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Introduction

Motivation

Many statistical inference problems have relevant side-information and
constraints.
Standard algorithms ignore this side-information and violate constraints.
Ignoring the constraints can lead to inferences that don’t make physical or
biological sense.
Our goal is to incorporate constraints in statistical inference and in doing so
gain a deeper understanding of the tradeoffs between computational cost and
statistical accuracy.
In many cases, adding constraints improves computational efficiency due to a
reduced search space.
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Introduction

Finite Mixture Model

Density function for a finite mixture model:

p(y |θ,π) =
K∑

k=1

πkp(y |θk)

where the observed data is y and the parameter set is φ = {θ,π}.
Data is n-tuple of d-dimensional random vectors y = (yT

1 , . . . , yT
n )T .

When the component density, p(y |θk), is a Gaussian density function, p(y |φ)
is a Gaussian mixture model with parameters θ = ({µ1,Σ1}, . . . , {µK ,ΣK}).
Assuming independent, identically distributed (iid) samples, the Gaussian
mixture model probability density function is
p(y |θ,π) =

∏n
i=1

∑K
k=1 πk p (yi |µk ,Σk).
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Introduction

Gaussian Mixture Model

A generative model for the Gaussian mixture density function is

Zi
iid∼ Categorical(π) for i = 1, . . . , n,

Yi |zi ,θ ∼ Gaussian(µzi ,Σzi ),
(1)

where µ = (µ1, . . . ,µK ) and Σ = (Σ1, . . . ,ΣK ).
To generate data from the Gaussian mixture model:

1 Draw zi ∈ {1, . . . ,K} from a categorical distribution with parameter π.
2 Given zi , draw yi from the associated Gaussian component distribution

p(yi |θzi ).

Patrick Flaherty (UMass) MAP Clustering under the Gaussian Mixture Model via Mixed Integer Nonlinear ProgrammingNovember 3, 2020 7 / 33



Introduction

MAP Clustering

The posterior distribution function for the generative Gaussian mixture model is

p(z ,θ,π|y) =
p(y |θ, z)p(z |π)p(θ,π)

p(y)
.

The MAP clustering can be obtained by solving the following optimization problem:
maxz,θ,π log p(z ,θ,π|y). s.t. zi ∈ {1, . . . ,K} ∀i , and π ∈ PK .
In the case of one-dimensional data and equivariant components the MAP optimization
problem can be written

minz ,µ,π η
n∑

i=1

K∑
k=1

zik (yi − µk )2 −
n∑

i=1

K∑
k=1

zik log πk

s.t.
K∑

k=1

πk = 1,

K∑
k=1

zik = 1, i = 1, . . . , n,

ML
k ≤ µk ≤ MU

k , k = 1, . . . ,K ,

πk ≥ 0, k = 1, . . . ,K ,

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . ,K

(2)

where η = 1
2σ2 is the precision, and ML

k and MU
k are real numbers.
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MAP Clustering via a Modern Optimization Lens

MINLPs

Mixed integer nonlinear programming problems have both continuous and
discrete variables and nonlinear functions in their objectives and constraints.

min
x , y

f (x , y)

s.t. gi (x , y) = 0 i = 1, . . . , n,
hj(x , y) ≤ 0 j = 1, . . . ,m,

x ∈ X ⊆ Rw ,

y ∈ Y ⊆ Zr

(3)

MINLPs are typically solved using Generalized Benders’ Decomposition or
Branch-and-Bound.
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MAP Clustering via a Modern Optimization Lens

MAP clustering for Gaussian Mixture Model as a
Biconvex MINLP

The GMM MAP problem can be formulated as a special kind of MINLP—a Biconvex MINLP.

minz,µ,π η

n∑
i=1

K∑
k=1

zik (yi − µk )
2 −

n∑
i=1

K∑
k=1

zik log πk

s.t.
K∑

k=1

πk = 1,

K∑
k=1

zik = 1, i = 1, . . . , n,

ML
k ≤ µk ≤ MU

k , k = 1, . . . ,K ,

πk ≥ 0, k = 1, . . . ,K ,

zik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . ,K .

(4)

If we hold {z, η} fixed, the objective is convex in {µ,π} and the constraints are linear in µ,π.

If we hold {µ,π} fixed, the objective is bilinear in {z, η} and the constraints are linear in {z, η}.
Note that if we separate the variables in the usual way: {µ,π, η} and z , the problem is not
biconvex.

