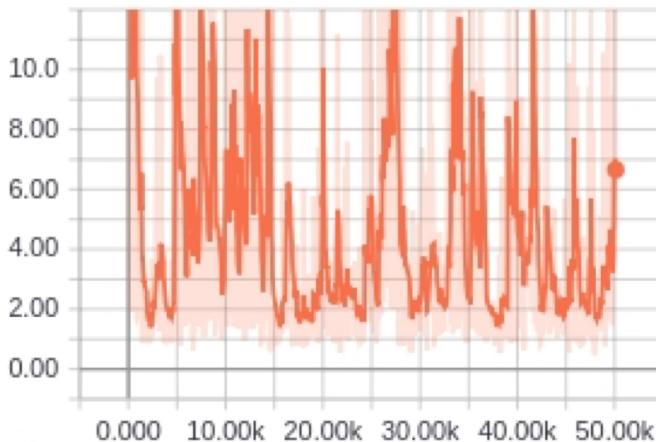
$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds

Why are non-convex min-max problems challenging?

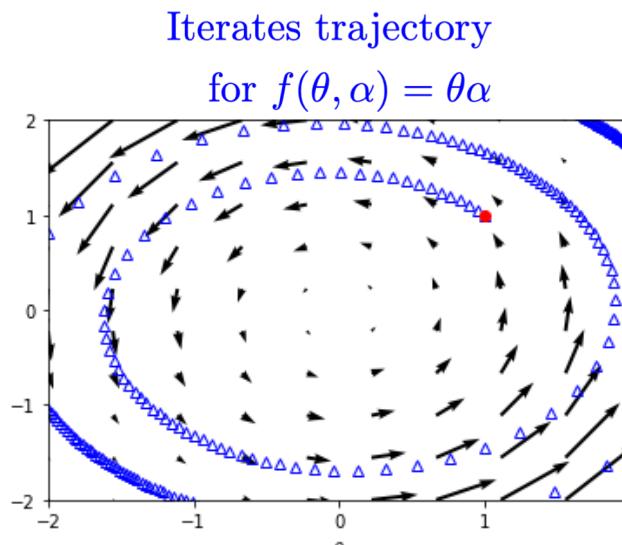
$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- What should we do? Gradient descent/ascent?



$$\min_{\beta \in \mathcal{B}} h(\beta)$$

- Apply (projected) gradient descent:
 - Objective function improves over iterates
 - It is not exhaustive search
 - Convergence to certain stationarity concepts
 - Iteration complexity lower- and upper- bounds



- Even more: what should we compute?

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

- Existence?

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

- Existence?

Theorem [Pang-Razaviyayn 2016]: Suppose that the constraint sets are non-empty, compact, and convex. Moreover, assume that $f(\cdot)$ is continuously differentiable (+/- convex). Then, the first-order NE exists.

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

- Existence?

Theorem [Pang-Razaviyayn 2016]: Suppose that the constraint sets are non-empty, compact, and convex. Moreover, assume that $f(\cdot)$ is continuously differentiable (+/- convex). Then, the first-order NE exists.

- Can we compute it?

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

- Existence?

Theorem [Pang-Razaviyayn 2016]: Suppose that the constraint sets are non-empty, compact, and convex. Moreover, assume that $f(\cdot)$ is continuously differentiable (+/- convex). Then, the first-order NE exists.

- Can we compute it? ϵ –First-order NE:

Defining a stationary concept

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Game perspective → First-order Nash equilibrium:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq 0, \quad \forall \theta \in \Theta$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq 0, \quad \forall \alpha \in \mathcal{A}$$

- Existence?

Theorem [Pang-Razaviyayn 2016]: Suppose that the constraint sets are non-empty, compact, and convex. Moreover, assume that $f(\cdot)$ is continuously differentiable (+/- convex). Then, the first-order NE exists.

- Can we compute it? ϵ –First-order NE:

$$\langle \nabla_{\theta} f(\theta^*, \alpha^*), \theta - \theta^* \rangle \geq -\epsilon, \quad \forall \theta \in \Theta \quad \|\theta - \theta^*\| \leq 1$$

$$\langle \nabla_{\alpha} f(\theta^*, \alpha^*), \alpha - \alpha^* \rangle \leq \epsilon, \quad \forall \alpha \in \mathcal{A} \quad \|\alpha - \alpha^*\| \leq 1$$

Computation of ϵ – first-order Nash equilibrium

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} \quad f(\theta, \alpha)$$

Computation of ϵ – first-order Nash equilibrium

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Computation of ϵ – first-order Nash equilibrium

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha) \rightarrow g(\theta)$$

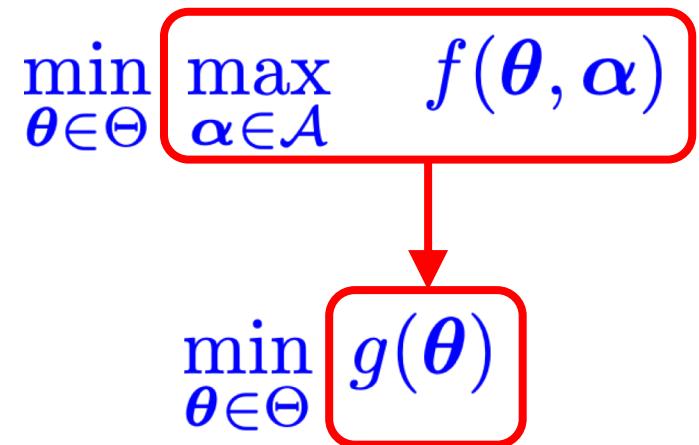
Computation of ϵ – first-order Nash equilibrium

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha) \quad \downarrow \quad \min_{\theta \in \Theta} g(\theta)$$

Computation of ϵ – first-order Nash equilibrium

- Apply gradient descent to $g(\cdot)$

$$\theta^{t+1} \approx [\theta^t - \gamma \nabla_{\theta} g(\theta^t)]_+$$

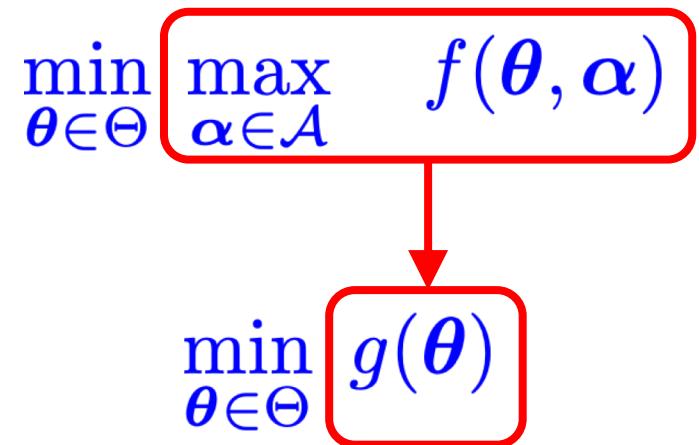


Computation of ϵ – first-order Nash equilibrium

- Apply gradient descent to $g(\cdot)$

$$\theta^{t+1} \approx [\theta^t - \gamma \nabla_{\theta} g(\theta^t)]_+$$

- Is it differentiable?



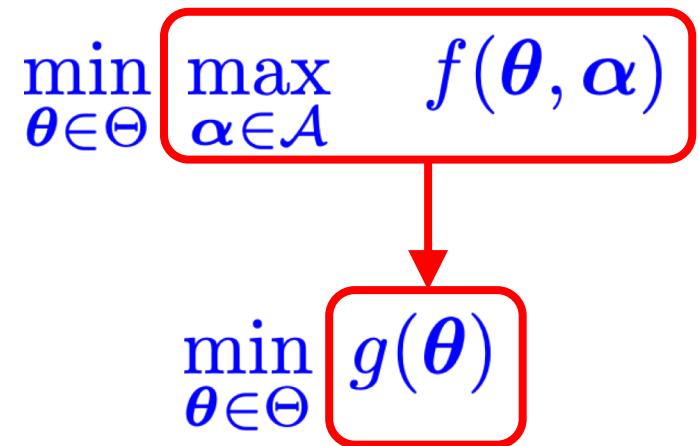
Computation of ϵ – first-order Nash equilibrium

- Apply gradient descent to $g(\cdot)$

$$\theta^{t+1} \approx [\theta^t - \gamma \nabla_{\theta} g(\theta^t)]_+$$

- Is it differentiable?

- When $f(\theta, \alpha)$ is strongly concave in α



Computation of ϵ – first-order Nash equilibrium

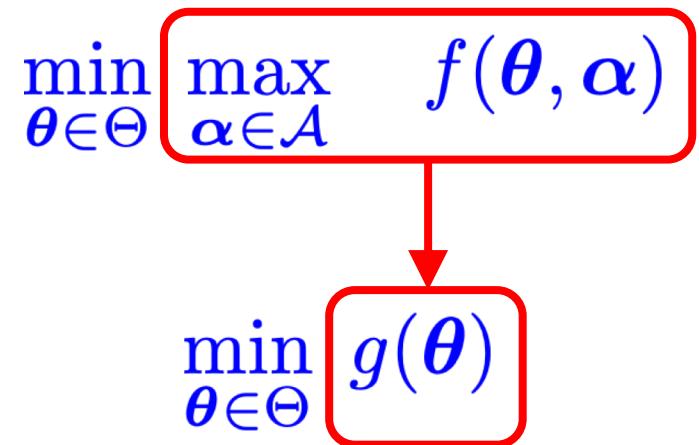
- Apply gradient descent to $g(\cdot)$

$$\boldsymbol{\theta}^{t+1} \approx [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}^t)]_+$$

- Is it differentiable?

- When $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$ is strongly concave in $\boldsymbol{\alpha}$

Danskin's Theorem: $\nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ where $\boldsymbol{\alpha}_0 = \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}_0, \boldsymbol{\alpha})$



Computation of ϵ – first-order Nash equilibrium

- Apply gradient descent to $g(\cdot)$

$$\boldsymbol{\theta}^{t+1} \approx [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}^t)]_+$$

- Is it differentiable?

