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Ø Why is this problem important? RecentApplications?

Ø Why is it challenging?
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Ø Design for nominal value:

Ø Robust design:

Ø Massive MIMO application

9



Application 1: Min-max problems and robustness
Ø Adversarial attacks to neural networks
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Application 2: Min-max and GANs

Goal: Generate samples that look like real samples 
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Application 2: Min-max and GANs

Goal: Generate samples that look like real samples 

Neural Network

Are they different?

Ø The two neural networks are playing a zero-sum game

Goodfellow et al 2014

https://junyanz.github.io/CycleGAN/ 18



Application 2: Min-max and GANs

Ø MMD GANs

Ø Jensen-Shannon GANs:

Ø Wasserstein GANs:

All are non-convex min-max problems!
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Ø Objective function improves over iterates
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Which Training Methods for GANs do actually Converge?

(a) SimGD (b) AltGD

Figure 2. Training behavior of the Dirac-GAN. The starting iterate
is marked in red.

there is not even an optimal discriminator parameter vec-
tor for the Dirac-GAN. Indeed, we find that two-time scale
updates as suggested by Heusel et al. (2017) do not help con-
vergence towards the Nash-equilibrium (see Figure 22 in the
supplementary material). However, our example seems to
be a prototypical situation for (unregularized) GAN training
which usually deals with distributions that are concentrated
on lower dimensional manifolds (Arjovsky & Bottou, 2017).

We now take a closer look at the discretized system.

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(✓, ) has eigenvalues
�1/2 = 1 ± hf 0(0)i with absolute values

p
1 + h2f 0(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (✓k, k)
obtained by simultaneous gradient descent is monotonically
increasing.

The behavior of simultaneous gradient descent on our exam-
ple problem is visualized in Figure 2a.

Similarly, for alternating gradient descent we have

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
update operator Fh(✓, ) has eigenvalues

�1/2 = 1�
↵2

2
±

s✓
1�

↵2

2

◆2

� 1. (5)

with ↵ :=
p
ngndhf 0(0). For ↵  2, all eigenvalues are

hence on the unit circle. Moreover for ↵ > 2, there are
eigenvalues outside the unit circle.

Even though Lemma 2.5 shows that alternating gradient
descent does not converge linearly to the Nash-equilibrium,
it could in principle converge with a sublinear convergence
rate. However, this is very unlikely because – as Lemma 2.3
shows – even the continuous system does not converge. In-
deed, we empirically found that alternating gradient descent
oscillates in stable cycles around the equilibrium and shows
no sign of convergence (Figure 2b).

2.3. Where do instabilities come from?

Our simple example shows that naive gradient based GAN
optimization does not always converge to the equilibrium
point. To get a better understanding of what can go wrong
for more complicated GANs, it is instructive to analyze
these instabilities in depth for this simple example problem.

To understand the instabilities, we have to take a closer
look at the oscillatory behavior that GANs exhibit both for
the Dirac-GAN and for more complex systems. An intu-
itive explanation for the oscillations is given in Figure 1:
when the generator is far from the true data distribution,
the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes
more certain, which increases the discriminator’s slope (Fig-
ure 1a). Now, when the generator reaches the target distri-
bution (Figure 1b), the slope of the discriminator is largest,
pushing the generator away from the target distribution. As
a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope
from positive to negative. After a while, we end up with a
similar situation as in the beginning of training, only on the
other side of the true data distribution. This process repeats
indefinitely and does not converge.

Another way to look at this is to consider the local behavior
of the training algorithm near the Nash-equilibrium. Indeed,
near the Nash-equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data
distribution. Even if the generator is initialized exactly on
the target distribution, there is no incentive for the discrimi-
nator to move to the equilibrium discriminator. As a result,
training is unstable near the equilibrium point.

This phenomenon of discriminator gradients orthogonal to
the data distribution can also arise for more complex exam-
ples: as long as the data distribution is concentrated on a
low dimensional manifold and the class of discriminators
is big enough, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space of
the data manifold and hence converge to the equilibrium
discriminator. Even if the generator produces exactly the
true data distribution, there is no incentive for the discrim-
inator to produce zero gradients orthogonal to the tangent
space. When this happens, the discriminator does not pro-
vide useful gradients for the generator orthogonal to the data
distribution and the generator does not converge.

