Predictive Error-Driven Learning in the Brain

Randall C. O’Reilly
University of California Davis
eCortex, Inc
Learning is an embarrassment… (of potential riches!)

It is embarrassing how little we know about learning in the one place that really matters: the neocortex.

We know more about most other brain areas:
Basal Ganglia, Cerebellum, Hippocampus..
How do we get to “and”?
What Works:

Not biological: error backpropagation
Not psychological (where is that hand when you need it!?)
Neuroscience: Hebbian

population EPSP

before

after

5 mV
10 ms

slope of rising phase

tetanic stimulation (250 Hz, 200 ms)
Hebbian is too Dumb!

Show me the “dax”

Babies exhibit some serious active, theory-like learning abilities!

Not just passive soaking up of statistics.
“What works”

TOP
DOWN

OR

BOTTOM
UP

Neuroscience

How do we get to “and”?
Three Levels

- Computational level: error-driven & predictive learning
- Implementational level: thalamocortical loops
- Functional level: does it actually work?
Bidirectional Connections Carry Error Gradients (GeneRec; O’Reilly, 1996)

\[dW = x^+y^+ - x^-y^- \]

(Midpoint integration + symmetry = Contrastive Hebbian = DBM)
Activation Diffs Implicitly Compute Derivatives (GeneRec; O’Reilly, 1996)

Free to use arbitrarily complex activation functions!
Many different approaches.
(Whittington & Bogacz Review, TICS, 2019)

<table>
<thead>
<tr>
<th>Properties</th>
<th>Temporal-error model</th>
<th>Explicit-error model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrastive learning</td>
<td>Continuous update</td>
</tr>
<tr>
<td>Control signal</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Unconstrained</td>
<td>Unconstrained</td>
</tr>
<tr>
<td>Propagation time</td>
<td>L-1</td>
<td>L-1</td>
</tr>
<tr>
<td>Pre-training</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>Error encoded in</td>
<td>Difference in activity between separate phases</td>
<td>Rate of change of activity</td>
</tr>
<tr>
<td>Data accounted for</td>
<td>Neural responses and behaviour in a variety of tasks</td>
<td>Typical spike-time-dependent plasticity</td>
</tr>
<tr>
<td>MNIST performance</td>
<td>~2–3</td>
<td>–</td>
</tr>
</tbody>
</table>

What Works:

Not biological: error backpropagation
Not psychological (where is that hand when you need it!?)
Helmholtz: Recognition by Synthesis

Helmholtz Machine

- Device or scheme that uses a generative model to furnish a recognition density. They learn hidden structure in data by optimising the parameters of generative models.

Auto-encoders, Bayesian models, Rao & Ballard, Friston et al.
Key idea: We learn by constantly generating hypotheses or predictions about *what will happen next*!
The Predictive Bootstrap

Learning to predict words induces verb vs noun category representations in hidden layer of SRN

The future is *free!* *If you can predict it, you know it!*
Biologically, how does it work?
"Standard" approach (Friston et al)

Explicit error-coding neurons subtracting top-down vs. bottom up

But: no evidence of such cells!
Thalamocortical Loop Biology
(Sherman & Guillery, 2006)

"What happens" Prediction
The Pulvinar = Projection Screen
(c.f. Mumford, 1991 “blackboard”)

Pulvinar receives connections from all over visual cortex and projects back out to these same areas.

Two inputs:

1. Few strong feedforward: “what happens”
2. Many weaker feedback: prediction
Deep Predictive Learning

a) Diagram showing the process of Deep Predictive Learning with bidirectional connections to higher layers (V4...). The diagram illustrates the error as temporal difference.

b) Diagram illustrating the reconstruction process with prediction errors.

