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...but is often inherently coherent

This coherence motivates the Manifold Hypothesis



» Parallel Transport Convolution:
SCS., Dong and Lai



Convolution and CNNs

» The use of convolutional layers in neural networks has been one of the
most important conceptual developments in deep learning (LeCun89. Why?

» Shift-invariance
» Equivariant representations

» Sparsity of convolution operation

» So can we do convolution on a manifold?

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
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S2: f. maps

32x32
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Spatial and Spectral Convolution

(f * k)(x) := fR kCx =) f()dy. (f k) = FH(F(HFR))
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Computable on irregular grids

Sparsity = Efficiency



Spatial and Spectral Convolution
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* Sensitive to deformation
» Multiplicity and sign
information matters

=00 = [ k= (f * k) =
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* The minus operation (x-y)
encoders a direction...so
we need an Atlas

So how to deal with more
complicated geometry?




Parallel Transport Convolution (PTC)

Method Filter Type | Support Extraction Directional | Transferable | Deformable
Spectral 5] || Spectral | Global Eigen v X X
TFG [11] Spectral | Global Eigen v X X
WFT [39] Spectral Local | Windowed Eigen 4 X X
GCNN ([30] Patch Local Variable X v v
ACNN [3] Patch Local Fixed 4 v X
PTC Geodesic Local Embedded 4 v v
TABLE 1

Comparison on different generalizations of convolutional operator on general manifolds.
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Our Proposal

» We would like to: flatten — translate — wrap — integrate

» Flattening and wrapping is easy via the exponential/logarithmic map

» In Euclidean convolution the “minus sign” is indicating a direction and

a translation:
(=0 = [ k=

» Since global charts don’t exist, we need something to replace this
operation

» Rather than use translation, we use transportation

» Assuming filter k has compact support, we have:

(f *M k fM k(z,y)dmy =
fM (330» CXPzx, (733?0)—1 = eXP:Zl(?J)) dmy




In fact, by given smooth vector fields {ii!, ii?}, we can define
linear transformation among tangent planes L(y) : T, yM —
T M satisfying:

1. L(y) is smoothly dependent on vy.
2. L(y)i =1d.

3. LOy), o L) = L(y)5.
Parallel transport: V;V = limy—0 3+ (L) (Vy0) — Vi)

This means we can precompute everything!



Parallel Transportation Convolution

Intuitively, we want a translation-like operation which does not
‘rotate’ and which uses the most ‘stable’ path

Stable Path: Geodesic
A curve v : [0,/ - M on M

is called geodesic if

No Rotation: Derivative along connection is 0
If we write X (t) = 3.7, a’(t)dx,

Vi ¥(t) =0 this can be written as the following first order linear system:
( 9 .
dak (t) df)/"’ . )
More Formally: < 7 + Z o a’ (t)rm = 0, L — 1,2
/ ' i,j=1
d’z" (t) 2 L dz®(t) dz (t) ¥
a4 2 by Ta T = | T2 00s = o

Note: In the Euclidean Plane, this all reduces to translation,
and PTC becomes traditional convolution



Wavelet-like
Operations

We can use ‘hand crafted’
kennels to preform traditional
signal processing tasks (like edge
detection) on deformable
domains

However, since most interesting
manifolds do no have any
homogenous structure, true
wavelets remain illusive

Original Signal

Feature Map

Higher Power Flattened Image
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COnVNetS Using a simple 2 Layer PTConv network, we classify
handwritten digits from the MNIST database

Training Testing

Network Domain | Accuracy Training Accuracy
Traditional Euclidean 98.85 Spectral 88.50

Flat PTCNet | Euclidean 98.10 Single Manifold 95.65

Spectral Manifold 95.35 Multiple Manifolds 97.32
PTCNet Manifold 97.96




Correspondences via shapeNet architecture

“Triplet” Loss:
L(5;0)= Y ||IF(z1;0)=F(z2;0)|>+A ) (u1—|F(z1;0)—F(z3;0))||)?
r1,20€ES8XS Pell
1 ReLu 2 PTC with 16 kernels| —— 9_1
f 2 —iReLu— |2 PTC with 16 kernels| —— g 2
f 150 —ReLu— |2 PTC with 16 kernels| —— 0_16 ﬂ\
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Correspondences via shapenet

architecture
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Auto-Encoding on new surfaces

oricinal PTC VAE Reconstruction:
rigina
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Geometric
Disentanglement via
PTC-VAE

Tatro, SCS., and Lai 2020

Since PTC is intrinsically
defined is automatically
disentangles information

when put into a standard VAE

Each row should show the
same individual in different
‘poses’ and each column
should be the same ‘pose’ of
a different animal




By interpolating in the latent spaces, we can
easily change ldentity or Pose independently

Encoder: Latent
Conformal Factor Variable
Conformal Concatentation
eatures -‘
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Signal esh Convoluional Latent.Space
Decomposition Encoder: Sampling

utpu
> z > - = - H- vz

Thanks to Joey for
the movie!




