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» Why is this problem important? Recent Applications?
» Why is it challenging?
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Application 1: Min-max problems and robustness

» Design a system with a robust performance against changes in certain parameters

» Design for nominal value: 1min f (0 , X )
0cO
» Robust design: IN11) max

ee@ ||a_aO||§5 Macro cell

» Massive MIMO application
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14



Application 2: Min-max and GANs

Goal: Generate samples that look like real samples X1, . ..

’ A - i
— —-— —_— — — — — — — — — — — — — — — — — —_— —_— — —
T N - T

https://junyanz.github.io/CycleGAN/ 15



Application 2: Min-max and GANs

Goal: Generate samples that look like real samples X1, . ..

Z G(z)

Neural Network

We need GG(z) to have the same distribution as P,

’ A - i
— —-— —_— — — — — — — — — — — — — — — — — —_— —_— — —
T N - T

https://junyanz.github.io/CycleGAN/ 16



Application 2: Min-max and GANs

Goal: Generate samples that look like real samples X1, . ..

G(z)

Neural Network R T T

Z

We need GG(z) to have the same distribution as P,

G(z)

Z
Goodfellow et al 2014

Are they different?

’ A - =3
M N BN B S S B DS DS B G B B B I B B B B B B . .-
T N - T

https://junyanz.github.io/CycleGAN/ 17



Application 2: Min-max and GANs

Goal: Generate samples that look like real samples X1, . ..

G(z)

Neural Network R T T

Z

We need GG(z) to have the same distribution as P,

G(z)

Z
Goodfellow et al 2014

Are they different?
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» The two neural networks are playing a zero-sum game
https://junyanz.github.io/CycleGAN/ 18



Application 2: Min-max and GANs Z 4’% G(z)

> MMD GANs mén mg,x ||E[D(G(Z))] - E[D(X)]H

> Jensen-Shannon GANSs: min max [Ey [10g D(X)] + [, lOg (1 — D(G(Z)))

G DeD
D = set of all functions with range (0, 1)
» Wasserstein GANSs: mén max Ky [’V(X)] — E, ["}/(G(Z))]
8

s.t. (%) = () S [[x—yll2,Vx,y

All are non-convex min-max problems!
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» Apply (projected) gradient descent:
» Objective function improves over iterates

> It is not exhaustive search
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» Apply (projected) gradient descent:

Iterates trajectory
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» Apply (projected) gradient descent:

Iterates trajectory

for f(0,a) = 0a

» Even more: what should we compute?
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» Objective function improves over iterates
» It is not exhaustive search
» Convergence to certain stationarity concepts
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» Game perspective = First-order Nash equilibrium:

(Vof(0*,a™),0 —0") >0, VO € 6 (Vaof(0",a"),a—a*) <0, Vac A

> Existence?

Theorem [Pang-Razaviyayn 2016]: Suppose that the constraint sets are non-empty, compact, and convex.
Moreover, assume that f(-) is continuously differentiable (+/- convex). Then, the first-order NE exists.

» Can we compute it? € —First-order NE:

(Vof(0*,a™),0 —0")> —¢, VO €O [6-6"<1

(Vaf(@,a*),a—a*)<e, Vae A lla—a"<1
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Computation of € — first-order Nash equilibrium
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» Apply gradient descent to g(-) min [max f (0, a)]
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> Is it differentiable? 0coO

» When f(0, a) is strongly concave in &

Danskin’s Theorem: Vyg(0g) = Vo f(0o,g) where oy = argmax f(60o, )

acA
Algorithm: for ¢ =1,2,... do A
o't ~ arg max (6", o)
_ o' = [0 — VVef(HtaatH)]Jrj .
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Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume f (8, a) is strongly concave in a.

Then, the algorithm requires O(e~? log e 1) gradient evaluations for computing € —first-order NE.
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Then, the algorithm requires O(e~? log e 1) gradient evaluations for computing € —first-order NE.

