UCD STATISTICS Talk

Pantelis Loupos Graduate School Of Management University Of California, Davis

MY RESEARCH INTERESTS

Methods: Predictive Analytics (Machine Learning, Data Mining)

Causal Inference (Matching, Instrumental Variables, A/B Testing)

SOCIAL PLATFORMS

- Social Platforms/Services: users create value for other users!
- Dimension: Networks Externality

Starting Cold: The Power Of Social Networks In Predicting Non-Contractual Customer Behavior

Joint Work With Alexandros Nathan And Moran Cerf

ALICE DISCOVERS VENMO

VENMO IS SOCIAL

VENMO IS SOCIAL

- Transformed payments into a sharing experience!
- Largest P2P Financial Transaction Network
 - ▶ 16+M Users
 - ▶ 10M **Active** Monthly users
 - Q4 2018: \$**19B**
- Fast Growth Company

PROBLEM MOTIVATION: WHO IS WORTH IT?

- Alice just joined Venmo.
- Should Venmo invest its marketing dollars:
 - with or without behavioral data?
- This is the cold-start problem.

PROBLEM MOTIVATION: WHO IS WORTH IT?

Can social network data help solve this?

- with or without behavioral data?
- This is the cold-start problem.

INTUITION

"Tell Me Your Friends And I Will Tell You What Type Of Customer You Are"

- 1. Homophily (e.g., Aral et al. 2009)
- 2. Peer Influence (e.g., Iribarren and Moro 2009)
- 3. Bott's theory (Bott 2014)

The purpose of this work is purely predictive

NON-CONTRACTUAL PREDICTIONS ARE CHALLENGING

- Who has churned?
 - No formal declaration of termination (Ascarza et al. 2017)

THIS PAPER CONTRIBUTES TO THE LITERATURE OF COLD START, SOCIAL NETWORKS AND CRM

Cold Start

- Recommender Systems (Jamali and Ester 2010)
- Research Output (Ductor et al. 2014)

Social Connectivity

- Neighbor churn (Dasgupta et al. 2008)
- Social network connections/embeddedness (Benedek et al. 2014)
- Neighbor/connections usage (Ascarza et al. 2017)

Non-Contractual CRM

- Pareto/NDB model (Morrison and Schmittlein 1988; Jerath et al. 2011)
- BG/NBD extension (Fader et al. 2005; Fader and Hardie 2009)

Cold Start & Non-Contractual CRM

1. Acquisition Related Variables

- Acquisition Channel (Verhoef and Donkers 2005; Villanueva, Yoo, and Hanssens 2018; Chan, Wu, and Xie 2011; Steffes, Murthi, and Rao 2011)
- Acquisition Strategy (Steffes, Murthi, and Rao 2011; Lewis 2006; Schmitt, Skiera, and Van den Bulte 2011; Uncles, East, and Lomax 2013; Datta, Foubert, and Van Heerde 2015)

2. Transactional Variables

- Cross-Cohort Changepoint Model (Gopalakrishnan et al. 2017): BYTD model – "borrows" information from previous cohorts
- ▶ First Impressions Count (Padilla and Ascarza 2017): Use the features of a customer's first transaction

RESEARCH QUESTIONS

- Can we solve the cold-start problem?
- Power of Social Networks in Predicting:
 - 1. Customer Activity
 - 2. Transaction Volume
 - 3. 10% Most Frequent Customers

VENMO DATA

- Crawl Venmo's API:
 - 2.3M Public Users
 - 120M Financial Transactions

VENMO METRICS

User Based

- Recency
- Frequency
- FB Sign-Up

Social Network Based

- Degree
- Page Rank
- Cohesion

- Avg. # of Friends of Friends
- Friends of Friends Avg.Transaction Frequency
- FoF Cohesion
- Mutual Friends of Friends

METHODOLOGY

Venmo Timeframe: January 2014 - June 2016

METHODOLOGY - DYNAMIC ANALYSIS

METHODOLOGY - DYNAMIC ANALYSIS

COMPUTATIONAL REQUIREMENTS

- Size of the Data: 2 Terabytes
- Amazon Web Services (AWS)
- PySpark

MODELS & DATASETS

Predictive Task	Problem Type	Prediction		
Customer Activity	Binary classification	Active next month		
Transaction Volume	Regression	# Transactions at the end of the year		
Top 10% Most Frequent Customers	Binary classification	Top 10% or not		

Inputs/Datasets:

- 1. User
- 2. Social
- 3. Both

CUSTOMER ACTIVITY MODEL

Prediction: Active in Period t+1 (0/1)

$$y_{i,t+1} = F(x_{i,t})$$

- Inputs/Data:
 - 1. User
 - 2. Social
 - 3. Both
- Metric/Fit: Area Under the Curve (AUC)

PREDICTING AT TIME 0 IS DIFFICULT

SOCIAL NETWORK DATA IS HIGHLY PREDICTIVE AT TIME 0

SOCIAL DATA HELPS SOLVE THE COLD-START PROBLEM BUT BECOMES IRRELEVANT AFTER MONTH 3

TRANSACTION VOLUME MODEL

Prediction: Total Number of Transactions at Period 12

$$y_{i,12} = F(x_{i,t})$$

- Inputs/Data:
 - 1. User
 - 2. Social
 - 3. Both
- Metric/Fit: Mean Squared Error (MSE)

