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Collaborators

• Nicolas Garcia Trillos (UW-Madison)
• Caleb Geniesse (Stanford)
• David Miller (Utah)
• Tom Needham (FSU)
• Manish Saggar (Stanford)
• Hongteng Xu (Duke/Infinia ML)
• Mengsen Zhang (Stanford)

Papers:
• The Gromov-Wasserstein distance between networks and stable network invariants (C., Mémoli 2019)
• Gromov-Wasserstein Averaging in a Riemannian Framework (C., Needham 2020)
• Generalized Spectral Clustering via Gromov-Wasserstein Learning (C., Needham 2020)
• (Upcoming) Exploring the landscape of brain dynamics using topological data analysis (Geniesse*,C.*, Saggar) 
• (Upcoming) The topology of time: transition networks in simulated and real neural dynamics (Zhang*, C., Saggar)

Code:
• https://github.com/trneedham/gromov-wasserstein-statistics
• https://github.com/trneedham/Spectral-Gromov-Wasserstein
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https://github.com/trneedham/gromov-wasserstein-statistics
https://github.com/trneedham/Spectral-Gromov-Wasserstein
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Networks from data

Graph Learning:

• Graph Matching
• Graph Partitioning
• Graph Barycenters/Frechet means
• Graph PCA

• Ideally all “without leaving graph space”

Mathematical framework: Sturm’s “space of spaces”
• Metric measure spaces equipped with GW distance
• Geodesics, spaces of directions, gradient flows
• General enough for many flavors of graph representations

Contributions:
• Difficulties in adapting geometric statistics techniques (Pennec et al.) to 

Sturm’s space of spaces
• (C., Needham ‘20) Heat kernel representations solve most difficulties
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

Graph Matching problem (Umeyama 1988, Zaslavskiy-Bach-Vert 2009, many others):

𝐺,𝐻 graphs on 𝑛 nodes
𝐴# , 𝐴& adjacency matrices
𝒫 permutation matrices on 𝑛 nodes

• When 𝐺 ≠ |𝐻|, need to optimize over 𝐺 × 𝐻 matrices in {0,1} with all row/column sums ≥ 1

• Carlsson, Mémoli, Ribeiro, Segarra 2013:

Graph Matching problem: min
'∈𝒫

𝐴# − 𝑃𝐴&𝑃* +

Graph Matching ≈ Gromov-Hausdorff distance  
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

Gromov-Hausdorff distance between compact metric spaces:

𝑑#& 𝑋, 𝑑! , 𝑌, 𝑑, = -
+
inf { sup

.,/ , .!,/! ∈0
𝑑! 𝑥, 𝑥1 − 𝑑, 𝑦, 𝑦1 : 𝑅 ∈ 0,1 |!|×|,|

with all row, column sums nonzero}
[Peyré, Cuturi
Computational Optimal Transport]
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

(Carlsson, Mémoli, Ribeiro, Segarra 2013) Generalized Gromov-Hausdorff distance 
between (finite) networks:

𝑑𝒩 𝑋,𝜔! , 𝑌, 𝜔, = -
+
min { max

.,/ , .!,/! ∈0
𝜔! 𝑥, 𝑥1 − 𝜔, 𝑦, 𝑦1 : 𝑅 ∈ 0,1 |!|×|,|

with all row, column sums nonzero}

Hard combinatorial 
problem!
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

(Carlsson, Mémoli, Ribeiro, Segarra 2013) Generalized Gromov-Hausdorff distance 
between (finite) networks:

𝑑𝒩 𝑋,𝜔! , 𝑌, 𝜔, = -
+
min { max

.,/ , .!,/! ∈0
𝜔! 𝑥, 𝑥1 − 𝜔, 𝑦, 𝑦1 : 𝑅 ∈ 0,1 |!|×|,|

with all row, column sums nonzero}

Hard combinatorial 
problem!

à Convex relaxation
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

(Mémoli 2007) Gromov-Wasserstein distance between compact metric measure spaces:

𝑑#5 𝑋, 𝑑!, 𝜇! , 𝑌, 𝑑, , 𝜇, = -
+
min { 𝑑! − 𝑑, 6" 7⊗7 : 𝜇 ∈ Π 𝜇!, 𝜇, , 𝜇𝟏 = 𝜇!, 𝜇*𝟏 = 𝜇,}

[Peyré, Cuturi
Computational Optimal Transport]

Gradient descent 
possible!