» Optimal rate up to logarithmic factors
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» g(-) is no longer differentiable IBHEI(I%I 9 (0)

» Smoothify g(+) gx(0) = glgi( f(0, ) — %”a”z
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(Algorithm:
fort=1,2,... do

"1 ~ argmax (6", a)
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(81
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\
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_|_
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fort=1,2,... do
A
t+1 A 2
o’ & arg max f(6",0) = Sl
t+1 _ [pt attl
0" = [6" —1Vof(6", ") |

/

min max 0,
0cO acA f( ’ )
fort=1,2,... do

aozat

forr=1,2,...,K do

xri1 = [aT + 'Yvaf)\(eta aT)]+
end for
at“ = OK
0t+1 [et . ,,yv f( t—l—l)]

end for

_|_

62



: : min max f(0, @)
[teration complexity S eacA
rt=1,2,...

aozat

(Algorithm: \ forr=1,2,...,K do
for t = 1, 2, ... do Q1 = [CXT ‘|"}/Vaf)\(0t7a7')]+
A end for
t+1 _Z 2
Q ~ arg meail( f( , ) 9 ]| ol = ax
9t+1 [Ht o 'YV f( t+1)] gitl — [Ot AV f( t+1)]+

\ i / end for

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume f (0, ) is concave in a. Then, the
above algorithm requires 0 (e3> log e~1) gradient evaluations for computing € —first-order NE.

0(e~3%) vs 0(e™*) without adding a regularizer/acceleration : : :
Algorithm Iteration Complexity

[Lu et al 2018] 0(e™)
[Lin et al 2019] 0(e™™)
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. . min max f(0,a)
[teration complexity OO acd
fort=1,2,... do
g = Ott
(Algorithm: \ forr=1,2,...,K do
for t = 1, 2, ... do Q1 = [CXT ‘|"}/Vaf)\(0t7a7')]+
A end for
t+1 _Z 2
Q ~ arg meail( f( , ) 9 ]| ol = ax
\ 0t—|—1 [Ht . fYV f( t+1):| 9t+1 [at . ”)’V f( t+1)]

n
" / end for

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume f (0, ) is concave in a. Then, the
above algorithm requires 0 (e3> log e~1) gradient evaluations for computing € —first-order NE.

0(e~3%) vs 0(e™*) without adding a regularizer/acceleration

Algorithm Iteration Complexity

[Thekumparampil et al 2019] [Lu et al 2018] 0(6—4)

: —4
Are these results useful in practice? [Lin et al 2019] 0(e™) 65
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Training robust neural networks
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min Z (W, X;) >
W
\ =1 J

[Madry et al. 2017]: Repeat:

4 n )

min max £(w,x;+0)
w8 <e

\ =1 y

» Apply multi-steps of gradient ascent on § (reinitialize multiple times and pick the best)
» Perform one step of gradient descent on w

69



Training robust neural networks

“panda” R - “gibon”
57.7% confidence 99.3% confidence
4 n h (" n N
min E (W, X;) »| min max £(w,X;+0)
W w o] <e
. =1 y \ 1=1 py

[Madry et al. 2017]: Repeat:
» Apply multi-steps of gradient ascent on § (reinitialize multiple times and pick the best)
» Perform one step of gradient descent on w

» No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
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Training robust neural networks
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4 n h (" n N
min E (W, X;) »| min max £(w,X;+0)
W wo = |d][<e
. =1 y \ 1=1 py

[Madry et al. 2017]: Repeat:
» Apply multi-steps of gradient ascent on § (reinitialize multiple times and pick the best)
» Perform one step of gradient descent on w

» No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
» Can we apply our theory and algorithm? 71
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» ldea: approximate the maximization with a concave function
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Training robust neural networks min max £(w,x;+0)
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Training robust neural networks min max £(w,x;+0)
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Numerical results

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." ICLR 2017

[2] Zhang et al. “Theoretically principled trade-o between robustness and accuracy” ICML 2019.
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Numerical results

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." ICLR 2017 No theoretical

[2] Zhang et al. “Theoretically principled trade-o between robustness and accuracy” ICML 2019. convergence guarantee

- Regular Performance Performance under FGSM attack Performance under PGD attack

e =0.2 e =0.3 e =04 e =0.2 e =0.3 e =04

[1] 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%
[2] 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%
Proposed 98.20% 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%

FGSM attack: Goodfellow, Shlens, and Szegedy, “Explaining and harnessing adversarial examples,” arXiv:1412.6572 (2014).
PGD attack: Kurakin, Goodfellow, and Bengio, “Adversarial Machine Learning” at Scale, ICLR 2016.
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Min-max and fairness among users in learning

» Designing a machine learning model that works for everyone 9

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).
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Min-max and fairness among users in learning

» Designing a machine learning model that works for everyone 9

min max{fli(W),..., (W)}

W \\\

L N

min max til; (W)
W teP P

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).
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Numerical results
» Fair performance among different categories of data

min max{l,(w), lo(W),l3(W)}

W

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).
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Numerical results
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» Fair performance among different categories of data i? & :h ..j: %(' ;;
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Average performance over 100 training

Normal Training 84.1 +1.8% 86.4 +2.1% 70.6 +3.7%
Min-max no regularizer 75.4 +1.5% 71.6 +3.0% 73.3 +£1.9%
Min-max with regularizer 76.3 +1.4% 73.9 +2.8% 74.8 £1.6%

» Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, “Solving a class of non-convex min-max
games using iterative first order methods,” arXiv:1902.08297, accepted in NeurIPS 2019.