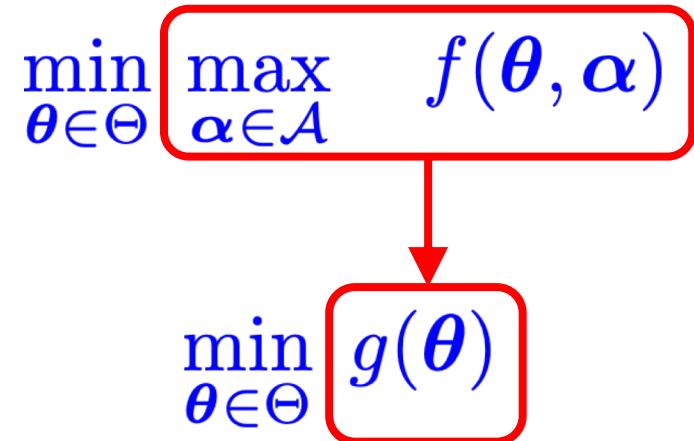
- When $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$ is strongly concave in $\boldsymbol{\alpha}$

Danskin's Theorem: $\nabla_{\boldsymbol{\theta}} g(\boldsymbol{\theta}_0) = \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}_0, \boldsymbol{\alpha}_0)$ where $\boldsymbol{\alpha}_0 = \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}_0, \boldsymbol{\alpha})$

Algorithm: for $t = 1, 2, \dots$ do

$$\boldsymbol{\alpha}^{t+1} \approx \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha})$$

$$\boldsymbol{\theta}^{t+1} = [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^{t+1})]_+$$



Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $O(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

→ Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Apply K steps of projected gradient ascent on α

$$K \approx \mathcal{O}(\log(\epsilon^{-1}))$$

Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Apply K steps of projected gradient ascent on α

$$K \approx \mathcal{O}(\log(\epsilon^{-1}))$$

Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

- Optimal rate up to logarithmic factors

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Apply K steps of projected gradient ascent on α

$$K \approx \mathcal{O}(\log(\epsilon^{-1}))$$

Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

- Optimal rate up to logarithmic factors
- Can be obtained under Polyak-Łojasiewicz (PL) condition
 - Requires establishing Danskin's-type result under PL assumption

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Apply K steps of projected gradient ascent on α

$$K \approx \mathcal{O}(\log(\epsilon^{-1}))$$

Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

- Optimal rate up to logarithmic factors
- Can be obtained under Polyak-Łojasiewicz (PL) condition Strongly convex composite with affine ✓
- Requires establishing Danskin's-type result under PL assumption

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha)$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Apply K steps of projected gradient ascent on α

$$K \approx \mathcal{O}(\log(\epsilon^{-1}))$$

Need $\mathcal{O}(\epsilon^{-2})$ iterations on θ

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is strongly concave in α . Then, the algorithm requires $\mathcal{O}(\epsilon^{-2} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

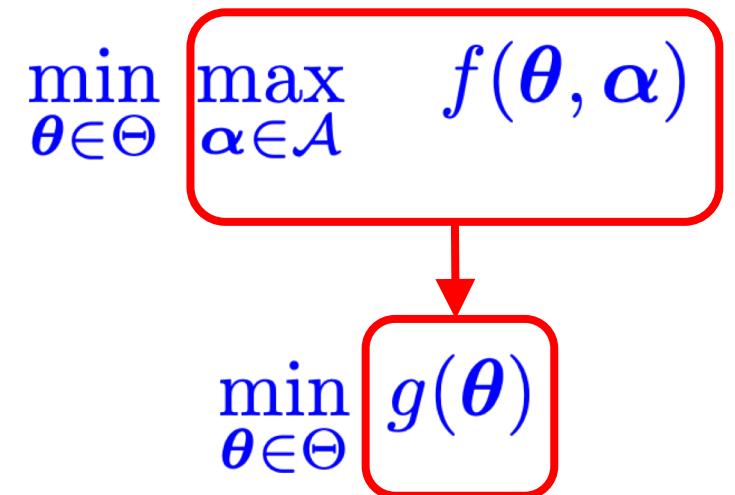
- Optimal rate up to logarithmic factors
- Can be obtained under Polyak-Łojasiewicz (PL) condition
- Requires establishing Danskin's-type result under PL assumption

Strongly convex composite with affine ✓

Extend further?

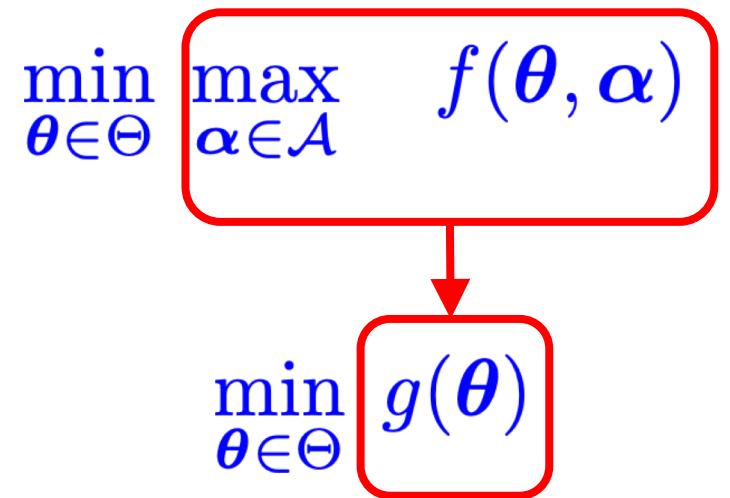
Non-convex-concave scenario

- Assume $f(\theta, \alpha)$ is concave in α (but not strongly concave)



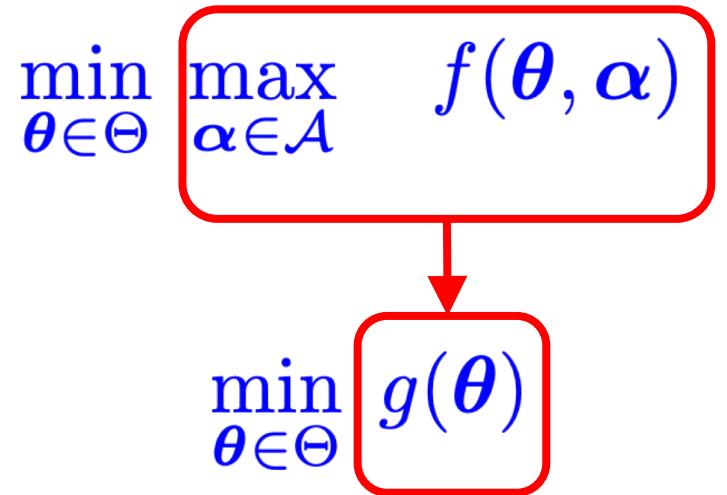
Non-convex-concave scenario

- Assume $f(\theta, \alpha)$ is concave in α (but not strongly concave)
- $g(\cdot)$ is no longer differentiable



Non-convex-concave scenario

- Assume $f(\theta, \alpha)$ is concave in α (but not strongly concave)
- $g(\cdot)$ is no longer differentiable
- Smoothify $g(\cdot)$

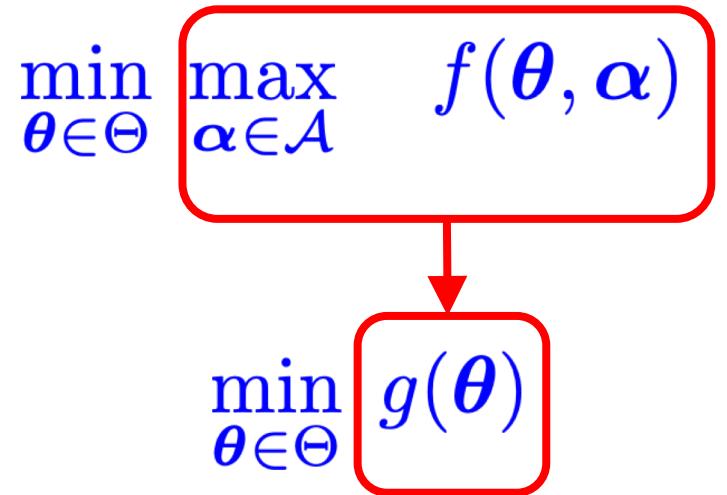


Non-convex-concave scenario

➤ Assume $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$ is concave in $\boldsymbol{\alpha}$ (but not strongly concave)

➤ $g(\cdot)$ is no longer differentiable

➤ Smoothify $g(\cdot)$
$$g_\lambda(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$$



Non-convex-concave scenario

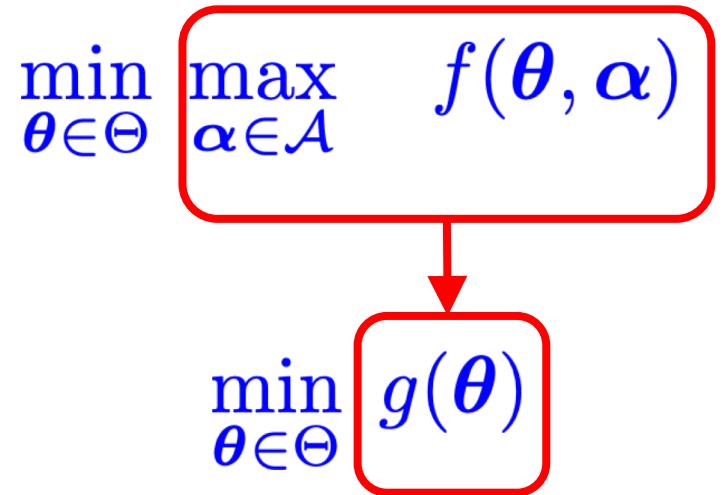
➤ Assume $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$ is concave in $\boldsymbol{\alpha}$ (but not strongly concave)

➤ $g(\cdot)$ is no longer differentiable

➤ Smoothify $g(\cdot)$
$$g_\lambda(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$$

➤ **Algorithm:**

$$\boldsymbol{\theta}^{t+1} \approx [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} g_\lambda(\boldsymbol{\theta}^t)]_+$$



Non-convex-concave scenario

➤ Assume $f(\boldsymbol{\theta}, \boldsymbol{\alpha})$ is concave in $\boldsymbol{\alpha}$ (but not strongly concave)

➤ $g(\cdot)$ is no longer differentiable

➤ Smoothify $g(\cdot)$

$$g_\lambda(\boldsymbol{\theta}) \triangleq \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$$

➤ **Algorithm:**

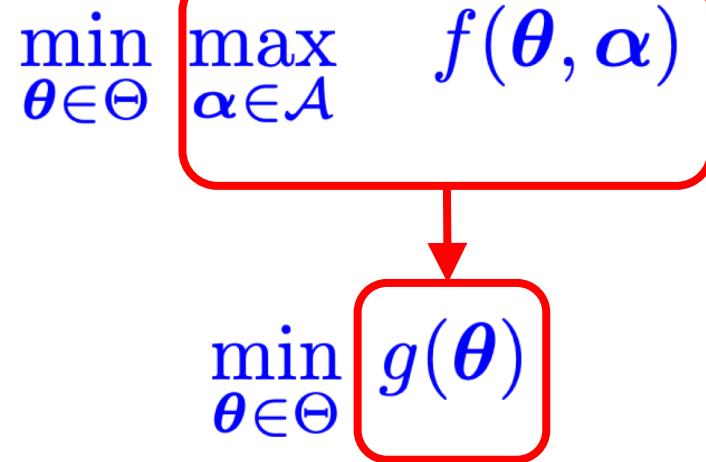
$$\boldsymbol{\theta}^{t+1} \approx [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} g_\lambda(\boldsymbol{\theta}^t)]_+$$

