
Pantelis Loupos  
Graduate School Of Management  

University Of California, Davis 

UCD STATISTICS Talk 



MY RESEARCH INTERESTS

CRM

Data	
Analytics

Social	
Networks

Methods: Predictive Analytics (Machine Learning, Data Mining)   
Causal Inference (Matching, Instrumental Variables, A/B Testing)
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SOCIAL PLATFORMS 
▸ Social Platforms/Services: users create value for other 

users!  

▸ Dimension: Networks Externality 



Starting Cold: The Power Of Social Networks 
In Predicting Non-Contractual Customer 
Behavior
Joint Work With Alexandros Nathan And Moran Cerf 



ALICE DISCOVERS VENMO 
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VENMO IS SOCIAL 

6



VENMO IS SOCIAL 

▸ Transformed payments into a 
sharing experience! 

▸ Largest P2P Financial Transaction 
Network 

▸ 16+M Users 

▸ 10M Active Monthly users 

▸ Q4 2018: $19B 

▸ Fast Growth Company 
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PROBLEM MOTIVATION: WHO IS WORTH IT? 

▸ Alice just joined Venmo.  

▸ Should Venmo invest its marketing dollars:  

- with or without behavioral data? 

▸ This is the cold-start problem.
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Can social network data help solve this?



INTUITION 

“Tell Me Your Friends And I Will Tell You What Type Of Customer You Are “
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WHY SHOULD ALICE’S FRIENDS ALLOW VENMO TO INFER HOW GOOD A CUSTOMER SHE IS?

1. Homophily (e.g., Aral et al. 2009) 

2. Peer Influence (e.g., Iribarren and Moro 2009)  

3. Bott’s theory (Bott 2014)
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▸ The purpose of this work is purely predictive



NON-CONTRACTUAL PREDICTIONS ARE CHALLENGING 

▸ Who has churned?  

- No formal declaration of termination (Ascarza et al. 2017)
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THIS PAPER CONTRIBUTES TO THE LITERATURE OF COLD START, SOCIAL NETWORKS AND CRM 

▸ Cold Start  

- Recommender Systems (Jamali and Ester 2010)  

- Research Output (Ductor et al. 2014)  

▸ Social Connectivity  

- Neighbor churn (Dasgupta et al. 2008)  

- Social network connections/embeddedness (Benedek et al. 2014)  

- Neighbor/connections usage (Ascarza et al. 2017) 

▸ Non-Contractual CRM  

- Pareto/NDB model (Morrison and Schmittlein 1988; Jerath et al. 2011) 

- BG/NBD extension (Fader et al. 2005; Fader and Hardie 2009)
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THIS PAPER CONTRIBUTES TO THE LITERATURE OF CRM, SOCIAL NETWORKS AND COLD START 

▸ Cold Start & Non-Contractual CRM  

1. Acquisition Related Variables  

‣Acquisition Channel (Verhoef and Donkers 2005; Villanueva, Yoo, and 
Hanssens 2018; Chan, Wu, and Xie 2011; Steffes, Murthi, and Rao 2011) 

‣Acquisition Strategy (Steffes, Murthi, and Rao 2011; Lewis 2006; Schmitt, 
Skiera, and Van den Bulte 2011; Uncles, East, and Lomax 2013; Datta, 
Foubert, and Van Heerde 2015) 

2. Transactional Variables   

‣  Cross-Cohort Changepoint Model (Gopalakrishnan et al. 2017): BYTD 
model — “borrows” information from previous cohorts  

‣ First Impressions Count (Padilla and Ascarza 2017): Use the features of a 
customer’s first transaction 
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RESEARCH QUESTIONS

▸ Can we solve the cold-start problem?  

▸ Power of Social Networks in Predicting:  

1. Customer Activity 

2. Transaction Volume 

3. 10% Most Frequent Customers
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VENMO DATA

▸ Crawl Venmo’s API: 

▸ 2.3M Public Users 

▸ 120M Financial Transactions
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VENMO METRICS 

User Based           
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▸ Recency 

▸ Frequency 

▸ FB Sign-Up 

▸ Degree 

▸ Page Rank 

▸ Cohesion 

▸ Avg. # of Friends of Friends 

▸ Friends of Friends Avg. 
Transaction Frequency 

▸ FoF Cohesion 

▸ Mutual Friends of Friends 

                     Social Network Based 



METHODOLOGY
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Venmo Lifetime

Jan 2014

Time of acquisition

Jan 2015Jun 2014 Jun 2015 Jan 2016 Jun 2016

Venmo Timeframe: January 2014 - June 2016



METHODOLOGY - DYNAMIC ANALYSIS 
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Customer Lifetime