Coupling measures:

p=2 throughout this talk
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

(Sturm 2012) Space of “almost”-metric measure spaces (satisfying triangle inequality a.e.) is a 
complete, geodesic space of nonnegative Alexandrov curvature à permits tangent spaces

[Peyré, Cuturi
Computational Optimal Transport]

Gradient descent 
possible!

Coupling measures:
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

“Weak” isomorphism

(C., Mémoli 2019) Gromov-Wasserstein distance defines a bona fide (pseudo)metric between networks:

𝑑𝒩 𝑋,𝜔", 𝜇" , 𝑌, 𝜔#, 𝜇# =
1
2min { 𝜔" − 𝜔# $! %⊗% : 𝜇 ∈ Π 𝜇", 𝜇# , 𝜇𝟏 = 𝜇", 𝜇'𝟏 = 𝜇#}
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

(C., Needham 2019) Graph Learning framework = Graphs in GW space + GW Riemannian structures + “geomstats” in GW space

[M
iolane

et al., G
eom

Stats
IN

RIA-Stanford]
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𝑋 finite set 
𝜔!: 𝑋×𝑋 → ℝ edge weight function
𝜇! Borel probability measure

𝑋,𝜔!, 𝜇! network

Example:
𝐺 = (𝑉, 𝐸) a (connected) graph

𝑋 𝝎𝑿 𝝁𝑿
𝑋 ≔ 𝑉 adjacency 𝐴#

distance 𝑑#
heat kernel 𝐾#,%

(exp −𝑡𝐿 , 𝐿 = 𝐷 − 𝐴)

uniform
degree-based

But this is hard…
• “Sturm geodesics” between 𝑋,𝜔", 𝜇" , (𝑌, 𝜔#, 𝜇#) occur over product space 𝑋×𝑌, difficult to handle numerically

• Exponential time/space complexity for computing barycenters

(C., Needham 2019) Compute geodesics over support of an optimal coupling 𝜇 ∈ Π(𝜇", 𝜇#)
• Sparse couplings support tractable computations
• Little known about structure of couplings except special cases (GW matching between points on ℝ [Vayer et al., Sliced GW 

2019] or subsets of ℝ( with rotationally invariant measures [Sturm 2020]

(C., Needham 2020) Networks represented by heat kernel yield sparse couplings with 𝑜 𝑛 nonzero entries
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3. Statistical learning in the 
Riemannian framework

4. Future directions

1. Problem setup 2. Gromov-Wasserstein distance 
and Sturm’s constructions

[Sturm 2012]
[Mémoli 2007]

|𝑉|

𝜇𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
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A coordinate system for graphs I 

𝐺

𝐺 = (𝑉, 𝐸)
Size of re

presentative |𝑉|

probability measures 
( 𝑉 ×1)

derived matrix 
representation ( 𝑉 ×|𝑉|)

Uniform distribution

Normalized degree distribution

Adjacency matrix

Geodesic distance matrix

Kernel matrix



15

A coordinate system for graphs II

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑌, 𝜔, , 𝜇,)
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔: 𝑉×𝑉 →
ℝ

(𝑋, 𝜔!
, 𝜇!)

|𝑉|

𝜇

𝜔
:𝑉×

𝑉
→
ℝ

(𝑌, 𝜔, , 𝜇,)
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔: 𝑉×𝑉 →
ℝ

(𝑋, 𝜔!
, 𝜇!)

|𝑉|

𝜇

𝜔
:𝑉×

𝑉
→
ℝ

(𝑌, 𝜔, , 𝜇,)
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
Blow-up
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
Align
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A coordinate system for graphs II

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
Frobenius product



22

Gromov-Wasserstein distance between compact metric measure spaces:

𝑑#5 𝑋, 𝑑!, 𝜇! , 𝑌, 𝑑, , 𝜇, = -
+
min { 𝑑! − 𝑑, 6" 7⊗7 : 𝜇 ∈ Π 𝜇!, 𝜇, , 𝜇𝟏 = 𝜇!, 𝜇*𝟏 = 𝜇,}

(Sturm 2012) Space of metric measure spaces is not complete under 
𝑑#5
• completion is the space of “almost” metric measure spaces that 

satisfy triangle inequality a.e.
• Riemannian structures (including exponential maps) in ambient 
𝐿+ space where triangle inequality is removed altogether

• Ambient 𝐿+ space is nonnegatively curved

A coordinate system for graphs II

(𝑋, 𝑑!)