DanSkin's
Theorem

for $t = 1, 2, \dots$ do

$$\boldsymbol{\alpha}^{t+1} \approx \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$$

$$\boldsymbol{\theta}^{t+1} = [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^{t+1})]_+$$



Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Algorithm:

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha) - \frac{\lambda}{2} \|\alpha\|^2$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

Iteration complexity

Algorithm:

for $t = 1, 2, \dots$ do

$$\boldsymbol{\alpha}^{t+1} \approx \arg \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}) - \frac{\lambda}{2} \|\boldsymbol{\alpha}\|^2$$

$$\boldsymbol{\theta}^{t+1} = [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^{t+1})]_+$$

$$\min_{\boldsymbol{\theta} \in \Theta} \max_{\boldsymbol{\alpha} \in \mathcal{A}} f(\boldsymbol{\theta}, \boldsymbol{\alpha})$$

for $t = 1, 2, \dots$ do

$\boldsymbol{\alpha}_0 = \boldsymbol{\alpha}^t$

for $\tau = 1, 2, \dots, K$ do

$\boldsymbol{\alpha}_{\tau+1} = [\boldsymbol{\alpha}_{\tau} + \gamma \nabla_{\boldsymbol{\alpha}} f_{\lambda}(\boldsymbol{\theta}^t, \boldsymbol{\alpha}_{\tau})]_+$

end for

$\boldsymbol{\alpha}^{t+1} = \boldsymbol{\alpha}_K$

$\boldsymbol{\theta}^{t+1} = [\boldsymbol{\theta}^t - \gamma \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^t, \boldsymbol{\alpha}^{t+1})]_+$

end for

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Algorithm:

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha) - \frac{\lambda}{2} \|\alpha\|^2$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

for $t = 1, 2, \dots$ do

$$\alpha_0 = \alpha^t$$

for $\tau = 1, 2, \dots, K$ do

$$\alpha_{\tau+1} = [\alpha_{\tau} + \gamma \nabla_{\alpha} f_{\lambda}(\theta^t, \alpha_{\tau})]_+$$

end for

$$\alpha^{t+1} = \alpha_K$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

end for

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is concave in α . Then, the above algorithm requires $O(\epsilon^{-3.5} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

$O(\epsilon^{-3.5})$ vs $O(\epsilon^{-4})$ without adding a regularizer/acceleration

Algorithm	Iteration Complexity
[Lu et al 2018]	$O(\epsilon^{-4})$
[Lin et al 2019]	$O(\epsilon^{-4})$

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Algorithm:

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha) - \frac{\lambda}{2} \|\alpha\|^2$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

for $t = 1, 2, \dots$ do

$$\alpha_0 = \alpha^t$$

for $\tau = 1, 2, \dots, K$ do

$$\alpha_{\tau+1} = [\alpha_{\tau} + \gamma \nabla_{\alpha} f_{\lambda}(\theta^t, \alpha_{\tau})]_+$$

end for

$$\alpha^{t+1} = \alpha_K$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

end for

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is concave in α . Then, the above algorithm requires $O(\epsilon^{-3.5} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

$O(\epsilon^{-3.5})$ vs $O(\epsilon^{-4})$ without adding a regularizer/acceleration

[Thekumparampil et al 2019]

Algorithm	Iteration Complexity
[Lu et al 2018]	$O(\epsilon^{-4})$
[Lin et al 2019]	$O(\epsilon^{-4})$

Iteration complexity

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

Algorithm:

for $t = 1, 2, \dots$ do

$$\alpha^{t+1} \approx \arg \max_{\alpha \in \mathcal{A}} f(\theta^t, \alpha) - \frac{\lambda}{2} \|\alpha\|^2$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

for $t = 1, 2, \dots$ do

$$\alpha_0 = \alpha^t$$

for $\tau = 1, 2, \dots, K$ do

$$\alpha_{\tau+1} = [\alpha_{\tau} + \gamma \nabla_{\alpha} f_{\lambda}(\theta^t, \alpha_{\tau})]_+$$

end for

$$\alpha^{t+1} = \alpha_K$$

$$\theta^{t+1} = [\theta^t - \gamma \nabla_{\theta} f(\theta^t, \alpha^{t+1})]_+$$

end for

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume $f(\theta, \alpha)$ is concave in α . Then, the above algorithm requires $O(\epsilon^{-3.5} \log \epsilon^{-1})$ gradient evaluations for computing ϵ –first-order NE.

$O(\epsilon^{-3.5})$ vs $O(\epsilon^{-4})$ without adding a regularizer/acceleration

[Thekumparampil et al 2019]

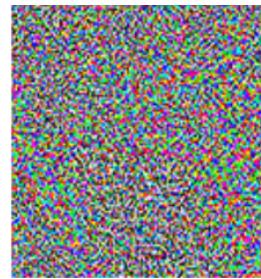
Are these results useful in practice?

Algorithm	Iteration Complexity
[Lu et al 2018]	$O(\epsilon^{-4})$
[Lin et al 2019]	$O(\epsilon^{-4})$

Training robust neural networks

“panda”
57.7% confidence

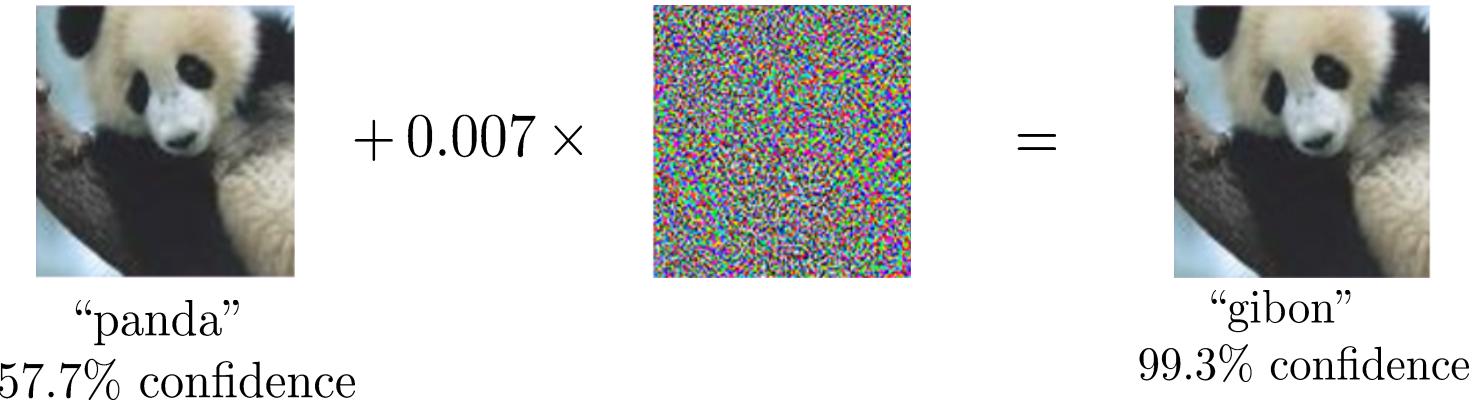
$$+ 0.007 \times$$



=

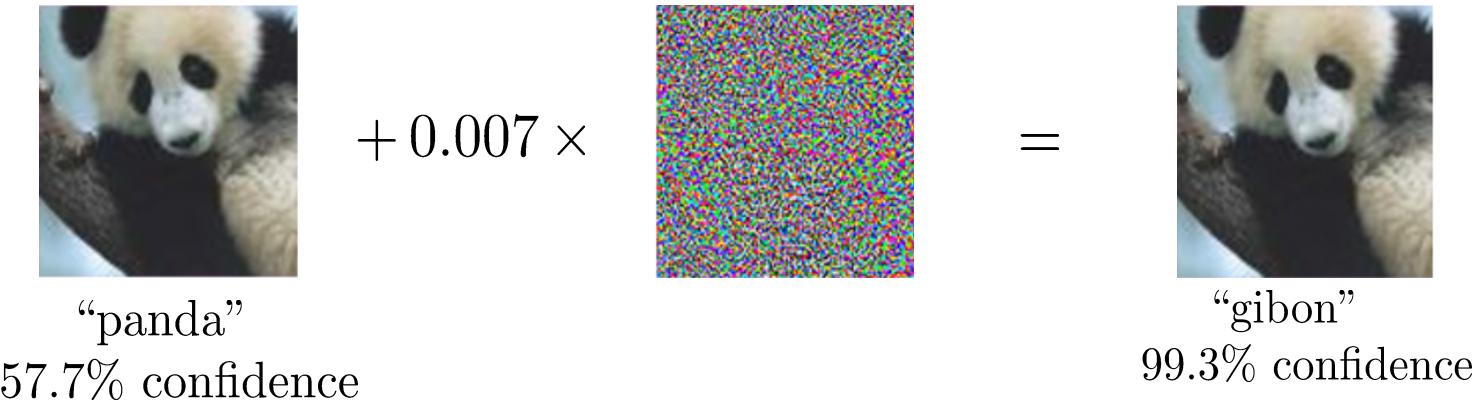
“gibbon”
99.3% confidence

Training robust neural networks



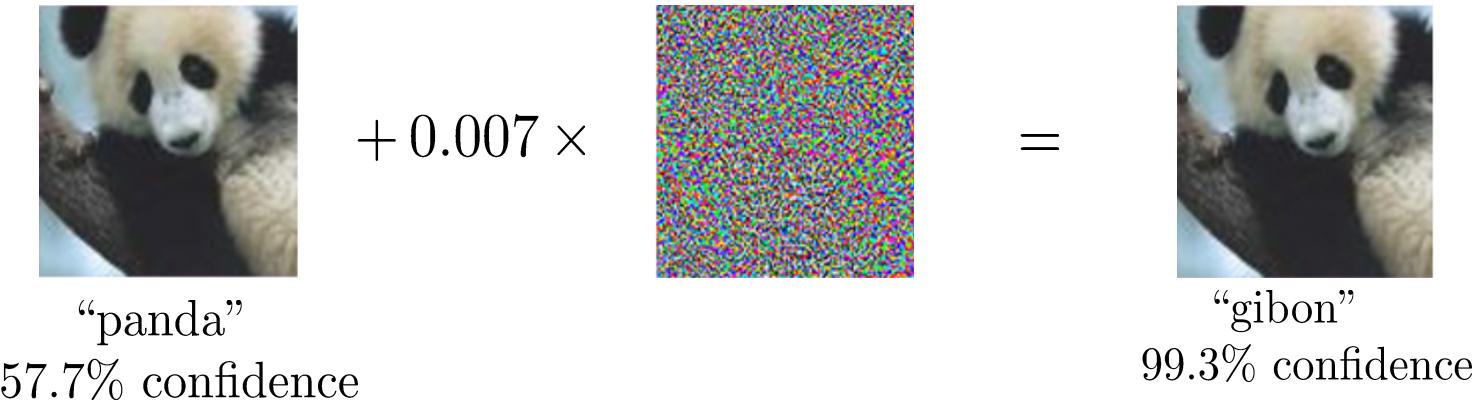
$$\min_{\mathbf{w}} \sum_{i=1}^n \ell(\mathbf{w}, \mathbf{x}_i)$$