Note that these instabilities can only arise if the true data
distribution is concentrated on a lower dimensional man-
ifold. Indeed, Nagarajan & Kolter (2017) showed that -
under some suitable assumptions - gradient descent based
GAN optimization is locally convergent for absolutely con-
tinuous distributions. Unfortunately, this assumption may
not be satisfied for data distributions like natural images to
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there is not even an optimal discriminator parameter vec-
tor for the Dirac-GAN. Indeed, we find that two-time scale
updates as suggested by Heusel et al. (2017) do not help con-
vergence towards the Nash-equilibrium (see Figure 22 in the
supplementary material). However, our example seems to
be a prototypical situation for (unregularized) GAN training
which usually deals with distributions that are concentrated
on lower dimensional manifolds (Arjovsky & Bottou, 2017).

We now take a closer look at the discretized system.

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(✓, ) has eigenvalues
�1/2 = 1 ± hf 0(0)i with absolute values

p
1 + h2f 0(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (✓k, k)
obtained by simultaneous gradient descent is monotonically
increasing.

The behavior of simultaneous gradient descent on our exam-
ple problem is visualized in Figure 2a.

Similarly, for alternating gradient descent we have

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
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hence on the unit circle. Moreover for ↵ > 2, there are
eigenvalues outside the unit circle.

Even though Lemma 2.5 shows that alternating gradient
descent does not converge linearly to the Nash-equilibrium,
it could in principle converge with a sublinear convergence
rate. However, this is very unlikely because – as Lemma 2.3
shows – even the continuous system does not converge. In-
deed, we empirically found that alternating gradient descent
oscillates in stable cycles around the equilibrium and shows
no sign of convergence (Figure 2b).

2.3. Where do instabilities come from?

Our simple example shows that naive gradient based GAN
optimization does not always converge to the equilibrium
point. To get a better understanding of what can go wrong
for more complicated GANs, it is instructive to analyze
these instabilities in depth for this simple example problem.

To understand the instabilities, we have to take a closer
look at the oscillatory behavior that GANs exhibit both for
the Dirac-GAN and for more complex systems. An intu-
itive explanation for the oscillations is given in Figure 1:
when the generator is far from the true data distribution,
the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes
more certain, which increases the discriminator’s slope (Fig-
ure 1a). Now, when the generator reaches the target distri-
bution (Figure 1b), the slope of the discriminator is largest,
pushing the generator away from the target distribution. As
a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope
from positive to negative. After a while, we end up with a
similar situation as in the beginning of training, only on the
other side of the true data distribution. This process repeats
indefinitely and does not converge.

Another way to look at this is to consider the local behavior
of the training algorithm near the Nash-equilibrium. Indeed,
near the Nash-equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data
distribution. Even if the generator is initialized exactly on
the target distribution, there is no incentive for the discrimi-
nator to move to the equilibrium discriminator. As a result,
training is unstable near the equilibrium point.

This phenomenon of discriminator gradients orthogonal to
the data distribution can also arise for more complex exam-
ples: as long as the data distribution is concentrated on a
low dimensional manifold and the class of discriminators
is big enough, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space of
the data manifold and hence converge to the equilibrium
discriminator. Even if the generator produces exactly the
true data distribution, there is no incentive for the discrim-
inator to produce zero gradients orthogonal to the tangent
space. When this happens, the discriminator does not pro-
vide useful gradients for the generator orthogonal to the data
distribution and the generator does not converge.

Note that these instabilities can only arise if the true data
distribution is concentrated on a lower dimensional man-
ifold. Indeed, Nagarajan & Kolter (2017) showed that -
under some suitable assumptions - gradient descent based
GAN optimization is locally convergent for absolutely con-
tinuous distributions. Unfortunately, this assumption may
not be satisfied for data distributions like natural images to

Ø Even more: what should we compute?
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Computation of ! − first-order Nash equilibrium

Ø Apply gradient descent to #(⋅)

Danskin’s Theorem:

Algorithm:

Ø Is it differentiable? 

