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3+ Dimensional Data is Ubiquitous



...but is often inherently coherent

This coherence motivates the Manifold Hypothesis



Parallel Transport Convolution: 

SCS., Dong and Lai



Convolution and CNNs

 The use of convolutional layers in neural networks has been one of the 

most important conceptual developments in deep learning (LeCun89. Why?

 Shift-invariance

 Equivariant representations

 Sparsity of convolution operation

 So can we do convolution on a manifold?



Spatial and Spectral Convolution

Sparsity = Efficiency 

Computable on irregular grids 

Time Domain
Frequency

Domain



Spatial and Spectral Convolution

• The minus operation (x-y) 

encoders a direction…so 

we need an Atlas

• Sensitive to deformation

• Multiplicity and sign 

information matters 

So how to deal with more 

complicated geometry?



Parallel Transport Convolution (PTC)



Our Proposal

 We would like to: flatten → translate → wrap → integrate

 Flattening and wrapping is easy via the exponential/logarithmic map

 In Euclidean convolution the “minus sign” is indicating a direction and 

a translation:

 Since global charts don’t exist, we need something to replace this 

operation

 Rather than use translation, we use transportation

 Assuming filter k has compact support, we have:



This means we can precompute everything!



Parallel Transportation Convolution
Intuitively, we want a translation-like operation which does not 
‘rotate’ and which uses the most ‘stable’ path

Note: In the Euclidean Plane, this all reduces to translation,

and PTC becomes traditional convolution

Stable Path: Geodesic
No Rotation: Derivative along connection is 0

More Formally:



Wavelet-like 

Operations

 We can use ‘hand crafted’ 

kennels to preform traditional 

signal processing tasks (like edge 

detection) on deformable 

domains

 However, since most interesting 

manifolds do no have any 

homogenous structure, true 

wavelets remain illusive 



ConvNets Using a simple 2 Layer PTConv network, we classify 

handwritten digits from the MNIST database  



Correspondences via shapeNet architecture

“Triplet” Loss: 
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Correspondences via shapenet
architecture



Auto-Encoding on new surfaces

New Surface--New Images:

PTC VAE Reconstruction:



Geometric 

Disentanglement via 

PTC-VAE

Tatro, SCS., and Lai 2020

 Since PTC is intrinsically 

defined is automatically 

disentangles information 

when put into a standard VAE

 Each row should show the 

same individual in different 

‘poses’ and each column 

should be the same ‘pose’ of 

a different animal



By interpolating in the latent spaces, we can 

easily change Identity or Pose independently

Thanks to Joey for 

the movie!



Limitations and Other Work

 Singularities in vector fields may cause inconsistent frames:

 Our solution: Use multiple vector fields

 Equivariant Convolution (Ovsjanikov ‘19): Split network into patches 
and then do PTC on each patch

 Then need some type of canonical segmentation 

 Gauge Networks (Cohen ‘19): Exploit symmetry of manifolds to 
define gauge transition between different patches

 Most interesting manifolds don’t have this level of symmetry

 Narrowband PTC (Jin ‘19): Extend PTC into reach of manifold to 
better deal with point cloud discretization



Chart Based Auto-Encoders for 

Manifold Structured Data

SCS., Chen and Lai



Chart Based Parameterization of Data

What is a good representation?

• Is it easy to learn?

• Is it easy to use?

• Does it capture the manifold 

structure of the data? 



Chart Parameterization or Auto-

Encoding?



Faithful Representation:



Theoretical Properties of Patch Encoding



Construction of Simplicial Faithful Rep.



Architecture and Loss

Reconstruction Error
Log-Likelihood of Chart Prediction

—Weighted by 1/Recon. Error



Transitions
Visualizing the training of a 1d 

manifold can help us to understand 

the behavior of these networks



Learning a Sphere





Interpolation 

between frames 

doesn’t work 

with standard 

autoencoder 

because the 

linear path 

between 

representations 

doesn’t respect 

the cyclic nature 

of human gait



Ongoing and 

Future Work

•Conformal deformations ≈ reweighted graph

•ML on deformed graphs ≈ Attention models?

Conormal LB Eigen Systems for Graphs:

•Shape analysis—PTC is intrinsic can be used to analyze geometric info

•Generative models for computer graphics/VR/AR

•Stability Analysis for deforming manifolds

•‘Scale-invariant’ convolutions

Applications of PTC

•CAE gives an idea of ‘part’ based parameterization

•PTC gives tool to analyze geometric structure of molecules/proteins

Application in Computational Chemistry

•Similar manifold analysis for GAN/wGAN models

•Using non-parametric statistics for better bounds

Theoretical Analysis of Deep Learning



Thank You

Questions?
Comments?

Concerns?

 Ideas for future 

work?

Slides available at: https://sites.google.com/view/stefancschonsheck