Training robust neural networks



$$\min_{\mathbf{w}} \sum_{i=1}^n \ell(\mathbf{w}, \mathbf{x}_i) \rightarrow \min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

Training robust neural networks

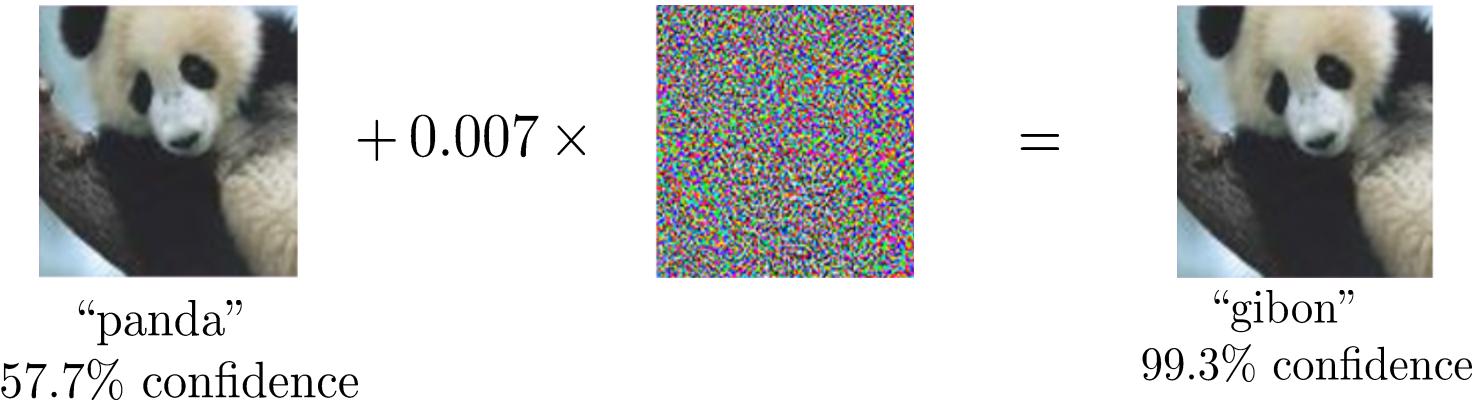


$$\min_{\mathbf{w}} \sum_{i=1}^n \ell(\mathbf{w}, \mathbf{x}_i) \rightarrow \min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

[Madry et al. 2017]: **Repeat:**

- Apply multi-steps of gradient ascent on $\boldsymbol{\delta}$ (reinitialize multiple times and pick the best)
- Perform one step of gradient descent on \mathbf{w}

Training robust neural networks

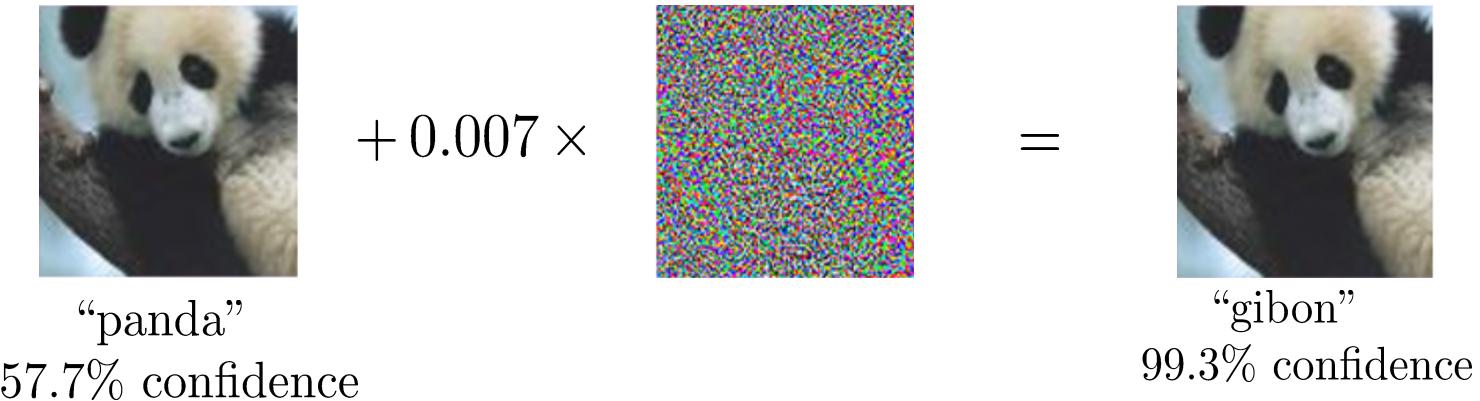


$$\min_{\mathbf{w}} \sum_{i=1}^n \ell(\mathbf{w}, \mathbf{x}_i) \rightarrow \min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

[Madry et al. 2017]: **Repeat**:

- Apply multi-steps of gradient ascent on $\boldsymbol{\delta}$ (reinitialize multiple times and pick the best)
- Perform one step of gradient descent on \mathbf{w}
- No theoretical convergence guarantee, not scalable, and requires heavy tuning to work

Training robust neural networks



$$\min_{\mathbf{w}} \sum_{i=1}^n \ell(\mathbf{w}, \mathbf{x}_i) \rightarrow \min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

[Madry et al. 2017]: **Repeat**:

- Apply multi-steps of gradient ascent on $\boldsymbol{\delta}$ (reinitialize multiple times and pick the best)
- Perform one step of gradient descent on \mathbf{w}

- No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
- Can we apply our theory and algorithm?

Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

Training robust neural networks

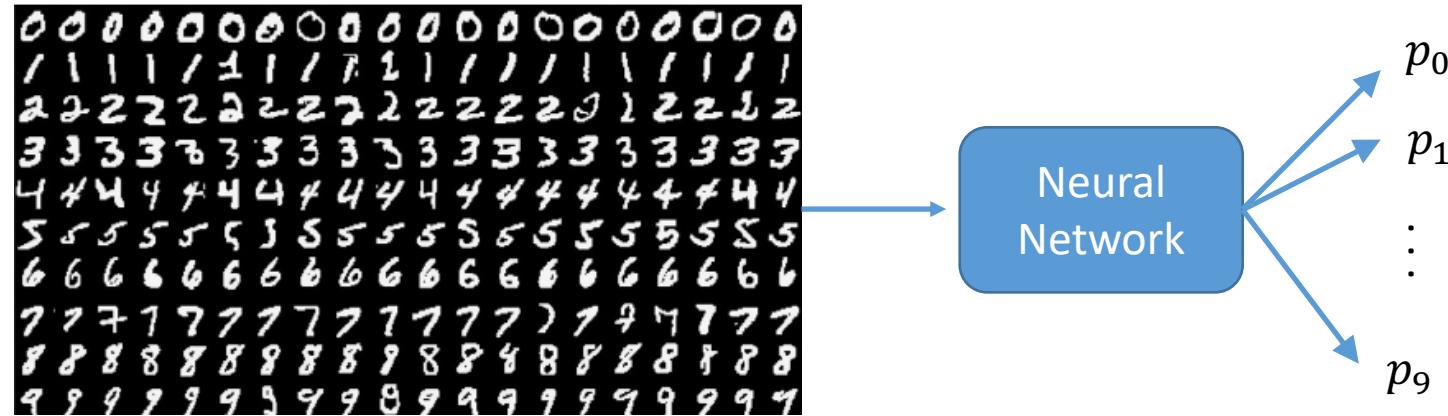
$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

- Idea: approximate the maximization with a concave function

Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

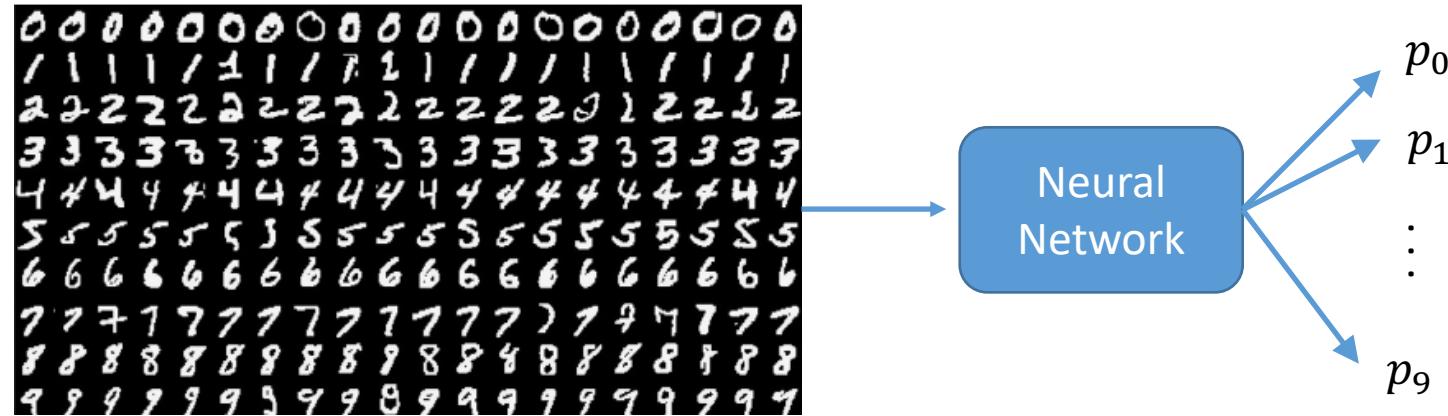
- Idea: approximate the maximization with a concave function



Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

- Idea: approximate the maximization with a concave function



$$\min_{\mathbf{w}} \sum_{i=1}^n \max \left\{ \ell(\mathbf{w}, \mathbf{x}_i + d_0(\mathbf{w}, \mathbf{x}_i)), \dots, \ell(\mathbf{w}, \mathbf{x}_i + d_9(\mathbf{w}, \mathbf{x}_i)) \right\}$$

Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

- Idea: approximate the maximization with a concave function

$$\min_{\mathbf{w}} \sum_{i=1}^n \max \left\{ \ell(\mathbf{w}, \mathbf{x}_i + d_0(\mathbf{w}, \mathbf{x}_i)), \dots, \ell(\mathbf{w}, \mathbf{x}_i + d_9(\mathbf{w}, \mathbf{x}_i)) \right\}$$

$\nabla_{\mathbf{x}} p_0(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$ $\nabla_{\mathbf{x}} p_9(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$

Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

- Idea: approximate the maximization with a concave function

$$\min_{\mathbf{w}} \sum_{i=1}^n \max \left\{ \ell(\mathbf{w}, \mathbf{x}_i + d_0(\mathbf{w}, \mathbf{x}_i)), \dots, \ell(\mathbf{w}, \mathbf{x}_i + d_9(\mathbf{w}, \mathbf{x}_i)) \right\}$$

$\nabla_{\mathbf{x}} p_0(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$ $\nabla_{\mathbf{x}} p_9(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$

$$\min_{\mathbf{w}} \sum_{i=1}^n \left[\max_{\mathbf{t} \in \mathcal{P}} \sum_{k=0}^9 t_k \ell(\mathbf{w}, \mathbf{x}_i + d_k(\mathbf{w}, \mathbf{x}_i)) \right]$$

Training robust neural networks

$$\min_{\mathbf{w}} \sum_{i=1}^n \max_{\|\boldsymbol{\delta}\| \leq \epsilon} \ell(\mathbf{w}, \mathbf{x}_i + \boldsymbol{\delta})$$

- Idea: approximate the maximization with a concave function

$$\min_{\mathbf{w}} \sum_{i=1}^n \max \left\{ \ell(\mathbf{w}, \mathbf{x}_i + d_0(\mathbf{w}, \mathbf{x}_i)), \dots, \ell(\mathbf{w}, \mathbf{x}_i + d_9(\mathbf{w}, \mathbf{x}_i)) \right\}$$

$\nabla_{\mathbf{x}} p_0(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$ $\nabla_{\mathbf{x}} p_9(\mathbf{w}, \mathbf{x}_i) - \nabla_{\mathbf{x}} p_c(\mathbf{w}, \mathbf{x}_i)$

$$\min_{\mathbf{w}} \sum_{i=1}^n \left[\max_{\mathbf{t} \in \mathcal{P}} \sum_{k=0}^9 t_k \ell(\mathbf{w}, \mathbf{x}_i + d_k(\mathbf{w}, \mathbf{x}_i)) \right]$$

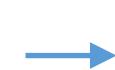
Non-convex in \mathbf{w} , but concave in \mathbf{t}

Numerical results

- [1] Madry et al. "Towards deep learning models resistant to adversarial attacks." *ICLR* 2017
- [2] Zhang et al. "Theoretically principled trade-off between robustness and accuracy" *ICML* 2019.

Numerical results

- [1] Madry et al. "Towards deep learning models resistant to adversarial attacks." *ICLR* 2017
- [2] Zhang et al. "Theoretically principled trade-off between robustness and accuracy" *ICML* 2019.



No theoretical convergence guarantee

Numerical results

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." *ICLR* 2017

[2] Zhang et al. "Theoretically principled trade-off between robustness and accuracy" *ICML* 2019.

No theoretical convergence guarantee

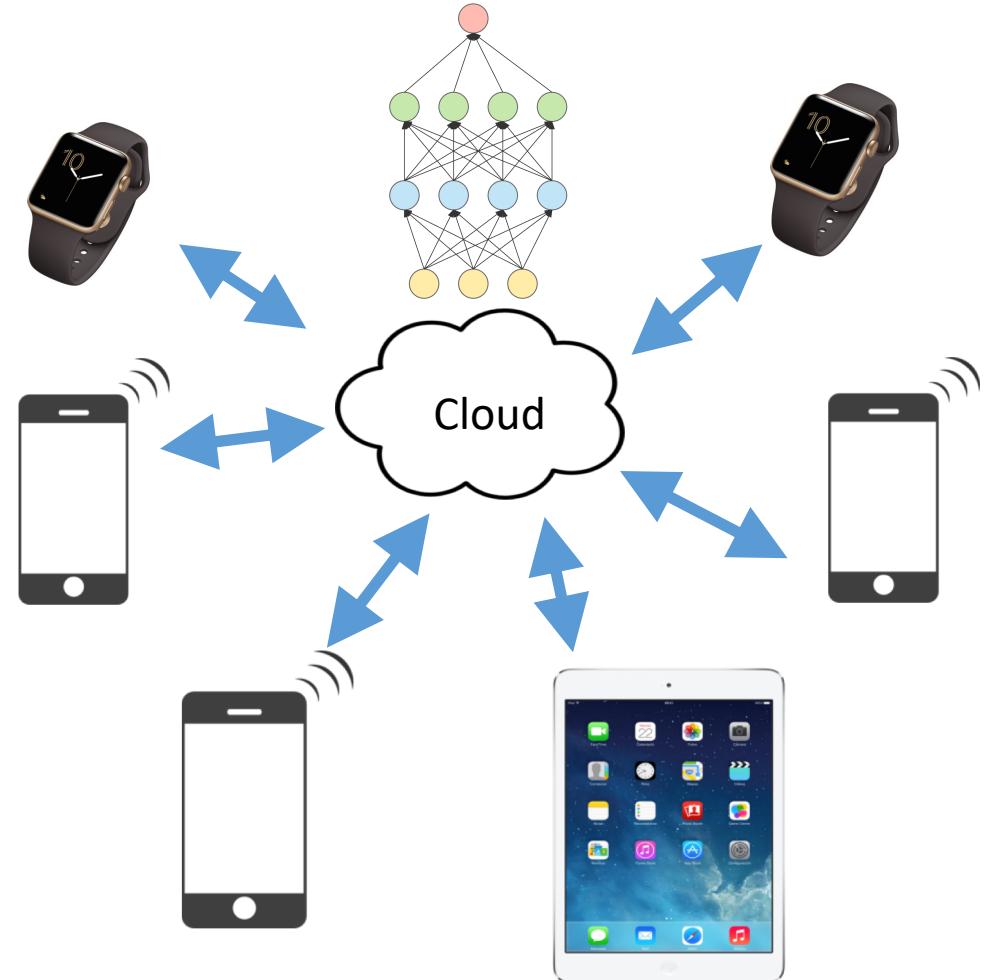
	Regular Performance	Performance under FGSM attack			Performance under PGD attack		
---	----	$\epsilon = 0.2$	$\epsilon = 0.3$	$\epsilon = 0.4$	$\epsilon = 0.2$	$\epsilon = 0.3$	$\epsilon = 0.4$
[1]	98.58%	96.09%	94.82%	89.84%	94.64%	91.41%	78.67%
[2]	97.21%	96.19%	96.17%	96.14%	95.01%	94.36%	94.11%
Proposed	98.20%	97.04%	96.66%	96.23%	96.00%	95.17%	94.22%

FGSM attack: Goodfellow, Shlens, and Szegedy, "Explaining and harnessing adversarial examples," *arXiv:1412.6572* (2014).

PGD attack: Kurakin, Goodfellow, and Bengio, "Adversarial Machine Learning" at Scale, ICLR 2016.

Min-max and fairness among users in learning

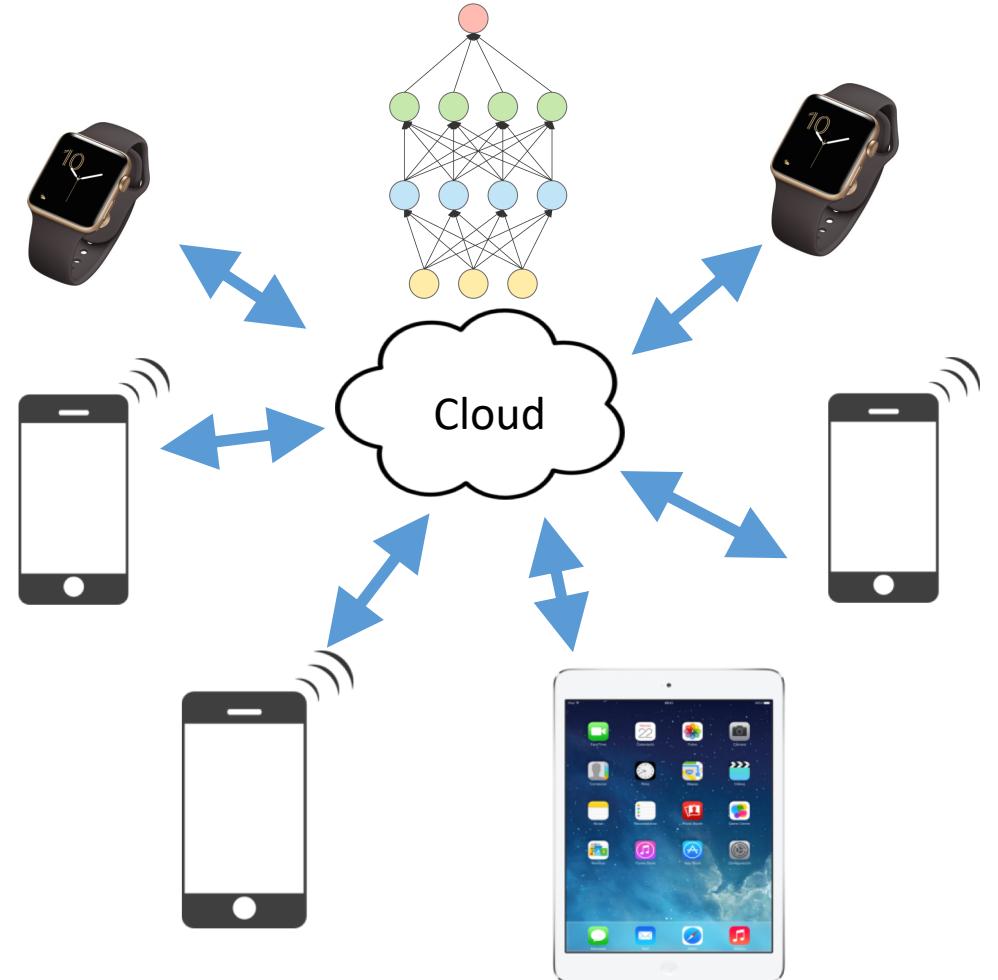
- Designing a machine learning model that works for everyone