Biconvex problems are the subject of extensive research by Floudas and there are somewhat efficient
approximation algorithms for these problems e.g. α− branch-and-bound.
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MAP Clustering via a Modern Optimization Lens

EM Algorithm

The EM algorithm relaxes the domain such that zik ∈ [0, 1] instead of
zik ∈ {0, 1}.
The decision variables of the resulting biconvex optimization problem are
partitioned into two groups: {z} and {µ,π, η}.
The search algorithm performs coordinate ascent on these two groups.
There are no guarantees for the global optimality of the estimate produced by
the EM algorithm.
While the global optima of a mixture of well-separated Gaussians may have a
relatively large region of attraction, inferior local optima can be arbitrarily
worse than the global optimum.
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MAP Clustering via a Modern Optimization Lens

Variational EM

The variational EM algorithm introduces a surrogate function q(z , φ|ξ) for
the posterior distribution p(z ,φ|y).

1 the surrogate is fit to the posterior by solving
ξ̂ ∈ argminξ KL(q(φ, z |ξ) || p(φ, z |y)).

2 the surrogate is used in place of the posterior distribution in the original
optimization problem φ̂, ẑ ∈ argminφ,z log q(θ, z |ξ).

The search algorithm performs coordinate ascent on {φ, z} and ξ.
This surrogate function approach has existed in many fields; it is alternatively
known as majorization-minimization and has deep connections with
Franke-Wolfe gradient methods and block coordinate descent methods.
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MAP Clustering via a Modern Optimization Lens

Sequential Least Squares Programming (SLSQP)

SLSQP is a popular general-purpose constrained nonlinear optimization
method that uses a quadratic surrogate function to approximate the
Lagrangian.
In SLSQP, the surrogate function is a quadratic approximation of the
Lagrangian of the original problem.
The domain of the original problem is also relaxed so that the constraint cuts
it generates are approximated by linear functions.
Like variational EM, SLSQP iterates between fitting the surrogate function
and optimizing over the decision variables.
Quadratic surrogate functions have also been investigated in the context of
variational EM for nonconjugate models.
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MAP Clustering via a Modern Optimization Lens

Bandi at al.

(Bandi et al 2019) recently described a mixed-integer optimization
formulation of the parameter estimation problem for the Gaussian mixture
model.
Conditional on the parameter estimates, they computed the
one-sample-at-a-time MAP assignments for out-of-sample data.
They convincingly demonstrate that a mixed-integer optimization approach
can outperform the EM algorithm in terms of out-of-sample accuracy for
real-world data sets.
Their primary objective is density estimation—to find the optimal parameters
of the Gaussian mixture model. Our primary objective is MAP clustering—to
find an optimal maximum a posteriori assignment of data points to clusters
and associated distribution parameters.
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MIQP Relaxation

Constraints to encode prior knowledge

Many scientific studies have strict prior constraints that must not be violated in a
feasible solution.

Symmetry-breaking constraint the solution is invariant to permutations,
π1 ≤ π2 ≤ · · · ≤ πK .

Specific Estimators a specific estimator should be used,
πk = 1

n

∑n
i=1 zik , and µk =

∑n
i=1 yi zik∑n
i=1 zik

∀k .
Parameter Bounds parameter that a physically impossible are not allowed

ML
k ≤ µkM

U
k .

Logical Constraints replicates must cluster together: zik = zjk∀k ; or if data
point j is assigned to component k then, i must not be assigned to
k : zjk ≤ zik .

Covering Constraints each components must have at least two assigned data
points:

∑n
i=1 zik ≥ L, for k = 1, . . . ,K .
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MIQP Relaxation

McCormick’s Reformulation

Recall the objective function:

f (z ,π,µ; y , η) = η

K∑
k=1

n∑
i=1

zik(yi − µk)
2 −

n∑
i=1

K∑
k=1

zik log πk .

The template matching term has two nonlinearities: 2yizikµk and zikµ
2
k .

These terms are frequently encountered in capital budgeting, scheduling and
others.
Given zik is a binary variable, we can rewrite the term

∑
k zik(yi − µk)

2 as
(yi −

∑
k zikµk)

2 because
∑

k zikyi = yi and each data point is constrained
to be assigned to exactly one component.
Then, we introduce a new continuous variable tik = zikµk which is implicitly
enforced with the following four constraints for each (i , k):

ML
k zik ≤ tik ≤ MU

k zik ,

µk −MU
k (1− zik) ≤ tik ≤ µk −ML

k (1− zik).
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MIQP Relaxation

Piecewise Linear Relaxation

The cross-entropy term, zik log πk , is the second source of nonlinearity.
Approximating this nonlinearity with a piecewise linear function has two
benefits:

the accuracy of the approximation can be controlled by the number of
breakpoints in the approximation
sophisticated methods from ordinary and partial differential equation
integration or spline fitting can be brought to service in selecting the locations
of the breakpoints of the piecewise-linear approximation.