(𝑌, 𝑑,)

𝑑: 𝑉×𝑉 → [0,∞)
metric functions
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Gromov-Wasserstein distance between compact metric measure spaces:

𝑑#5 𝑋, 𝑑!, 𝜇! , 𝑌, 𝑑, , 𝜇, = -
+
min { 𝑑! − 𝑑, 6" 7⊗7 : 𝜇 ∈ Π 𝜇!, 𝜇, , 𝜇𝟏 = 𝜇!, 𝜇*𝟏 = 𝜇,}

Isomorphism structure: 
𝑑#5 𝑋, 𝑌 = 0 ⇔ 𝑋, 𝑌 isometric 

as metric measure spaces

(𝑍, 𝜇))

𝑋 𝑌

𝑔𝑓 • 𝑓, 𝑔 bijective, Borel mble
• ‖𝑓∗𝑑" − 𝑔∗𝑑#‖+ = 0
• 𝑓#𝜇) = 𝜇", 𝑔#𝜇) = 𝜇#

Gromov-Wasserstein distances for network comparison
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(C., Mémoli 2019) Generalized Gromov-Wasserstein distance between compact 
measure networks:

𝑑𝒩 𝑋,𝜔", 𝜇" , 𝑌, 𝜔#, 𝜇# =
1
2
min { 𝜔" − 𝜔# $! %⊗% : 𝜇 ∈ Π 𝜇", 𝜇# , 𝜇𝟏 = 𝜇", 𝜇'𝟏 = 𝜇#}

“Weak” isomorphism structure:
𝑑𝒩 𝑋, 𝑌 = 0 ⇔ 𝑋, 𝑌 related by a “tripod” (𝑋 ≅9 𝑌)

(𝑍, 𝜇))

𝑋 𝑌

𝑔𝑓
• 𝑓, 𝑔 Borel
• ‖𝑓∗𝜔" − 𝑔∗𝜔#‖+ = 0
• 𝑓#𝜇) = 𝜇", 𝑔#𝜇) = 𝜇#

|𝑉|

𝜇

𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)

• Any choice of 𝜔 gives a 
metric modulo this 
isomorphism structure

Gromov-Wasserstein distances for network comparison



25

GW as a nonconvex quadratic optimization problem

Matrix notation: write 
𝑋,𝜔!, 𝜇! as (𝑋, 𝑝)

Networks: 𝑋, 𝑝 , 𝑌, 𝑞

Couplings/transport plans: 𝒞 𝑝, 𝑞 ≔ {𝐶 ∈ ℝ:×;: 𝐶𝟏 = 𝑝, 𝐶*𝟏 = 𝑞, 𝐶 ≽ 0}

Gromov-Wasserstein (GW) problem: 

𝑑#5 𝑋, 𝑌 ≔
1
2

min
<∈𝒞 >,?

^
@,A,B,C

𝑋@B − 𝑌AC
+𝐶BC𝐶@A

+

After unrolling into (𝑛𝑚 × 1)-dimensional vectors, the problem reads:

minimize ⟨𝐶, 𝐽𝐶⟩

subject to coupling and nonnegativity constraints

Gradient of map 𝐶 ↦ ⟨𝐶, 𝐽𝐶⟩ (after reshaping into matrix form):

𝐽 + 𝐽* 𝐶

Complexity: 𝑂(𝑛D log 𝑛 )
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GW as a nonconvex quadratic optimization problem

Matrix notation: write 
𝑋,𝜔!, 𝜇! as (𝑋, 𝑝)

Networks: 𝑋, 𝑝 , 𝑌, 𝑞

Couplings/transport plans: 𝒞 𝑝, 𝑞 ≔ {𝐶 ∈ ℝ:×;: 𝐶𝟏 = 𝑝, 𝐶*𝟏 = 𝑞, 𝐶 ≽ 0}

Gromov-Wasserstein (GW) problem: 

𝑑#5 𝑋, 𝑌 ≔
1
2

min
<∈𝒞 >,?