» Mohri et al. "Agnostic federated learning." arXiv.:1902.00146 (2019). 87



Numerical results

» Fair performance among different categories of data

—— MinMax

0.95 - — MinMax with Regularization

() 1000 2000 3000 4000 5000
| FEpoch
Min-max with regularizer 76.3 +1.4% 73.9 +2.8% 74.8 +£1.6% 73.4 +2.4%

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019). -



Min-max and fairness in machine learning

» Discriminatory behaviors in human decisions and machine learning models:
» [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
» [Datta et al. 2015]: Google’s online advertising showed high-income jobs ads to men more than to women.
» [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
» Amazon’s recruitment engine has bias against women*

: . 89
* https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MKO08G
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Min-max and fairness in machine learning

» Discriminatory behaviors in human decisions and machine learning models:
» [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
» [Datta et al. 2015]: Google’s online advertising showed high-income jobs ads to men more than to women.
» [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
» Amazon’s recruitment engine has bias against women*

. ) Protected
» Different reasons such as old data human bias feature
» Regulated domains: employment, housing, education, ... (X @yv—b Prediction  Emmma a2 A

» Designing discrimination-free machine learning models

> Goals:
» Make y and s independent
» Keep y close to y

. 94
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Min-max and fairness in machine learning
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feature
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> Make? and s independent (X I Prediction I S,— S
» Keep y close to y

min  El£(y, yo(x))] + Ap(Ye(x),s)
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Min-max and fairness in machine learning

Protected
feature
» Goals:
» Make y and s independent ( o r A~
—> ECGIGI I —> ~
» Keep y close to y X?@y Y Y

min (E[{(y, Sfo(@Jr Ap(Yeo(x),s)

0

Keep classification
error small
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Min-max and fairness in machine learning

Protected
feature
» Goals:
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» Keep y close to y
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Min-max and fairness in machine learning

Protected
feature
» Goals:
» Make /)\1 and s independent (X I Prediction ry XY
» Keep y close to y

min - E[U(y, Yo ()D+ &p(¥o(x),s)

o

Keep classification Imposing
error small fairness

Different correlation measures: Mutual information [Kamishima et al. 2011], false positive/negative rates [Bechavod
& Ligett 2017], equalized odds [Donini et al. 2018], Pearson correlation coefficient [Zaffar et al. 2015, 2017], Hilbert
Schmidt independence criterion [Pérez-Suay et al. 2017]
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Min-max and fairness in machine learning

Protected
feature
» Goals:
» Make /)\1 and s independent (X I Prediction ry XY
» Keep y close to y

min - E[U(y, Yo ()D+ &p(¥o(x),s)

Keep classification
error small

Imposing
fairness

Different correlation measures: Mutual information [Kamishima et al. 2011], false positive/negative rates [Bechavod

& Ligett 2017], equalized odds [Donini et al. 2018], Pearson correlation coefficient [Zaffar et al. 2015, 2017], Hilbert
Schmidt independence criterion [Pérez-Suay et al. 2017]

» Either do not have convergence guarantees or cannot guarantee statistical independence
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Rényi1 Fair Inference

> Goals: N A
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» Use Rényi (maximal) correlation
p(A,B) = Sup Elf(A)g(B)]
7g

st. E[f(4)] =E[g(B)] =0, E[f2(A)] =E[g*(B)] =1

» Rényi Fair Inference [Bahrlouei et al 2019]

minmax  El((y,ye(x))] + AE[f (Y0 (x))g(s)]

st. E[f(Fe(x))] =E[g(s)] = 0, E[f*(Fe(x))] = E[g*(s)] =1
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Rényi1 Fair Inference

> Goals: . ~ ~
» Make y and s independent 11111 E[E(Y7 Yo (X))] T )‘p(ye (X)7 S)