Min-max and fairness among users in learning

- Designing a machine learning model that works for everyone

$$\min_{\mathbf{w}} \max \{\ell_1(\mathbf{w}), \dots, \ell_k(\mathbf{w})\}$$



Min-max and fairness among users in learning

- Designing a machine learning model that works for everyone

$$\min_{\mathbf{w}} \max \{\ell_1(\mathbf{w}), \dots, \ell_k(\mathbf{w})\}$$

$$\min_{\mathbf{w}} \max_{\mathbf{t} \in \mathcal{P}} \sum_{i=1}^k t_i \ell_i(\mathbf{w})$$

Numerical results

- Fair performance among different categories of data

$$\min_{\mathbf{w}} \max\{\ell_1(\mathbf{w}), \ell_2(\mathbf{w}), \ell_3(\mathbf{w})\}$$

Numerical results

- Fair performance among different categories of data

$$\min_{\mathbf{w}} \max \{\ell_1(\mathbf{w}), \ell_2(\mathbf{w}), \ell_3(\mathbf{w})\}$$

$$\min_{\mathbf{w}} \max_{\mathbf{t} \in \mathcal{P}} \sum_{i=1}^3 t_i \ell_i(\mathbf{w})$$

Numerical results

- Fair performance among different categories of data

$$\min_{\mathbf{w}} \max\{\ell_1(\mathbf{w}), \ell_2(\mathbf{w}), \ell_3(\mathbf{w})\}$$

$$\min_{\mathbf{w}} \max_{\mathbf{t} \in \mathcal{P}} \sum_{i=1}^3 t_i \ell_i(\mathbf{w})$$

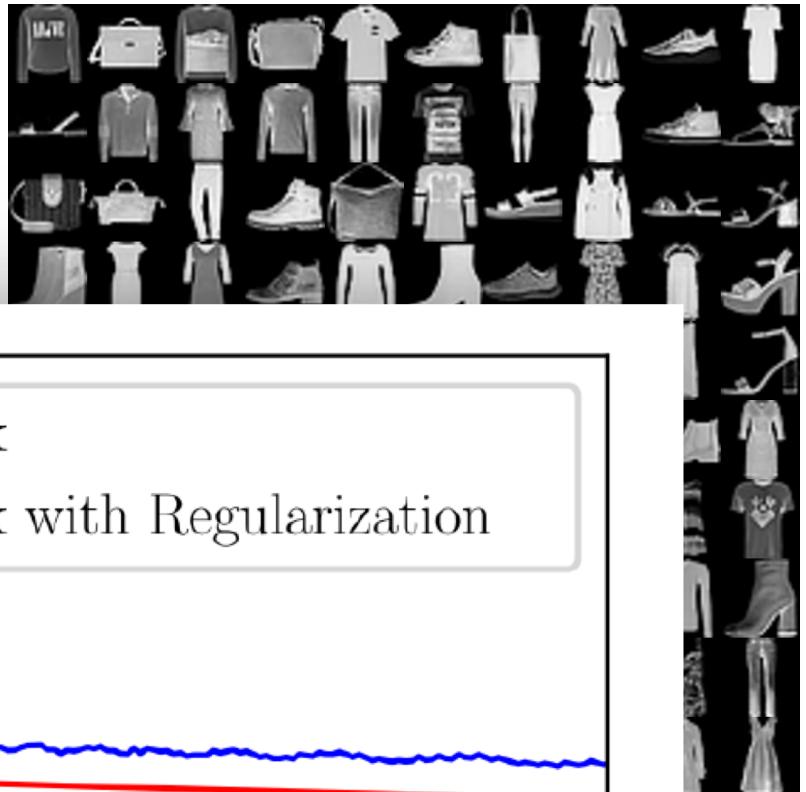
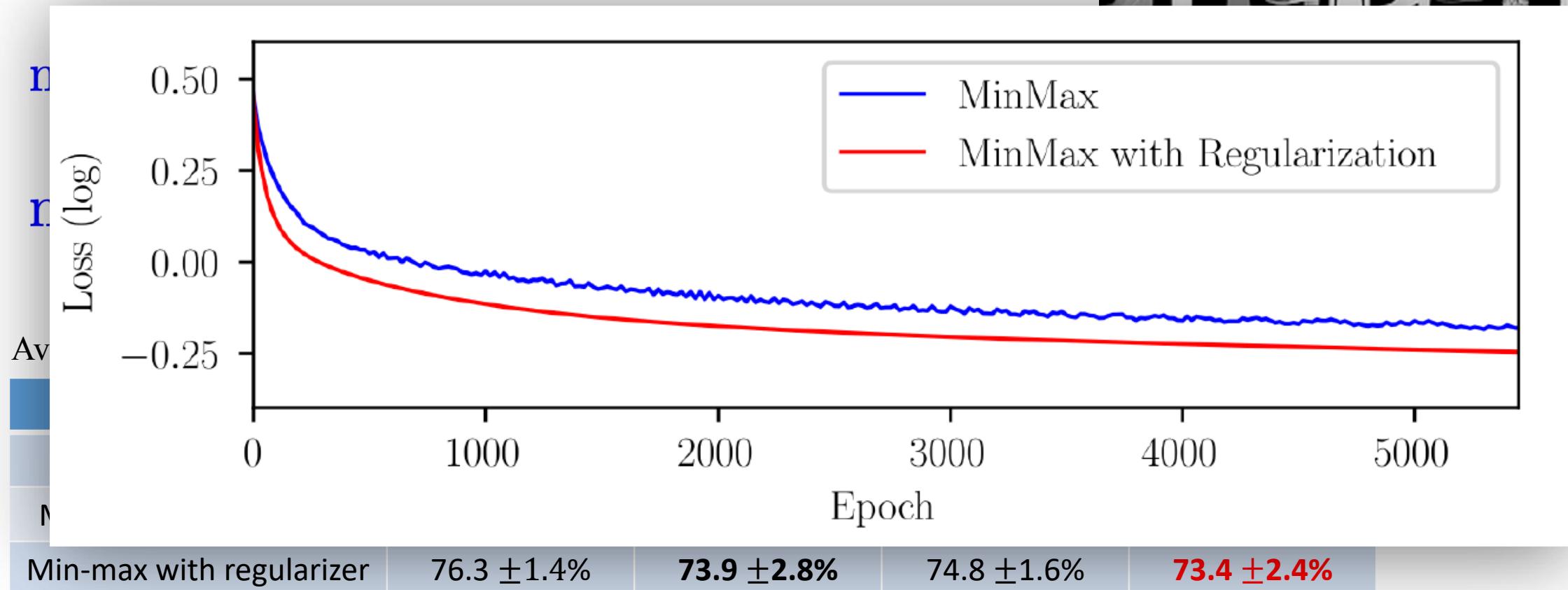
Average performance over 100 training:

	T-shirt/Top	Coat	Shirt
Normal Training	$84.1 \pm 1.8\%$	$86.4 \pm 2.1\%$	$70.6 \pm 3.7\%$
Min-max no regularizer	$75.4 \pm 1.5\%$	$71.6 \pm 3.0\%$	$73.3 \pm 1.9\%$
Min-max with regularizer	$76.3 \pm 1.4\%$	$73.9 \pm 2.8\%$	$74.8 \pm 1.6\%$

- Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, "Solving a class of non-convex min-max games using iterative first order methods," arXiv:1902.08297, accepted in NeurIPS 2019.
- Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).

Numerical results

- Fair performance among different categories of data



Min-max and fairness in machine learning

- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*

Min-max and fairness in machine learning

- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias

Min-max and fairness in machine learning

- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias
- Regulated domains: employment, housing, education, ...

Min-max and fairness in machine learning

- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias
- Regulated domains: employment, housing, education, ...
- Designing *discrimination-free* machine learning models

Min-max and fairness in machine learning

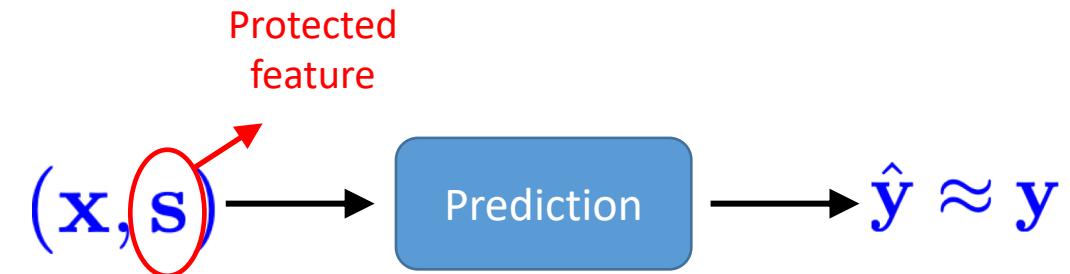
- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias

- Regulated domains: employment, housing, education, ...

- Designing *discrimination-free* machine learning models

Min-max and fairness in machine learning

- Discriminatory behaviors in human decisions and machine learning models:
 - [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
 - [Datta et al. 2015]: Google's online advertising showed high-income jobs ads to men more than to women.
 - [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
 - Amazon's recruitment engine has bias against women*
- Different reasons such as old data human bias



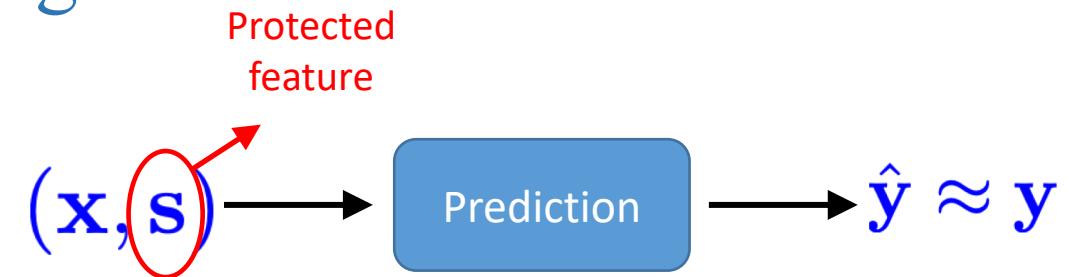
- Designing *discrimination-free* machine learning models

- Goals:
 - Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
 - Keep $\hat{\mathbf{y}}$ close to \mathbf{y}

Min-max and fairness in machine learning

- Goals:

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}



$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Min-max and fairness in machine learning

➤ Goals:

- Make \hat{y} and s independent
- Keep \hat{y} close to y

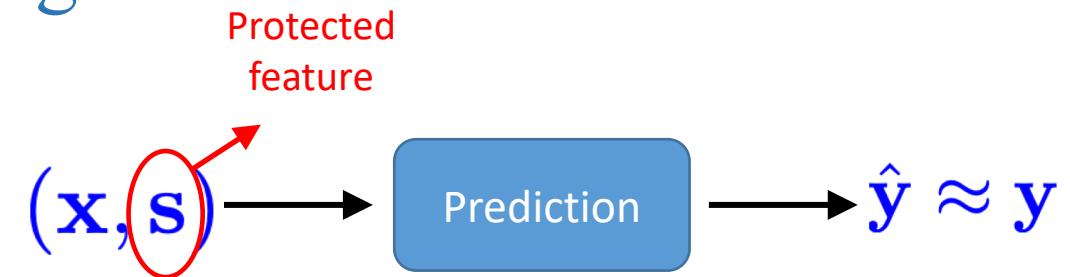
$$\min_{\theta} \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Keep classification error small