Ø When ' (, * is strongly concave in *
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Iteration complexity

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume !(#, %) is strongly concave in %. 
Then, the algorithm requires '(()* log ().) gradient evaluations for computing ( −first-order NE.
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Iteration complexity

Apply K steps of projected 
gradient ascent on !

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume "($, !) is strongly concave in !. 
Then, the algorithm requires '(()* log ().) gradient evaluations for computing ( −first-order NE.

Ø Optimal rate up to logarithmic factors

Ø Can be obtained under Polyak-Łojasiewicz (PL) condition

Ø Requires establishing Danskin’s-type result under PL assumption

Strongly convex composite with affine ✓
Extend further?
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Ø Algorithm:

Danskin’s
Theorem
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Iteration complexity

Algorithm:

Theorem [Nouiehed, Huang, Sanjabi, Lee, Razaviyayn 2018]: Assume !(#, %) is concave in %. Then, the 
above algorithm requires '(()*., log ()0) gradient evaluations for computing ( −first-order NE.

'(()*.,) vs '(()2) without adding a regularizer/acceleration
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Ø Apply multi-steps of gradient ascent on ! (reinitialize multiple times and pick the best)
Ø Perform one step of gradient descent on w
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Training robust neural networks

[Madry et al. 2017]:  Repeat:
Ø Apply multi-steps of gradient ascent on ! (reinitialize multiple times and pick the best)
Ø Perform one step of gradient descent on w

Ø No theoretical convergence guarantee, not scalable, and requires heavy tuning to work
Ø Can we apply our theory and algorithm? 71
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Training robust neural networks
Ø Idea: approximate the maximization with a concave function
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Training robust neural networks
Ø Idea: approximate the maximization with a concave function

Neural 
Network

!"
!#

!$
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Non-convex in %, but concave in &
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Numerical results
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[2] Zhang et al. “Theoretically principled trade-o between robustness and accuracy” ICML 2019.
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Numerical results

Regular Performance Performance under FGSM attack Performance under PGD attack
--- ---- ! = 0.2 ! = 0.3 ! = 0.4 ! = 0.2 ! = 0.3 ! = 0.4
[1] 98.58% 96.09% 94.82% 89.84% 94.64% 91.41% 78.67%
[2] 97.21% 96.19% 96.17% 96.14% 95.01% 94.36% 94.11%

Proposed 98.20% 97.04% 96.66% 96.23% 96.00% 95.17% 94.22%

[1] Madry et al. "Towards deep learning models resistant to adversarial attacks." ICLR 2017

[2] Zhang et al. “Theoretically principled trade-o between robustness and accuracy” ICML 2019.
No theoretical 
convergence guarantee

PGD attack: Kurakin, Goodfellow, and Bengio, “Adversarial Machine Learning” at Scale, ICLR 2016.

FGSM attack: Goodfellow, Shlens, and Szegedy, “Explaining and harnessing adversarial examples,” arXiv:1412.6572 (2014).
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Numerical results

Ø Fair performance among different categories of data

Ø Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).

T-shirt/Top Coat Shirt
Normal Training 84.1 ±1.8% 86.4 ±2.1% 70.6 ±3.7%

Min-max no regularizer 75.4 ±1.5% 71.6 ±3.0% 73.3 ±1.9%
Min-max with regularizer 76.3 ±1.4% 73.9 ±2.8% 74.8 ±1.6%

Average performance over 100 training:

87

Ø Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn, “Solving a class of non-convex min-max 
games using iterative first order methods,” arXiv:1902.08297, accepted in NeurIPS 2019.



Numerical results

Ø Fair performance among different categories of data

Mohri et al. "Agnostic federated learning." arXiv:1902.00146 (2019).