Model calibration 
period

t0 t1 … t12

12 month lifetime

t2 t3

Prediction horizon



METHODOLOGY - DYNAMIC ANALYSIS 
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Customer Lifetime

t0 t1 … t12t2 t3

Model calibration period

Prediction horizon

12 month lifetime



COMPUTATIONAL REQUIREMENTS 
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▸ Size of the Data: 2 Terabytes  

▸ Amazon Web Services (AWS)  

▸ PySpark 



MODELS & DATASETS 
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Predictive Task Problem Type Prediction

Customer Activity Binary classification Active next month

Transaction Volume Regression # Transactions at the 
end of the year

Top 10% Most 
Frequent Customers

Binary classification Top 10% or not

▸ Inputs/Datasets:  

1. User 

2. Social  

3. Both



CUSTOMER ACTIVITY MODEL 

▸ Prediction: Active in Period t+1 (0/1) 

▸ Inputs/Data:  

1. User 

2. Social  

3. Both 

▸ Metric/Fit: Area Under the Curve (AUC) 
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PREDICTING AT TIME 0 IS DIFFICULT
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Time User Social 

T = 0 53%



SOCIAL NETWORK DATA IS HIGHLY PREDICTIVE AT TIME 0
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Time User Social 

T = 0 53% 71%



SOCIAL DATA HELPS SOLVE THE COLD-START PROBLEM BUT BECOMES IRRELEVANT AFTER MONTH 3  
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Time User Social 

T = 0 53% 71%

T = 6 84% 79%



TRANSACTION VOLUME MODEL 

▸ Prediction:  Total Number of Transactions at Period 12 

▸ Inputs/Data:  

1. User 

2. Social  

3. Both 

▸ Metric/Fit: Mean Squared Error (MSE) 
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▸ Cold start results also hold here 

▸ Relative Decrease at time 0: 13% MSE 

▸ Social always achieve maximum predictive performance
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LONG TERM TRANSACTION VOLUME



10% MOST FREQUENT CUSTOMERS MODEL 

▸ Prediction: 10% Most Frequent Customers at Period 12 

▸ Inputs/Data:  

1. User 

2. Social  

3. Both 

▸ Metric/Fit: Area Under the Curve (AUC) 
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10% MOST FREQUENT CUSTOMERS 

Time User Social 

T = 0 59% 72%

T = 6 95% 95%



10% VS 90% MOST FREQUENT CUSTOMERS AT TIME 0
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Structural Network Variables

Friends of friend’s Cohesion

Mutual Friends of Friends

Outgoing Transaction %

Friend’s number of friends

Friends of friend’s average 
number of friends

Giant Component

Page Rank 



10% VS 90% MOST FREQUENT CUSTOMERS AT TIME 0
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Network 
Variables

Top 10% Bottom 90% Cohen’s Effect Size

Friends of 
friend’s 
Cohesion

0.34 (0.34) 0.30 (0.33) 0.12*

Mutual 
Friends of 
Friends

0.06 (0.14) 0.02 (0.09) 0.44**

Friends of 
friend’s 
average 
number of 
friends

10.06 (7.98) 8.19 (7.69) 0.24**

Page Rank 0.32 (0.40) 0.26 (0.29) 0.22**

Giant 
Component

0.87 (0.33) 0.80 (0.40) 0.18*

▸ Most frequent customers have a more connected and denser 
friends of friends network whey they join the service.



MANAGERIAL IMPLICATIONS 

1. Marketing Resource Allocation 

2. Customer Based Corporate Valuations (CBCV)
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CONCLUSIONS

1. Social network data can be incredibly important when you 
don’t have transactional data. 

2. Boundary Conditions for when user data supplant social 
data: 

▸ True for short term activity 

▸ Not for long term transaction volume and top 10% 

3. Social Data Privacy Issues: When you data are not truly 
yours    
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FUTURE RESEARCH: P2P PLATFORMS



THANK YOU VERY MUCH!
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▸ Any Questions? 

▸ You can always reach out to me at ploupos@ucdavis.edu 

▸        @louposp 



APPENDIX: ROBUSTNESS CHECKS 

▸ Different ML Models 
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APPENDIX: ROBUSTNESS CHECKS 

▸ Different Predictive Windows  
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APPENDIX: ROBUSTNESS CHECKS 

▸ Top Decile Lift Metric  
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APPENDIX

▸ Conditional Expected # of Transactions at month 12
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