LONG TERM TRANSACTION VOLUME

- Cold start results also hold here
 - ▶ Relative Decrease at time 0: 13% MSE
- Social always achieve maximum predictive performance

10% MOST FREQUENT CUSTOMERS MODEL

Prediction: 10% Most Frequent Customers at Period 12

$$y_{i,12} = F(x_{i,t})$$

- Inputs/Data:
 - 1. User
 - 2. Social
 - 3. Both
- Metric/Fit: Area Under the Curve (AUC)

10% MOST FREQUENT CUSTOMERS

Time	User	Social		
T = 0	59%	72%		
T = 6	95%	95%		

10% VS 90% MOST FREQUENT CUSTOMERS AT TIME 0

Structural Network Variables

Friends of friend's Cohesion

Mutual Friends of Friends

Outgoing Transaction %

Friend's number of friends

Friends of friend's average number of friends

Giant Component

Page Rank

10% VS 90% MOST FREQUENT CUSTOMERS AT TIME 0

Network Variables	Top 10%	Bottom 90%	Cohen's Effect Size			
Friends of friend's Cohesion	0.34 (0.34)	0.30 (0.33)	0.12*			
Mutual Friends of Friends	0.06 (0.14)	0.02 (0.09)	0.44**			
Friends of friend's average number of friends	10.06 (7.98)	8.19 (7.69)	0.24**			
Page Rank	0.32 (0.40)	0.26 (0.29)	0.22**			
Giant Component	0.87 (0.33)	0.80 (0.40)	0.18*			

Most frequent customers have a more connected and denser friends of friends network whey they join the service.

MANAGERIAL IMPLICATIONS

- 1. Marketing Resource Allocation
- 2. Customer Based Corporate Valuations (CBCV)

CONCLUSIONS

- 1. Social network data can be incredibly important when you don't have transactional data.
- 2. **Boundary Conditions** for when user data supplant social data:
 - True for short term activity
 - Not for long term transaction volume and top 10%
- 3. Social Data Privacy Issues: When you data are not truly yours

FUTURE RESEARCH: P2P PLATFORMS

Olivia Buckland

@oliviadbuck

54906 Followers 2 Following

Orders may take 3-5 Business Days to be sent No offers or Refunds. All proceeds go to charity. Account not run by Olivia.

Selling Likes

£8

THANK YOU VERY MUCH!

- Any Questions?
- You can always reach out to me at ploupos@ucdavis.edu
- Olouposp

APPENDIX: ROBUSTNESS CHECKS

Different ML Models

Lifetime	Model 1			Model 2			Model 3		
	Logistic	Lasso	\mathbf{RF}	Logistic	Lasso	\mathbf{RF}	Logistic	Lasso	$\overline{\mathbf{RF}}$
0	0.53	0.53	0.51	0.71	0.71	0.72	0.71	0.71	0.72
1	0.73	0.73	0.72	0.72	0.72	0.72	0.73	0.73	0.72
2	0.77	0.77	0.76	0.76	0.76	0.73	0.77	0.77	0.76
3	0.79	0.79	0.78	0.77	0.77	0.75	0.79	0.79	0.78
4	0.80	0.80	0.79	0.77	0.77	0.75	0.80	0.80	0.79
5	0.81	0.81	0.80	0.79	0.79	0.76	0.81	0.81	0.80
6	0.82	0.82	0.80	0.79	0.79	0.76	0.82	0.82	0.80
7	0.82	0.82	0.80	0.80	0.80	0.79	0.82	0.82	0.80
8	0.82	0.83	0.80	0.80	0.80	0.79	0.82	0.83	0.80
9	0.82	0.83	0.80	0.80	0.80	0.79	0.83	0.83	0.80
10	0.83	0.84	0.80	0.80	0.80	0.79	0.83	0.84	0.80
11	0.83	0.84	0.81	0.81	0.81	0.79	0.83	0.84	0.81

APPENDIX: ROBUSTNESS CHECKS

Different Predictive Windows

Lifetime	60 days			90 days			120 days		
Lifetime	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3	Model 1	Model 2	Model 3
0	0.53	0.68	0.68	0.53	0.67	0.68	0.54	0.67	0.67
1	0.73	0.72	0.73	0.73	0.72	0.73	0.73	0.73	0.74
2	0.77	0.76	0.78	0.78	0.76	0.78	0.78	0.77	0.79
3	0.79	0.77	0.79	0.80	0.78	0.80	0.81	0.79	0.81
4	0.81	0.79	0.81	0.82	0.80	0.82	0.83	0.81	0.83
5	0.82	0.80	0.83	0.83	0.81	0.84	0.84	0.82	0.84
6	0.84	0.81	0.84	0.85	0.82	0.85	0.85	0.83	0.86
7	0.84	0.82	0.84	0.85	0.83	0.86	0.86	0.83	0.86
8	0.85	0.82	0.85	0.86	0.83	0.86	0.87	0.84	0.87
9	0.85	0.83	0.85	0.87	0.84	0.87	-	-	-
10	0.86	0.83	0.86	-	-	-	-	-	-

APPENDIX: ROBUSTNESS CHECKS

Top Decile Lift Metric

APPENDIX

Conditional Expected # of Transactions at month 12