T-shirt/Top Coat Shirt Worst Class
Normal Training 84.1 ±1.8% 86.4 ±2.1% 70.6 ±3.7% 70.6 ±3.7%

Min-max no regularizer 75.4 ±1.5% 71.6 ±3.0% 73.3 ±1.9% 71.3 ±2.8%
Min-max with regularizer 76.3 ±1.4% 73.9 ±2.8% 74.8 ±1.6% 73.4 ±2.4%

Average performance over 100 training:
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Min-max and fairness in machine learning

* https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G 89

Ø Discriminatory behaviors in human decisions and machine learning models:
Ø [Bickel et al., 1975]: Sex bias in graduate admissions in Berkeley
Ø [Datta et al. 2015]:  Google’s online advertising showed high-income jobs ads to men more than to women.
Ø [Sweeney 2013]: ads for arrest records shows up on searches for distinctively black names.
Ø Amazon’s recruitment engine has bias against women*
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* https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

Ø Different reasons such as old data human bias
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Different correlation measures: Mutual information [Kamishima et al. 2011], false positive/negative rates [Bechavod
& Ligett 2017], equalized odds [Donini et al. 2018], Pearson correlation coefficient [Zaffar et al. 2015, 2017], Hilbert 
Schmidt independence criterion [Pérez-Suay et al. 2017]
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Ø Either do not have convergence guarantees or cannot guarantee statistical independence 
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Ø Goals:
Ø Make !" and # independent
Ø Keep !" close to "

Ø Use Rényi (maximal) correlation

Ø Rényi Fair Inference [Bahrlouei et al 2019]

Ø Can be solved for discrete random variables
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Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value 
of the matrix ! = #$% where #$% =

&((),+,)
& () &(+,)
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Theorem [Witsenhausen 1975]: In the discrete case, Rényi correlation is the second largest singular value 
of the matrix ! = #$% where #$% =

&((),+,)
& () &(+,)

Theorem [Baharlouei, Nouiehed, Razaviyayn 2019]: When s is binary, we have



Under review as a conference paper at ICLR 2020

Figure 1: Trade-off between the accuracy of classifier and fairness on the adult dataset under the
equality of opportunity notion.

Figure 2: Trade-off between accuracy and fairness for logistic regression classifier regularized with
Rényi , HSIC, and Pearson measures, on German Credit, Adult, and Bank datasets.

Figure 3: Performance and fairness of K-means algorithm in terms of Rényi regularizer hyper-
parameter �.

9

Numerical Experiments
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Ø Pearson correlation coefficient 
Ø [Zaffar et al. 2015, 2017]

Ø Hilbert Schmidt Independence Criterion 
Ø [Pérez-Suay et al. 2017]

Ø Rényi Fair Inference
Ø [Baharlouei et al. 2019]



approach mimics the behavior of gradient descent algorithm used for minimizing the function f(·); see [1, The-
orem 4.2]. This fact is used in the literature to regularize the inner problem and make it concave with respect
to wd parameter so that one can solve the discriminator to (approximate) global optimality.

The above two scenarios both suggest that appropriate regularization of the objective function improves the
stability of training procedure for GANs. In addition, regularization could be used to enforce L-Lipschitzness
condition, which is not only essential in training Wasserstein GANs [4], but also helps (stochastic) gradient
descent to converge for a wider range of step-sizes [2, Section 1.2.3].

Issues introduced by global regularization and proposed potential solutions. As discussed in the
previous section, regularization helps achieving a robust and convergent algorithm. For example, in Figure 1
and Figure 2, we compare our regularization method proposed in [1] with various state-of-the-art methods
(see [1] for more comparisons). While regularization leads to a robust training, it introduces bias in learning.
To remove such a bias, various remedies/heuristics, such as reducing the regularization weight or using
Sinkhorn loss, need to be utilized in practice – see [1, Section 4.1].

Figure 2: CIFAR-10 samples generated with the proposed
global regularization method [1] (SWGAN) and the comparison
of inception score for various methods.

In the optimization literature, iterative (per-
iteration) regularization is a popular approach to
remove the bias introduced by regularization while
enjoy the benefits of keeping regularization. To ex-
plain the idea of iterative regularization, consider the
smooth optimization problem

min
x

f(x).