^
@,A,B,C

𝑋@B − 𝑌AC
+𝐶BC𝐶@A

+

After unrolling into (𝑛𝑚 × 1)-dimensional vectors, the problem reads:

minimize ⟨𝐶, 𝐽𝐶⟩

subject to coupling and nonnegativity constraints

Gradient of map 𝐶 ↦ ⟨𝐶, 𝐽𝐶⟩ (after reshaping into matrix form):

𝐽 + 𝐽* 𝐶

Complexity: 𝑂(𝑛D log 𝑛 )

Regularization techniques speed up computations 
at the expense of losing sparse couplings:

Source Sparse coupling Non-sparse coupling

Solomon, Peyré, Kim, Sra SIGGRAPH 2016
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𝑋,𝜔i, 𝜇i , (𝑌, 𝜔j, 𝜇j) measure networks, 𝐶 optimal measure coupling

“product geodesic”: 𝛾 𝑡 ≔ (𝑋×𝑌, Ωk, 𝐶), 

Ωk 𝑥, 𝑦 , 𝑥l, 𝑦l ≔ 1− 𝑡 𝜔i 𝑥, 𝑥l + 𝑡𝜔j 𝑦, 𝑦l

[Sturm 2012. The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces]
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𝑋,𝜔i, 𝜇i , (𝑌, 𝜔j, 𝜇j) measure networks, 𝐶 optimal measure coupling

“product geodesic”: 𝛾 𝑡 ≔ (𝑋×𝑌, Ωk, 𝐶), 

Ωk 𝑥, 𝑦 , 𝑥l, 𝑦l ≔ 1− 𝑡 𝜔i 𝑥, 𝑥l + 𝑡𝜔j 𝑦, 𝑦l

Attach a copy of 𝑌 to each point of 𝑋 to resize

Align terminal network to initial network

After resizing and realigning, take linear combination

[Sturm 2012. The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces]
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𝑋,𝜔i, 𝜇i , (𝑌, 𝜔j, 𝜇j) measure networks, 𝐶 optimal measure coupling

“product geodesic”: 𝛾 𝑡 ≔ (𝑋×𝑌, Ωk, 𝐶), 

Ωk 𝑥, 𝑦 , 𝑥l, 𝑦l ≔ 1− 𝑡 𝜔i 𝑥, 𝑥l + 𝑡𝜔j 𝑦, 𝑦l

Attach a copy of 𝑌 to each point of 𝑋 to resize

Align terminal network to initial network

After resizing and realigning, take linear combination

Weak isomorphism structure ⟹ Ωm ≅n 𝑋, Ωo ≅n 𝑌
• 𝑣 ≔ Ωo − Ωm
• To go from 𝑋 to 𝑌 ``via vector addition’’, take: Ωm + 𝑣 = Ωo
• Exponential map: vector addition modulo isomorphism

[Sturm 2012. The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces]

Formal definitions of tangent cones and exponential map in [Sturm 2012]
• Also [C., Needham 2020] for related details



Visualizations of GW geodesics

30
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3. Statistical learning in the 
Riemannian framework

4. Future directions

1. Problem setup 2. Gromov-Wasserstein distance 
and Sturm’s constructions

[Sturm 2012]
[Mémoli 2007]

|𝑉|

𝜇𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)



Iterative averaging
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[Pennec 2006. Intrinsic statistics on Riemannian manifolds]

Pennec (2006): Start with a “seed” point 𝑥 on a 
manifold and points 𝑦-, 𝑦+…𝑦:
• Use log maps to lift geodesics 𝑥 → 𝑦@ to 

vectors in 𝑇.
• Average in 𝑇.
• Exp down to manifold, iterate
• Each iterate is a gradient descent step for the 

Fréchet functional

{ 𝑋@ , 𝜔@ , 𝜇@ }@E-: a collection of finite measure networks. Given 𝑋F, 𝜔F, 𝜇F , define the Fréchet functional:

𝐹 𝑋F ≔
1
𝑛^
@E-

:

𝑑𝒩 𝑋F, 𝑋@ +

• Theorem (C., Needham 2019): The Fréchet functional on 𝒩 is differentiable, and its gradient descent 
steps are given by the log-average-exp iterative scheme 



Sparse geodesics

• Product geodesics incur exponential cost for any 
iterative method

• Instead, use sparsity of optimal couplings to only blow-
up points as needed 

• Poses challenge for entropic regularization
• Gradient descent to get local optima of GW cost

• This yields sparse geodesics and computationally 
tractable exp maps

33

[C., Needham 2020. Gromov-Wasserstein Averaging in a Riemannian Framework]



Proof of concept: Tangent PCA
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Goal: Verify that sparse geodesics + exp map makes sense



Proof of concept: Tangent PCA
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Goal: Verify that sparse geodesics + exp map makes sense



Proof of concept: Tangent PCA
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First three principal directions

Goal: Verify that sparse geodesics + exp map makes sense



When can things go wrong?

