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Learning is an embarrassment...
(of potential riches!)

It is embarrassing how little we
know about learning in the one
place that really matters: the
neocortex.

We know more about most
other brain areas:

Basal Ganglia, Cerebellum,
Hippocampus..



How do we get to "and™?



Not biological: error backpropagation
Not psychological (where is that hand when you need it!?)



Neuroscience: Hebbian
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Hebbian is too Dumb!

Show me the “dax”

L

Babies exhibit some serious active, theory-like
learning abilities!

Not just passive soaking up of statistics..



How do we get to "and™?



Three Levels

« Computational level: error-driven & predictive
learning

» Implementational level: thalamocortical loops
» Functional level: does it actually work?



Bidirectional Connections Carry
Error Gradients (GeneRec; O'Reilly, 1996)

a) Expectation / Minus b) Outcome / Plus

dW = x*y* - Xy

(Midpoint integration + symmetry = Contrastive Hebbian = DBM)



Activation Diffs Implicitly Compute
Derivatives (GeneRec; O'Reilly, 1996)

Free to use
arbitrarily complex
activation functions!
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Many different approaches..
(Whittington & Bogacz Review, TICS, 2019)

Table 1. Comparison of Models

Temporal-error model Explicit-error model
Contrastive learing Continuous update Predictive coding Dendritic error
Control signal Required Required Not required Not required
Connectivity Unconstrained Unconstrained Constrained Constrained
Properties® o
Propagation time L-1 L-1 2L-1 L-1
Pre-training Not required Not required Not required Required
Error encoded in Difference in activity Rate of change of Activity of specialised Apical dendrites of
between separate activity neurons pyramidal neurons
phases
Data accounted for Neural responses Typical spike-time- Increased neural Properties of
and behaviour in a dependent plasticity activity to pyramidal neurons
variety of tasks unpredicted stimuli
MNIST performance® ~2-3 - ~1.7 ~1.96

Scellier, B. and Bengio, Y. (2017) Equivalence of equilibrium propagation and recurrent
backpropagation. arXiv preprint arXiv:1711.08416

Whittington, J.C.R. and Bogacz, R. (2017) An approximation of the error
backpropagation algorithm in a predictive coding net- work with local Hebbian synaptic
plasticity. Neural Comput. 29, 1229-1262



Not biological: error backpropagation
Not psychological (where is that hand when you need it!?)



Helmholtz: Recognition by Synthesis

Helmholtz Machine

 Device or scheme that uses a generative
model to furnish a recognition density.
They learn hidden structure in data by

optimising the parameters of generative
models. A . B
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Auto-encoders, Bayesian models, Rao & Ballard, Friston et al..



Prediction is

very difficult,
especially about
the future. 99

Robert Storm Petersen (1882-1949)
Danish cartoonist, writer, animator,
illustrator, painter and humorist

Key idea: We learn by constantly generating hypotheses
or predictions about what will happen next!



The Predictive Bootstrap
(Elman 1990; Elman, Bates, et al. 1996)
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The future is free! If you can predict it, you know it!



Biologically, how does it work?



“Standard” approach

(Friston et al)
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Explicit error-coding neurons subtracting top-down vs. bottom up

But: no evidence of such cells!
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Thalamocortical Loop Biology

primary visual

cortex

5B A
A

LGN

(sensory nucleus)

“What happens”

BN

o e

A

(Sherman & Guillery, 2006)

secondary visual

*

higher visual
area

Pulvinar
(association nucleus)

Prediction

Legend:

A pyramidal neuron

<> thalamic relay
neuron

®) reticular nucleus
inhibitory neuron

@ granule cell

excitato
—e connect%n

inhibito
-0 connecglyon



The Pulvinar = Projection Screen
(c.f. Mumford, 1991 “blackboard”)

Pulvinar!

Pulvinar receives
connections from all over
visual cortex

and projects back out to
these same areas

Two inputs:

1. Few strong feedforward:
“‘what happens”

2. Many weaker feedback:
prediction
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. . tart Pullng’
Functionally: does it work? 5\? ‘/

Can merely predicting low-level
sensory inputs produce higher-level
abstract representations?

If not, maybe we still need that
hand??




Pyramid Vertical Round Boxy Horizontal

Model discovered
Shape categories!
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Model vs. Monkeys:
Categories Emerge in Higher Layers
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Categories not in V1;
Emerge in IT Obj Rec Pathway
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Model vs. Humans

Which pair is more similar in terms of overall shape?






Deep predictive learning:
- Works

- Fits with lots of biology
- Extends to motor, cross-modal predictions



Predictive Remapping
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Duhamel et al. (1992):

LIP neurons anticipate effect
of saccade, start firing for
new location before fixation
lands (even before saccade)

Model:

LIPd remaps first at high,
abstract level, drives top-
down remapping in lower
areas — consistent with
Cavanagh et al. (2010)



Key Biological Data

Strong, synchronized, low-frequency modulation of cortex (at the alpha frequency).
Specificity of alpha modulation to deep layers & thalamus, not superficial layers.

Nature of deep-layer connectivity to pulvinar: numerous, weaker, plastic pathway (for
generating a prediction) and sparse, strong, fixed pathway (for ground truth target).

Synchronization of this strong pathway input with the alpha cycle.
Broad connectivity of pulvinar with different visual pathways (afferent and efferent).

Lack of direct bottom-up superficial projections into the deep layers (would short-
circuit prediction), but presence of these projections top-down (beneficial).

Bidirectional (top-down and bottom-up) connectivity between superficial layers.
Early development of the Where (MT, LIP) pathway.

Organization into three separable (yet highly interconnected) visual pathways,
particularly a third putative What*Where integration pathway.

primary visual secondary visual higher visual

cortex cortex area

(Buffalo et al., 2011; van Kerkoerle et al.,
t_.. ° oo 2014; Shipp, 2003; VanRullen & Koch,
®

L
’_l . T\ A s 2003; Luczak et al., 2013..)
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Conclusions

« Peculiar features of connectivity between cortex and thalamus
support form of predictive learning (many diffs from Friston etc).

« Computational model shows that predictive learning from raw
visual “movies” self-organizes abstract categorical object

representations (based on shape, not texture!)



Key Diffs From Friston / Bayes

Friston et al: errors go up, predictions come down

Us: full activation goes up & down, predictions go
to pulvinar, errors are temporal differences.

Both models account for increased activity for
unexpected outcomes.
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Synaptic Plasticity: XCAL Model
(reduction of Urakubo et al, 2008 STDP model)
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Floating Threshold = Medium Term
Synaptic Activity (Error-Driven)
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Evidence of Dynamic Thresholds
(Lim, McKee, Woloszyn et al., 2015)
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Deep Attentional Dynamics
(Reynolds & Heeger, 2009; Grossberg, 1999)
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Deepleabra Attentional Dynamics
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Normalized Model Response N
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Attentional Dynamics Results
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