In an iterative regularization scheme, at iteration t+
1, we use the update rule:

xt+1 = argmin
x

f(x) + �rt(x).

where the regularization term rt(·) depends on the
previous iterate xt. This regularization termis al-
most zero near the previous iterate while it imposes
some global stability structure (such as strong con-
vexity). For example, choosing rt(x) = kx � xtk2
leads to the well-known proximal point algorithm;
choosing rt(x) = kx�xtk2 and replacing f(·) with a
local linear approximation leads to proximal gradient
algorithm; and choosing rt(x) to be the Bregman di-
vergence leads to mirror descent algorithm. In all
these algorithms, the objective function is guaran-
teed to decreased at each step, while the regularization does not impose any bias and the algorithm converges
to the set of stationary points of the objective function even in non-convex scenarios.

In this proposal, we suggest to use similar idea in non-convex min-max problems. More specifically,
instead of having a fixed regularization, we suggest the use of iterative regularization. For example, instead
of using fixed entropy regularization in SWGAN [1], we can use KL-divergence iterative regularization which
regularizes the distance of the new iterate with the previous one.

Adaptive regularization has been shown to be successful for special min-max problems in the past. For
example, the PI has shown that a careful step-size selection in conjunction with special proximal regular-
ization is successful in solving min-max optimization of the Lagrangian of a non-convex linear constrained
optimizations [5]. In addition, the PI has used proximal type regularization to show it leads to convergent
algorithm for n-person games [6]. While the min-max formulation is a very special case of an n-person game,
the conditions for convergence in [6] are not satisfied in general for non-convex GANs.

2) Training GANs without solving a non-convex min-max problem. In this pro-
posal, we also investigate the possibility of training GANs without directly using the non-convex min-max

2

Extension to stochastic setting and applications in training GANs
Ø Sanjabi, Ba, Razaviyayn, Lee. “On the convergence and robustness of training GANs with regularized optimal transport,” Neurips 2018

Title: Computational Tools for Training GANs

Principal Investigator: Meisam Razaviyayn, email: razaviya@usc.edu, Univ. of Southern California

Google Sponsor: Mohammad Norouzi, mnorouzi@google.com

Summary. Generative Adversarial Networks (GANs) are one of the most practical methods for learning
complex data distributions. While the results presented in the literature demonstrate the power of GANs
in learning distributions, training task for GANs is still very challenging in practice. Almost all existing
results are obtained by long training procedures, tuning various hyper-parameters, and many tweaks and
adjustments. This is mainly due to the fundamental lack of knowledge on how to solve optimization problems
arise in GAN training. In this research, we investigate the fundamental challenges arise in training GANs
from optimization perspective. We design practical stable optimization procedures for training GANs.

Figure 1: Top figure shows MNIST sam-
ples generated by the global regularization
method [1]. Bottom figure shows samples gen-
erated by WGAN-GP [4].

1) Training GANs via solving a non-convex min-
max problem. GANs consist of two neural networks: the gen-
erator and the discriminator. The goal of the generator is to gen-
erate fake samples which look like real samples in the distribution
of interest. On the other hand, the discriminator’s objective is to
correctly classify the fake samples generated by the generator and
the real samples drawn from the distribution of interest. A pop-
ular approach for modeling GANs is a zero-sum two-person game
between the generator and the discriminator which can be solved
through the following min-max optimization problem:

min
wg

max
wd

L(wg,wd). (1)

Here, wg is the generator’s parameter; wd is the discriminator’s pa-
rameter; and L(·, ·) represents the generator’s loss function (which
is equal to the negative of the discriminator’s loss function). This
min-max objective can be also justified as minimizing a distance
between the distribution of real samples and the distribution of
generated samples. Various distance measures, such as Jensen-Shannon divergence, f -divergence, and Wasser-
stein distance, have been considered in the literature.

General non-convex min-max problems are di�cult. From optimization perspective, solving (1) is
very challenging in general non-convex scenarios even for smooth functions. In fact, to date, there is no
reasonable local search algorithm in the literature which can solve (1) even to first order stationarity for
general smooth function L(·, ·). This is in contrast to the minimization of a smooth non-convex problem
(regular training of neural networks), for which (stochastic) gradient descent finds ✏�stationary points in
polynomial time [2, Section 1.2.3]. Due to lack of existence of a global performance/Lyapunov function which
keeps improving during the iterates, training GANs is not stable in practice. Consequently, many researchers
came up with di↵erent remedies to stabalize the training procedure – see [1] and the references therein.
Unfortunately, to date, all existing algorithms are still not as stable as training regular (non-adversarial)
neural networks. Moreover, the theoretical convergence guarantees are either based on some stability of the
iterates or based on global convex-concave structure - see [1] and the references therein. Such assumptions
are not satisfied in almost all practical scenarios.