» Keep y close to y

» Use Rényi (maximal) correlation
p(A,B) = Sup Elf(A)g(B)]
7g

st. E[f(4)] =E[g(B)] =0, E[f2(A)] =E[g*(B)] =1

» Rényi Fair Inference [Bahrlouei et al 2019]

minmax  El((y,ye(x))] + AE[f (Y0 (x))g(s)]

st. E[f(Fe(x))] =E[g(s)] = 0, E[f*(Fe(x))] = E[g*(s)] =1

» (Can be solved for discrete random variables 103




Reényi Fair Inference min  E[l(y,ye(x))] + M\p(Fe(x),s)

)

i )
Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value
of the matrix Q = [q;;| where q;; = Plsiy)

\_ P(sp) P(¥j) )

A 2 L T T
p(Fo(x),s)” = max v QQ'v

vLlvy,|lv]<1
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Rényi Fair Inference min  E[l(y,ye(x))] + Ap(¥e

7
4 )
Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value
of the matrix Q = [qij] where q;; = FEwy)
9 /P(Si) P(yj) p
A 2 T T
p(Fo(x),5)> = max _ vTQQTv
vLlvy,|v]<1
\
Theorem [Baharlouei, Nouiehed, Razaviyayn 2019]: When s is binary, we have
o(Fo(x),5)? = 1 - D EIW Yo =
7] ’ — T
P(s = 1)P(s = 0)
\§ J

» PL case, can be solved effiiently
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Numerical Experiments Adult Dataset
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Extension to stochastic setting and applications in training GANSs

» Sanjabi, Ba, Razaviyayn, Lee. “On the convergence and robustness of training GANs with regularized optimal transport,” Neurips 2018
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Summary

» Non-convex min-max problems are challenging
» Special cases could be solved efficiently

» These problems appear in many applications
» Robust learning
» GANs
» Fair learning

» and many more...
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Future work

» This is just a first step

» How far we can go into the non-convex world? Providing upper- lower- bounds?
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Future work

» This is just a first step

» How far we can go into the non-convex world? Providing upper- lower- bounds?

» How far we can go beyond first-order stationarity/Nash equilibrium concept?

min max —0? + o? 1+ 40c
~1<0<1 —2<a<?2
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A long history lgél({)l gleaﬁ f(0, )

» Using monotone operator:

» [Sibony’70], [Korpelevich’76], [Nemirovski’04], [Martinet’70], [Rockafellar’76], [Di-Sun’99], [Juditsky-
Nemirovsky’16], ...

» Weak Monotonicity
» [Davis-Grimmer’17, Davis-Drusvyatskiy’18, Zhang-He’18, Lin et al’18], ...

» More general VI's
» [Facchinei-Pang’03], [Monteiro-Svaiter’10], [Nesterov’07], [Dong-Lan’14], ...

» Stochastic VI's
» [Juditsky-Nemirovski-Tauvel ‘11], [Koshal-Nedic-Shanbag’13], [Rosasco-Villa-Vii’14], [Balamurugan-Bach’16], ...

> Bilinear convex-concave

» [Arrow-Hurwicz-Uzawa’58, Zhu-Chan’08], [Chambolle-Pock’11&16], [Chen-Lan-Ouyang’14], [Dong-Lan’14,
Chambolle et al’17], [Wang-Xiao’17], ...

» Convex-Concave saddle points

» [Tseng’08], [He and Monterio’17], [Hamedani-Jalilzadeh-Aybat-Shanbhag’18], ... .



Other recent results 1n non-convex min-max regimes

e [Lu, Tsaknakis, and Hong 2019]

* [Gidel, Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, and Mitligkas 2018]
* [Gidel, Jebara, and Lacoste-Julien 2018]

* [Lu, Tsaknakis, Hong, Chen 2019]

* [Hameani, Jalilzadeh, Aybat, Shanbhag 2018]

* [Rafique, Liu, Lin, and Yang 2018]

e [Sinha, Namkoong, and Duchi 2018]

* [Thekumparampil, Jain, Netrapalli, and Oh 2019]

* [Jin, Netrapalli, and Jordan 2019]

e [Lin, Jin, Jordan 2019]

e [Letcher, Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel 2019]
e [Lin, Liu, Rafique, Yang 2018]

* [Mescheder, Geiger, and Nowozin 2018]

* [Mokhtari, Ozdaglar, Pattathil 2019]

» [Daskalakis, llyas, Syrgkanis, and Zeng 2018]

» [Daskalakis and Panageas 2018]

» [Daskalakis and Panageas 2019]

 And many other recent works... 112
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