• If optimal couplings are dense, then iterative exp map 
computations become impractical

• Necessary to identify classes of 𝜔 for which optimal 
couplings remain sparse

• For graphs with adjacency loss and geodesic distance loss, 
we empirically observe sparsity
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Completely random matrices  with random 
diagonal entries show excessive blow-ups

For random measure networks with 
adjacency loss, couplings remain sparse and 
grow linearly with size of network 

IMDB network, geodesic distance loss: 
Histogram shows support size of optimal 
coupling divided by total size of networks 
being compared



Return to “Spectral GW”

Using the “any 𝜔:𝑉×𝑉 → ℝ gives a (pseudo)metric” approach, consider the following:
• 𝐺,𝐻 two graphs, 𝑡 > 0
• 𝐾#,% , 𝐾&,% heat kernels (exponentials of graph Laplacians)
• Form the GW loss using 𝐾#,% − 𝐾&,% 6" 7⊗7

• Simplified discrete analogue of the Spectral Gromov-Wasserstein distance introduced in [Mémoli 2011]: we don’t need to worry 
about blowups of the heat kernel, and we do not optimize over 𝑡

• [Mémoli 2011] related to earlier work of Reuter et al 2006 (”Shape-DNA”), Kasue-Kumura (1994)

Theorem (C., Needham 2020): For spectral loss, number of nonzero entries in optimal coupling is 𝑜(𝑛). 
[GW problem becomes maximization of convex function, use KKT conditions + dimension counting]
• Consequence: No blowups in iterative log-exp maps

Observation: Running MCMC to sample different initial couplings for gradient descent suggests that the 
loss landscape for spectral loss is much nicer than for adjacency loss
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[Mémoli 2011. A spectral notion of Gromov-Wasserstein distance and related methods]



Geodesics via adjacency loss and spectral loss
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Adjacency loss



Geodesics via adjacency loss and spectral loss
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Adjacency loss

Spectral loss



Geodesics via spectral loss for different choices of 𝑡
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Spectral loss, 𝑡 = 2

Spectral lossSpectral loss, 𝑡 =10



Clusters of scale parameters 𝑡 possibly capture multiscale features
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Low res
Low res



Heuristic for choosing the scale parameter 𝑡 in graph partitioning
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Graph partitioning results for real data

• [Xu et al 2019] produced a GW-based graph partitioning procedure using adjacency matrix representations and showed 
superior performance compared to various benchmarks 

• Spectral loss provides improved scores and ~10x speedup in the “small” graph regime (~2000 nodes)
• Caveat: 𝑂(𝑛-) cost of eigendecomposition, lack of sparsity is a bottleneck for spectral loss in the large graph regime
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3. Statistical learning in the 
Riemannian framework

4. Future directions

1. Problem setup 2. Gromov-Wasserstein distance 
and Sturm’s constructions

[Sturm 2012]
[Mémoli 2007]

|𝑉|

𝜇𝜔:𝑉×𝑉
→
ℝ

(𝑋, 𝜔!, 𝜇!)

(𝑌, 𝜔, , 𝜇,)
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(𝑋, 𝑑!)

(𝑌, 𝑑,)

𝑑: 𝑉×𝑉 → [0,∞)

geodesic distance

Questions and connections:

• What are other useful classes of functions V×V → ℝ? Currently known 
benefits of each:

• Adjacency: sparse representations [Xu et al 2019]
• Heat kernel: more global structure, faster on the order of graphs with a few 

thousand nodes
• Distance: established asymptotics [Weitkamp et al 2020]

• Extensions: more learning tasks, comparing data across modalities
• Application: neurobiological insights across populations

• Many statistical questions remain for the GW framework

Future directions

(𝑋, 𝐾!%)

(𝑌, 𝐾,%)

𝐾 .: 𝑉×𝑉 → [0,∞)

heat kernel

Thank you!