When are min-max problems easy? It is known that the general smooth min-max optimization prob-
lem (1) is easy in the following two scenarios: Scenario 1) When the min-max gradient mapping (�rwgL , +rwdL)
is monotone or equivalently the Jacobian of the update rule has eigenvalues less than one (for small enough
step-size). This property implies that the popular gradient descent-ascent approach for solving GANs is a
contraction and the iterates are convergent (at least locally). This requirement motivated many learning
procedures to regularize the norm of gradient of the objective function in both the generator and the dis-
criminator objective function; see e.g. [3]. Scenario 2) When the global optimal solution of the inner problem
maxwd L(wg,wd) can be found for any fixed value of wg. When such a requirement is met, then one can
define f(wg) , maxwd L(wg,wd). Then, Danskin’s theorem implies that the unrolled gradient descent-ascent
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Summary

ØNon-convex min-max problems are challenging

ØSpecial cases could be solved efficiently

ØThese problems appear in many applications

ØRobust learning

ØGANs

ØFair learning

Ø and many more…
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Future work
ØThis is just a first step

ØHow far we can go into the non-convex world? Providing upper- lower- bounds?
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Future work
ØThis is just a first step

ØHow far we can go into the non-convex world? Providing upper- lower- bounds?

ØHow far we can go beyond first-order stationarity/Nash equilibrium concept?
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A long history
Ø Using monotone operator:

Ø [Sibony’70], [Korpelevich’76], [Nemirovski’04], [Martinet’70], [Rockafellar’76], [Di-Sun’99], [Juditsky-
Nemirovsky’16], …

Ø Weak Monotonicity
Ø [Davis-Grimmer’17, Davis-Drusvyatskiy’18, Zhang-He’18, Lin et al’18], …

Ø More general VI’s
Ø [Facchinei-Pang’03], [Monteiro-Svaiter’10], [Nesterov’07], [Dong-Lan’14], …

Ø Stochastic VI’s
Ø [Juditsky-Nemirovski-Tauvel ’11], [Koshal-Nedic-Shanbag’13], [Rosasco-Villa-Vũ’14], [Balamurugan-Bach’16], …

Ø Bilinear convex-concave
Ø [Arrow-Hurwicz-Uzawa’58, Zhu-Chan’08], [Chambolle-Pock’11&16], [Chen-Lan-Ouyang’14], [Dong-Lan’14, 

Chambolle et al’17], [Wang-Xiao’17], …

Ø Convex-Concave saddle points
Ø [Tseng’08], [He and Monterio’17], [Hamedani-Jalilzadeh-Aybat-Shanbhag’18], …
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Other recent results in non-convex min-max regimes

• [Lu, Tsaknakis, and Hong 2019]
• [Gidel, Hemmat, Pezeshki, Huang, Lepriol, Lacoste-Julien, and Mitligkas 2018]
• [Gidel, Jebara, and Lacoste-Julien 2018]
• [Lu, Tsaknakis, Hong, Chen 2019]
• [Hameani, Jalilzadeh, Aybat, Shanbhag 2018]
• [Rafique, Liu, Lin, and Yang 2018]
• [Sinha, Namkoong, and Duchi 2018]
• [Thekumparampil, Jain, Netrapalli, and Oh 2019]
• [Jin, Netrapalli, and Jordan 2019]
• [Lin, Jin, Jordan 2019]
• [Letcher, Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel 2019]
• [Lin, Liu, Rafique, Yang 2018]
• [Mescheder, Geiger, and Nowozin 2018]
• [Mokhtari, Ozdaglar, Pattathil 2019]
• [Daskalakis, Ilyas, Syrgkanis, and Zeng 2018]
• [Daskalakis and Panageas 2018]
• [Daskalakis and Panageas 2019]

• And many other recent works… 112
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