It may be possible to set breakpoint locations adaptively as the optimization
iterations progress to gain higher accuracy in the region of the MAP and the
approximation can be left coarser elsewhere.
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MIQP Relaxation

Global Convergence / Computational Efficiency
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MIQP Relaxation

Evaluation on Standard Data Sets

Local Global (BnB)

Data Set Metric EM SLSQP SA MINLP MIQP

iris (1 dim) − log MAP 280.60 287.44 283.28 280.02 282.71
LBD — — — 9.27 161.60

sup |π̂ − π| 0.075 0.013 0.000 0.093 0.165
‖µ̂− µ‖2 0.278 0.065 0.277 0.356 0.356

1n
∑

i sup |ẑi − zi | 0.067 0.067 0.087 0.093 0.093

wine (13 dim) − log MAP 1367.00 1368.71 1368.71 1366.85 1390.13
LBD — — — -2.2e5 183.42

sup |π̂ − π| 0.005 0.066 0.066 0.006 0.167
‖µ̂− µ‖2 2.348 1.602 1.652 1.618 14.071

1n
∑

i sup |ẑi − zi | 0.006 0.006 0.006 0.006 0.022

brca (3 dim) − log MAP 1566.49 1662.97 1662.97 1566.40 1578.49
LBD — — — -2.7e4 332.30

sup |π̂ − π| 0.167 0.127 0.127 0.169 0.122
‖µ̂− µ‖2 394.07 321.11 320.60 401.47 418.05

1n
∑

i sup |ẑi − zi | 0.169 0.139 0.139 0.169 0.174
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MIQP Relaxation

BRCA Expression Problem

We evaluated our proposed approach on Prediction Analysis of Microarray 50
(pam50) gene expression data set.
The PAM50 gene set is commonly used to identify the “intrinsic” subtypes of
breast cancer among luminal A (LumA), luminal B (LumB), HER2-enriched
(Her2), basal-like (Basal), and normal-like (Normal).
Different subtypes lead to different treatment decisions, so it is critical to
identify the correct subtype.
We used the pam50 data set (n = 232, d = 50) obtained from UNC
MicroArray Database.
pam50 contains 139 subjects whose intrinsic subtypes are known, and 93
subjects whose intrinsic subtypes are unknown.
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MIQP Relaxation

BRCA Results

Comparison of cluster assignments of our methods (MINLP, MIQP) with the PAM algorithm.
For 139 samples with known instrinsic subtypes, assignments from MINLP and MIQP methods
have 100% accuracy, while PAM accuracy is 94%. For the 93 samples with unknown subtypes,
MINLP assignments have 68% concordance with the PAM algorithm, and MINLP has 89%
concordance with MIQP assignments.
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Summary

Summary

The GMM MAP clustering problem can be viewed as a biconvex
mixed-integer nonlinear programming problem.
Reformulations of the MINLP gives a MIQP optimization problem with
significant computational gains.
We can deliver better solutions for biological data sets than unconstrained
clustering.
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UMass TRIPODS

Research Areas

The overall objective is to improve theoretical understanding provide practical
methods for the trade-off between computational and statistical aspects of data
science problems.

1 Trade-offs between rounds of data collection and computational efficiency.
2 Minimize query complexity in interactive unsupervised learning problems.
3 Space/time complexity tradeoffs when processing stochastic data.
4 Fine-grained approximation algorithms
5 Communication-efficient distributed machine learning methods.
6 Variational inference methods with statistical guarantees given bounded

computational time.
7 Principled approaches to exploit tradeoffs between bias, model complexity

and computational budget.

Connect with practical problems in life sciences and physical sciences.
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UMass TRIPODS

Postdocs

Maryam
Aliakbarpour Jeremiah Birrell Venkata Gandikota Tingting Zhao
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UMass TRIPODS

REU Program

First (to our knowledge) NSF-funded REU program in Math/Stat at UMass
Amherst.
Nathan Grant - Math/CS double major
Joseph Cormier - US Army Reserve transfer student from local community
college.
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UMass TRIPODS

Summer Foundations of Data Science for High
School Students

In Fall 2018, Ben Marlin and I created stat/cs109f — Foundations of Data
Science based on data8 at UC Berkeley.
Planned to offer 3 week in-person course in Summer 2020 based on modules
from data8, then COVID-19.
Transitioned course to fully online with 15 students + 7 on wait list ~50%
female.
Next year, have funding for scholarships for underrepresented students in
STEM.
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UMass TRIPODS

Virtual Speaker Series

Feb 20, 2020 John Kleinberg, Cornell University
March 27, 2020 Sujay Sanghavi, UT Austin
April 17, 2020 Shachar Lovett, UCSD
May 15, 2020 Amin Karbasi, Yale
September 11, 2020 Bin Yu, UC Berkeley
November 9, 2020 Tal Rabin, UPenn

Patrick Flaherty (UMass) MAP Clustering under the Gaussian Mixture Model via Mixed Integer Nonlinear ProgrammingNovember 3, 2020 32 / 33



UMass TRIPODS

Other Activities

Technical Workshops connecting to scientists in life sciences and physical
sciences. (Spring 2021, Spring 2022)
Theoretical computer science (TCS) Women even (Summer 2021)
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