Min-max and fairness in machine learning

➤ Goals:

- Make \hat{y} and s independent
- Keep \hat{y} close to y



$$\min_{\theta} \mathbb{E}[\ell(y, \hat{y}_{\theta}(x))] + \lambda \rho(\hat{y}_{\theta}(x), s)$$

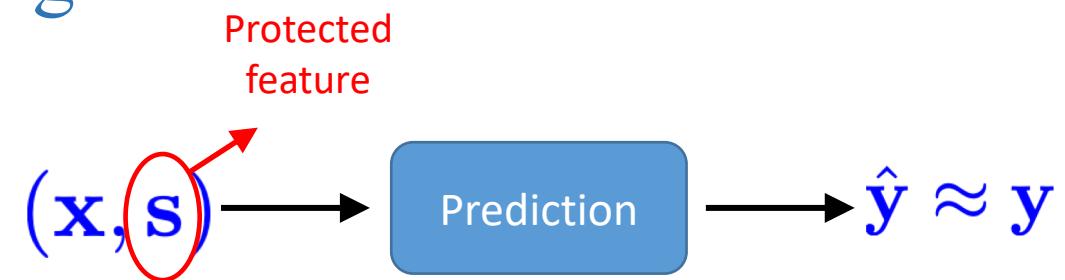
Keep classification error small

Imposing fairness

Min-max and fairness in machine learning

➤ Goals:

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}



$$\min_{\theta} \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Keep classification error small

Imposing fairness

Different correlation measures: Mutual information [Kamishima *et al.* 2011], false positive/negative rates [Bechavod & Ligett 2017], equalized odds [Donini *et al.* 2018], Pearson correlation coefficient [Zaffar *et al.* 2015, 2017], Hilbert Schmidt independence criterion [Pérez-Suay *et al.* 2017]

Min-max and fairness in machine learning

➤ Goals:

- Make \hat{y} and s independent
- Keep \hat{y} close to y



$$\min_{\theta} \mathbb{E}[\ell(y, \hat{y}_{\theta}(x))] + \lambda \rho(\hat{y}_{\theta}(x), s)$$

Keep classification error small

Imposing fairness

Different correlation measures: Mutual information [Kamishima et al. 2011], false positive/negative rates [Bechavod & Ligett 2017], equalized odds [Donini et al. 2018], Pearson correlation coefficient [Zaffar et al. 2015, 2017], Hilbert Schmidt independence criterion [Pérez-Suay et al. 2017]

➤ Either do not have convergence guarantees or cannot guarantee statistical independence

Rényi Fair Inference

- **Goals:**

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}

$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Rényi Fair Inference

- **Goals:**

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}

$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

- Use Rényi (maximal) correlation

$$\rho(A, B) = \sup_{f, g} \quad \mathbb{E}[f(A)g(B)]$$

$$\text{s.t.} \quad \mathbb{E}[f(A)] = \mathbb{E}[g(B)] = 0, \quad \mathbb{E}[f^2(A)] = \mathbb{E}[g^2(B)] = 1$$

Rényi Fair Inference

- **Goals:**

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}

$$\min_{\boldsymbol{\theta}} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}), \mathbf{s})$$

- Use Rényi (maximal) correlation

$$\rho(A, B) = \sup_{f, g} \quad \mathbb{E}[f(A)g(B)]$$

$$\text{s.t.} \quad \mathbb{E}[f(A)] = \mathbb{E}[g(B)] = 0, \quad \mathbb{E}[f^2(A)] = \mathbb{E}[g^2(B)] = 1$$

- Rényi Fair Inference [Bahrlouei et al 2019]

$$\min_{\boldsymbol{\theta}} \max_{f, g} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] + \lambda \mathbb{E}[f(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))g(\mathbf{s})]$$

$$\text{s.t.} \quad \mathbb{E}[f(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] = \mathbb{E}[g(\mathbf{s})] = 0, \quad \mathbb{E}[f^2(\hat{\mathbf{y}}_{\boldsymbol{\theta}}(\mathbf{x}))] = \mathbb{E}[g^2(\mathbf{s})] = 1$$

Rényi Fair Inference

- **Goals:**

- Make $\hat{\mathbf{y}}$ and \mathbf{s} independent
- Keep $\hat{\mathbf{y}}$ close to \mathbf{y}

$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

- Use Rényi (maximal) correlation

$$\rho(A, B) = \sup_{f, g} \quad \mathbb{E}[f(A)g(B)]$$

$$\text{s.t.} \quad \mathbb{E}[f(A)] = \mathbb{E}[g(B)] = 0, \quad \mathbb{E}[f^2(A)] = \mathbb{E}[g^2(B)] = 1$$

- Rényi Fair Inference [Bahrlouei et al 2019]

$$\min_{\theta} \max_{f, g} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \mathbb{E}[f(\hat{\mathbf{y}}_{\theta}(\mathbf{x}))g(\mathbf{s})]$$

$$\text{s.t.} \quad \mathbb{E}[f(\hat{\mathbf{y}}_{\theta}(\mathbf{x}))] = \mathbb{E}[g(\mathbf{s})] = 0, \quad \mathbb{E}[f^2(\hat{\mathbf{y}}_{\theta}(\mathbf{x}))] = \mathbb{E}[g^2(\mathbf{s})] = 1$$

- Can be solved for discrete random variables

Rényi Fair Inference

$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value of the matrix $Q = [q_{ij}]$ where $q_{ij} = \frac{P(s_i, y_j)}{\sqrt{P(s_i) P(y_j)}}$

$$\rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})^2 = \max_{\mathbf{v} \perp \mathbf{v}_1, \|\mathbf{v}\| \leq 1} \mathbf{v}^T \mathbf{Q} \mathbf{Q}^T \mathbf{v}$$

Rényi Fair Inference

$$\min_{\theta} \quad \mathbb{E}[\ell(\mathbf{y}, \hat{\mathbf{y}}_{\theta}(\mathbf{x}))] + \lambda \rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})$$

Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value of the matrix $Q = [q_{ij}]$ where $q_{ij} = \frac{P(s_i, y_j)}{\sqrt{P(s_i) P(y_j)}}$

$$\rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})^2 = \max_{\mathbf{v} \perp \mathbf{v}_1, \|\mathbf{v}\| \leq 1} \mathbf{v}^T \mathbf{Q} \mathbf{Q}^T \mathbf{v}$$

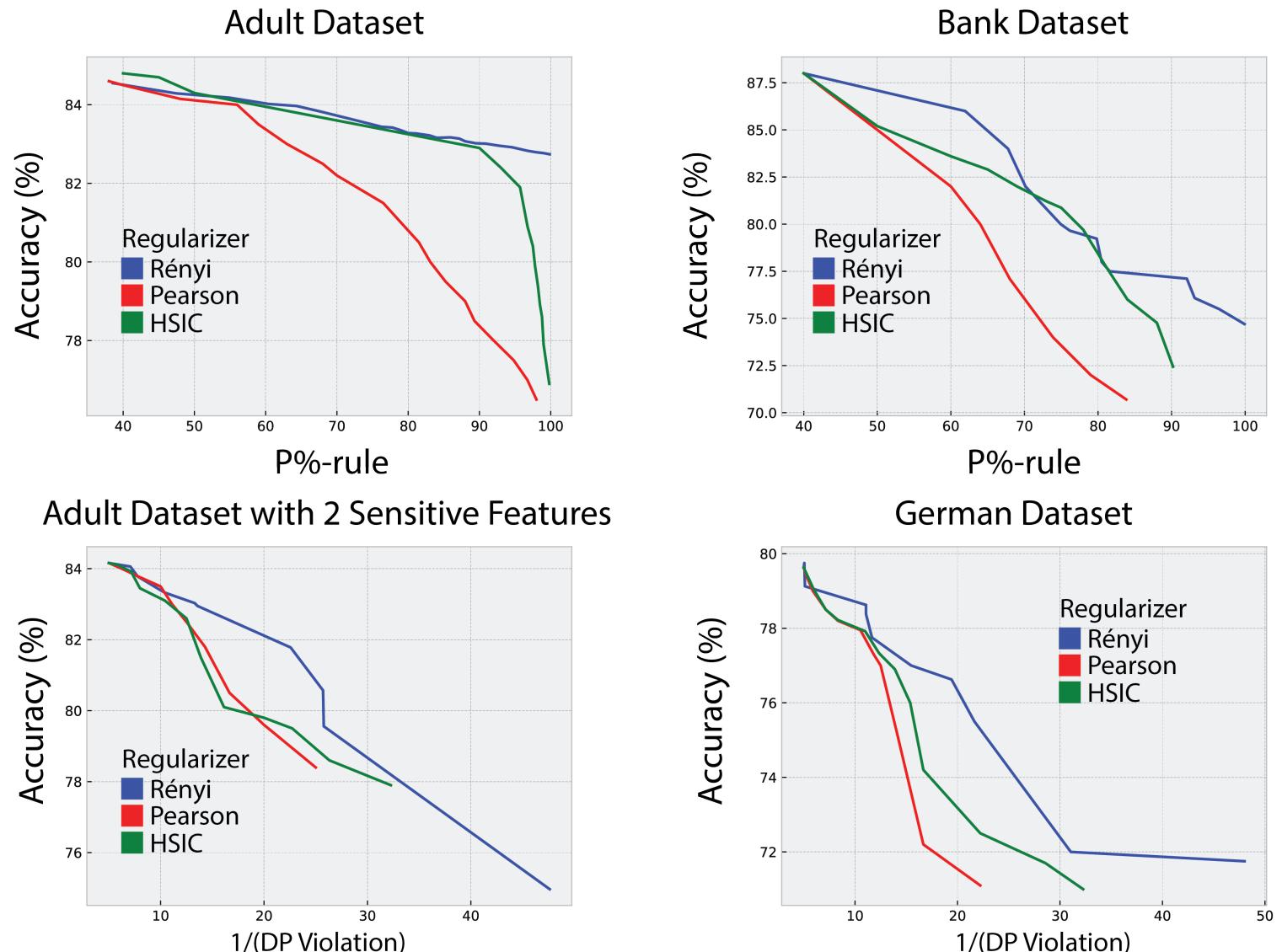
Theorem [Baharlouei, Nouiehed, Razaviyayn 2019]: When \mathbf{s} is binary, we have

$$\rho(\hat{\mathbf{y}}_{\theta}(\mathbf{x}), \mathbf{s})^2 = 1 - \frac{\min_{\mathbf{w}} \mathbb{E}[\mathbf{w}^T \tilde{\mathbf{y}}_{\theta} - \mathbf{s}]}{\mathbb{P}(\mathbf{s} = 1) \mathbb{P}(\mathbf{s} = 0)}$$