Limitations and Other Work

» Singularities in vector fields may cause inconsistent frames:
» Our solution: Use multiple vector fields

» Equivariant Convolution (Ovsjanikov ‘19): Split network into patches
and then do PTC on each patch

» Then need some type of canonical segmentation

» Gauge Networks (Cohen ‘19): Exploit symmetry of manifolds to
define gauge transition between different patches

» Most interesting manifolds don’t have this level of symmetry

» Narrowband PTC (Jin “19): Extend PTC into reach of manifold to
better deal with point cloud discretization




> Chart Based Auto-Encoders for
Manifold Structured Data

SCS., Chen and Lai
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Chart Based Parameterization of Data

What is a good representation? [ L = vew T ow e
* |s it easy to learn? o
* |s it easy to use? o
- Does it capture the manifold &) .
structure of the data? —
Parametrization | atent Space Encoder Finite Continuous Finite

Data Manifold (-00, c0)

I ( 2 > [0,2m)

\ (-6, T+8) U (cos(2), SiN(2))(s+5).
@ (-6,T1+8) Yes

VC Rep. Rep.
(cox(z), sin(z)) No Yes No

(cos(z), sin(2)) p2m)  Yes No Yes

(-cos(2), -SiN(2)) (-6.1+5) Yes Yes



Input Output
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Faithful Representation:

Definition 1 (Faithful Representation). An auto-encoder (Z; E, D) is called a faithful
representation of M if x = D o E(x), Vx € M. An auto-encoder is called an e-faithful

representation of M if sup [[x—DoE(x)|| < €. If dist(M,D(Z)) = sup |[x—D(2)|| < €,
xeM xeM,zeZ
then the decoder (Z, D) is called an e-faithful representation of M.

Definition 2 (Reach of a manifold). Given a d-dimensional compact data manifold
McR" letG = {y € R™ | dp # q € Msatistying |ly — pll = lly — qll = xigAfdllx — yll}-
The reach of M is defined as (M) = inf . lx — .

xeM,ye

Theorem 0 (Homeomorphic latent space). Let M be a d-dimensional compact man-
ifold. If an auto-encoder (Z; E, D) of M is an e-faithful representation with € < (M),
then Z and D(ZZ) must be homeomorphic to M. Particularly, a d-dimensional com-
pact manifold with nontrivial topology can not be e-faithfully represented by a vanilla

auto-encoder with a latent space Z being a d-dimensional simply connected domain in
R4,



Theoretical Properties of Patch Encoding

Theorem 1 (Universal Manifold Approximation Theorem). Consider a d-dimensional
vol(MHI'(1 + d/2) Let

md/?

X = {x}\_, be a training data set drawn uniformly randomly on M. For any 0 < € < 7,
if the number of training set X satisfying

compact data manifold M c R™ with the reach 7 and C =

n > pi(log(B,) + log(1/v)) (1)

. 5 —d 5 2 _d/2 . —d . 5 —d 6 2 _d/2 .
where 8; = C (Z) (1 - (50) ) T =006 andp, = C (g) (1-(=0?) " =
0(6™%), then based on the training data set X, there exists a CAE, there exists a CAE

(Z,E,D) = {(Z;, Ey, D,g)}{i1 which is an e-faithful representation of M with proba-
bility 1 — v. Moreover, the encoder E and the decoder D has at most O(Lmdn'*%/?)

d
parameters and 0(5 log,(n)) layers.



Construction of Simplicial Faithful Rep.

Theorem 2 (Local chart approximation). Consider a geodesic neighborhood M, (p) =
{x e M|d(p,x) < r}around p € M. Forany 0 < e < (M), if X = {x;}}_, is a e-

dense sample drawn uniformly randomly on M, (p), then there exists an auto-encoder

(Z,E, D) which is e-faithful representation of M, (p). In other words, we have

sup |[[x—DoEx)|| <€
XGMr(p)

Moreover, the encoder E and the decoder D has at most O(mdn'*9/?) parameters and
O(% log,(n)) layers.

Theorem 3 (Simplicial representation). Given a d-dimensional simplicial complex
S = Uy S with n vertices {v,},_, where each §, is a d-dimensional simplex. Then,
for any given piecewise linear function f : & — R satisfying f linear on each simplex,
there 1s a ReLLU network representing f. Moreover, this neural network has n(K(d +
1)+4(2K — 1)) + n paremeraters and log 2(K) + 2 layers, where K = max; [N (v;)| which
is bound above by the number of total d-simplices in S.




Architecture and Loss

I »| Chart Predictor P
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Transitions

0
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Visualizing the training of a 1d
manifold can help us to understand

the behavior of these networks
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Latent space
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Digit Morphing
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Ground Truth Charted Auto-E &, {=|{" (& © {7} Standard Auto-Encoder Variational Auto-Encoder
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Auto-Encoder
—VAE
CAE

between frames | — Auto-Encoder |

doesn’t work 25 Ground Truth
with standard
autoencoder
because the

linear path '
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between IV T 1
100

representations : ' ' ' ' ' ' - o o a0 200
doesn’t respect Frames

the cyclic nature

of human gait

Feature Value
L2 Error

Step size in Latent Space




Ongoing and
Future Work

Conormal LB Eigen Systems for Graphs:

« Conformal deformations = reweighted graph
* ML on deformed graphs = Attention models?

Applications of PTC

« Shape analysis—PTC is intrinsic can be used to analyze geometric info
» Generative models for computer graphics/VR/AR

« Stability Analysis for deforming manifolds

« ‘Scale-invariant’ convolutions

Application in Computational Chemistry

« CAE gives an idea of ‘part’ based parameterization
« PTC gives tool to analyze geometric structure of molecules/proteins

Theoretical Analysis of Deep Learning

« Similar manifold analysis for GAN/wGAN models
« Using non-parametric statistics for better bounds



Thank You

Questions?

» Comments?

» Concerns?

» ldeas for future
work?

Slides available at: https://sites.google.com/view/stefancschonsheck