- Dorsal Where
- Ventral What
- LIPs
- EyePos
- TEOs
- TEa
- Deep 6CT (predict)
- Saccade
- Error Backprop
- Deep 6CT (actual)
- 5IB (actual)
- Prediction error
- Prediction error
- Prediction error
- Prediction error

C) Table showing images of cars and their reconstructions at time t and t+100 msec, along with saccade error rates (pred err saccade) for different conditions:

- Image: Cars
- V1h recon: Reconstructions of cars
- Pulvinar prediction: Predictions of cars
- Pred err saccade: Saccade error rates for different conditions
Functionally: does it work?

Can merely predicting low-level sensory inputs produce higher-level abstract representations?

If not, maybe we still need that hand??
Model discovered
Shape categories!
Model vs. Monkeys: Categories Emerge in Higher Layers
Categories not in V1; Emerge in IT Obj Rec Pathway
Model vs. Humans

Which pair is more similar in terms of overall shape?
Deep predictive learning:
- Works
- Fits with lots of biology
- Extends to motor, cross-modal predictions
Predictive Remapping

Duhamel et al. (1992):
LIP neurons anticipate effect of saccade, start firing for new location before fixation lands (even before saccade)

Model:
LIPd remaps first at high, abstract level, drives top-down remapping in lower areas – consistent with Cavanagh et al. (2010)
Key Biological Data

- Strong, synchronized, low-frequency modulation of cortex (at the alpha frequency).
- Specificity of alpha modulation to deep layers & thalamus, not superficial layers.
- Nature of deep-layer connectivity to pulvinar: numerous, weaker, plastic pathway (for generating a prediction) and sparse, strong, fixed pathway (for ground truth target).
- Synchronization of this strong pathway input with the alpha cycle.
- Broad connectivity of pulvinar with different visual pathways (afferent and efferent).
- Lack of direct bottom-up superficial projections into the deep layers (would short-circuit prediction), but presence of these projections top-down (beneficial).
- Bidirectional (top-down and bottom-up) connectivity between superficial layers.
- Early development of the Where (MT, LIP) pathway.
- Organization into three separable (yet highly interconnected) visual pathways, particularly a third putative What*Where integration pathway.

(Buffalo et al., 2011; van Kerkoerle et al., 2014; Shipp, 2003; VanRullen & Koch, 2003; Luczak et al., 2013..)
Conclusions

- Peculiar features of connectivity between cortex and thalamus support form of predictive learning (many diffs from Friston etc).
- Computational model shows that predictive learning from raw visual “movies” self-organizes abstract categorical object representations (based on shape, not texture!)
Key Diffs From Friston / Bayes

Friston et al: errors go up, predictions come down

Us: *full* activation goes up & down, predictions go to pulvinar, *errors are temporal differences*.

Both models account for increased activity for unexpected outcomes.
Thanks To

CCN Lab

- Will Chapman
- Tom Hazy
- Seth Herd
- Kai Krueger
- Jessica Mollick
- Ananta Nair
- John Rohrlich
- Jake Russin
- Dean Wyatte
- Maryam Zolfaghar

Collaborators

- Jonathan Cohen
- Alex Petrov
- Christian Lebiere
- Tim Curran
- David Sheinberg

Funding

- ONR – Hawkins & McKenna
Synaptic Plasticity: XCAL Model
(reduction of Urakubo et al, 2008 STDP model)

\[dW = f(send \times recv) = (\text{spike rate} \times \text{duration}) \]

\[r = 0.894 \]
Floating Threshold = Medium Term Synaptic Activity (Error-Driven)

dW = Outcome – Expectation = \langle xy \rangle_s - \langle xy \rangle_m
Evidence of Dynamic Thresholds
(Lim, McKee, Woloszyn et al., 2015)

 Threshold changes dynamically on a rapid time scale, as a function of short-term activity level!

b = passive viewing
e = active task
Deep Attentional Dynamics
(Reynolds & Heeger, 2009; Grossberg, 1999)

Top-down deep layer
Attentional drive

Layer 6 gain control
(Olsen, Bortone et al)
DeepLeabra Attentional Dynamics
Attentional Dynamics Results

[Graphs and diagrams depicting the relationship between contrast gain and attentional modulation, showing differences between attended and ignored stimuli.]