- PL case, can be solved efficiently

Numerical Experiments

- Pearson correlation coefficient
 - [Zaffar *et al.* 2015, 2017]
- Hilbert Schmidt Independence Criterion
 - [Pérez-Suay *et al.* 2017]
- Rényi Fair Inference
 - [Baharlouei *et al.* 2019]

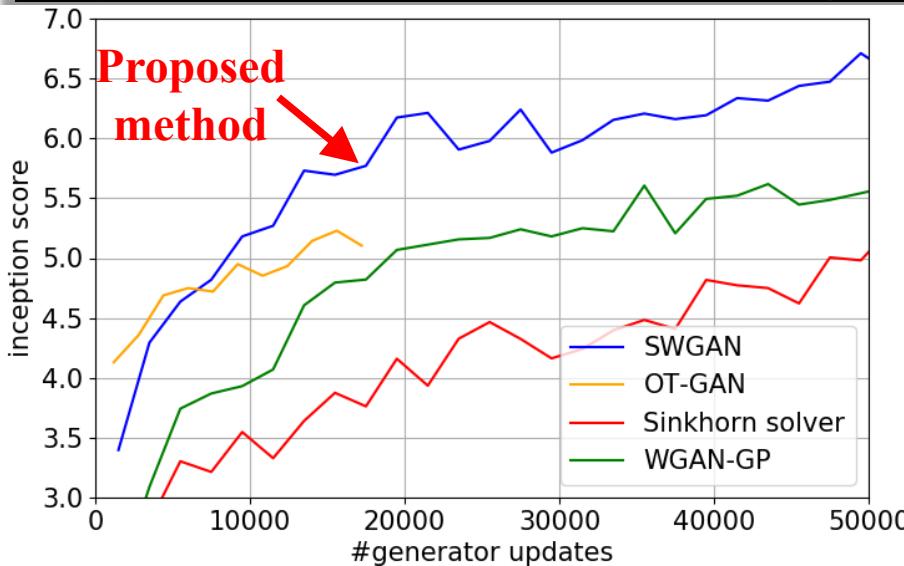
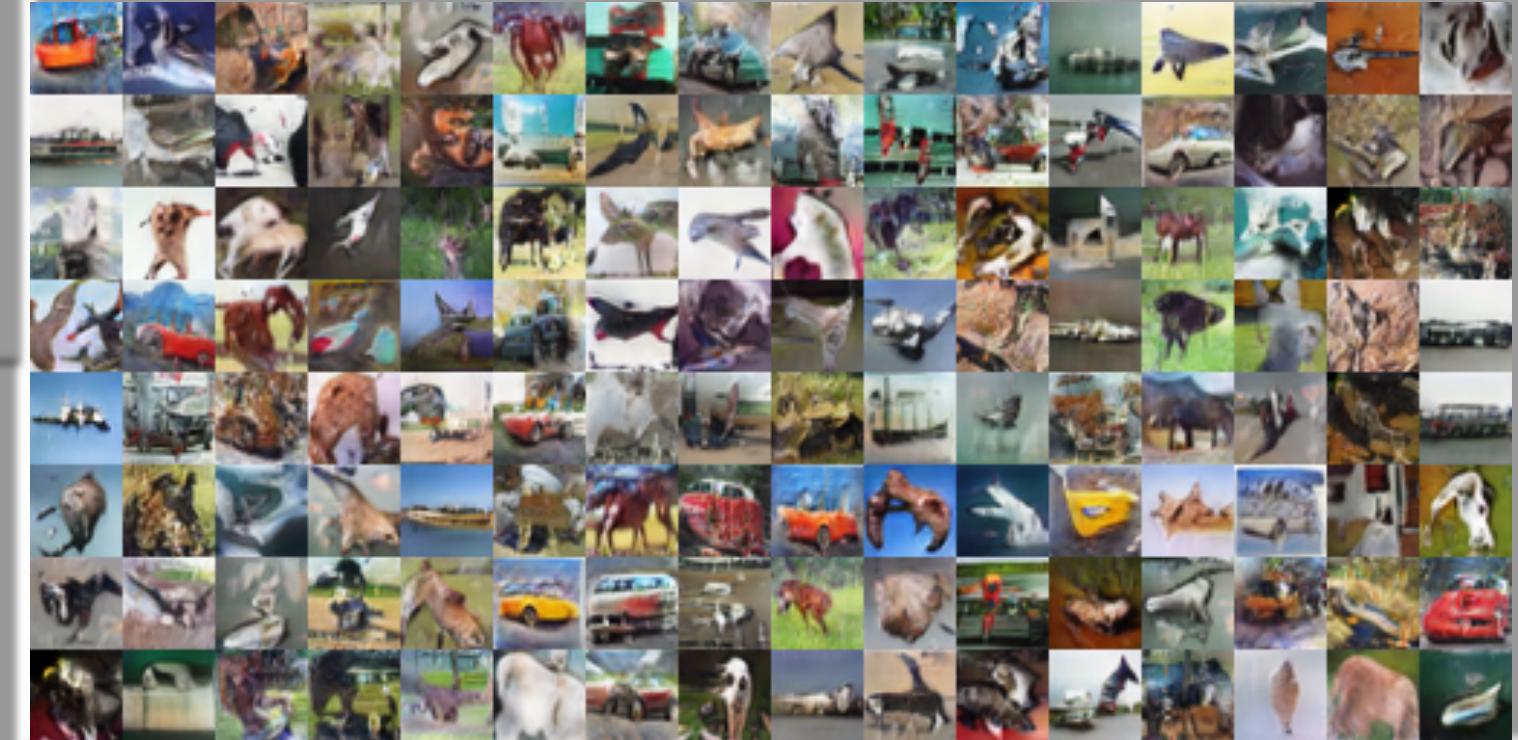


$$p\% = \min \left\{ \frac{\mathbb{P}(\hat{Y} = 1|S = 1)}{\mathbb{P}(\hat{Y} = 1|S = 0)}, \frac{\mathbb{P}(\hat{Y} = 1|S = 0)}{\mathbb{P}(\hat{Y} = 1|S = 1)} \right\}$$

$$\text{DP Violation} = \max_{a,b} |\mathbb{P}(\hat{Y} = 1|S = a) - \mathbb{P}(\hat{Y} = 1|S = b)|$$

Extension to stochastic setting and applications in training GANs

➤ Sanjabi, Ba, Razaviyayn, Lee. "On the convergence and robustness of training GANs with regularized optimal transport," *Neurips 2018*



Summary

- Non-convex min-max problems are challenging
- Special cases could be solved *efficiently*
- These problems appear in many applications
 - Robust learning
 - GANs
 - Fair learning
 - and many more...

Future work

- This is just a first step
- How far we can go into the non-convex world? Providing upper- lower- bounds?

Future work

- This is just a first step
- How far we can go into the non-convex world? Providing upper- lower- bounds?
- How far we can go beyond first-order stationarity/Nash equilibrium concept?

$$\min_{-1 \leq \theta \leq 1} \max_{-2 \leq \alpha \leq 2} -\theta^2 + \alpha^2 + 4\theta\alpha$$

A long history

$$\min_{\theta \in \Theta} \max_{\alpha \in \mathcal{A}} f(\theta, \alpha)$$

- Using monotone operator:
 - [Sibony'70], [Korpelevich'76], [Nemirovski'04], [Martinet'70], [Rockafellar'76], [Di-Sun'99], [Juditsky-Nemirovsky'16], ...
- Weak Monotonicity
 - [Davis-Grimmer'17, Davis-Drusvyatskiy'18, Zhang-He'18, Lin et al'18], ...
- More general VI's
 - [Facchinei-Pang'03], [Monteiro-Svaiter'10], [Nesterov'07], [Dong-Lan'14], ...
- Stochastic VI's
 - [Juditsky-Nemirovski-Tauvel '11], [Koshal-Nedic-Shanbag'13], [Rosasco-Villa-Vũ'14], [Balamurugan-Bach'16], ...
- Bilinear convex-concave
 - [Arrow-Hurwicz-Uzawa'58, Zhu-Chan'08], [Chambolle-Pock'11&16], [Chen-Lan-Ouyang'14], [Dong-Lan'14, Chambolle et al'17], [Wang-Xiao'17], ...
- Convex-Concave saddle points
 - [Tseng'08], [He and Monterio'17], [Hamedani-Jalilzadeh-Aybat-Shanbhag'18], ...

Other recent results in non-convex min-max regimes

- [Lu, Tsaknakis, and Hong 2019]
- [Gidel, Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, and Mitligkas 2018]
- [Gidel, Jebara, and Lacoste-Julien 2018]
- [Lu, Tsaknakis, Hong, Chen 2019]
- [Hameani, Jalilzadeh, Aybat, Shanbhag 2018]
- [Rafique, Liu, Lin, and Yang 2018]
- [Sinha, Namkoong, and Duchi 2018]
- [Thekumparampil, Jain, Netrapalli, and Oh 2019]
- [Jin, Netrapalli, and Jordan 2019]
- [Lin, Jin, Jordan 2019]
- [Letcher, Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel 2019]
- [Lin, Liu, Rafique, Yang 2018]
- [Mescheder, Geiger, and Nowozin 2018]
- [Mokhtari, Ozdaglar, Pattathil 2019]
- [Daskalakis, Ilyas, Syrgkanis, and Zeng 2018]
- [Daskalakis and Panageas 2018]
- [Daskalakis and Panageas 2019]
- And many other recent works...

References

- Jong-Shi Pang and Meisam Razaviyayn, “A unified distributed algorithm for non-cooperative games,” book chapter in *Big Data over Networks, 2016*.
- Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, and Jason D. Lee. “On the convergence and robustness of training GANs with regularized optimal transport,” *NeurIPS 2018*.
- Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, “Solving a class of non-convex min-max games using iterative first order methods,” arXiv:1902.08297, *NeurIPS 2019*.
- Sina Baharlouei, Maher Nouiehed, and Meisam Razaviyayn. "Renyi Fair Inference," *Submitted to ICLR 2019, arXiv 1906.12005*.
- Codes are available at: **Optimization for Data-Driven Science (ODDS) lab, GitHub account**
 - <https://github.com/optimization-for-data-driven-science>

Questions