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3+ Dimensional Data is Ubiquitous



...but is often inherently coherent

This coherence motivates the Manifold Hypothesis



Parallel Transport Convolution: 

SCS., Dong and Lai



Convolution and CNNs

 The use of convolutional layers in neural networks has been one of the 

most important conceptual developments in deep learning (LeCun89. Why?

 Shift-invariance

 Equivariant representations

 Sparsity of convolution operation

 So can we do convolution on a manifold?



Spatial and Spectral Convolution

Sparsity = Efficiency 

Computable on irregular grids 

Time Domain
Frequency

Domain



Spatial and Spectral Convolution

• The minus operation (x-y) 

encoders a direction…so 

we need an Atlas

• Sensitive to deformation

• Multiplicity and sign 

information matters 

So how to deal with more 

complicated geometry?



Parallel Transport Convolution (PTC)



Our Proposal

 We would like to: flatten → translate → wrap → integrate

 Flattening and wrapping is easy via the exponential/logarithmic map

 In Euclidean convolution the “minus sign” is indicating a direction and 

a translation:

 Since global charts don’t exist, we need something to replace this 

operation

 Rather than use translation, we use transportation

 Assuming filter k has compact support, we have:



This means we can precompute everything!



Parallel Transportation Convolution
Intuitively, we want a translation-like operation which does not 
‘rotate’ and which uses the most ‘stable’ path

Note: In the Euclidean Plane, this all reduces to translation,

and PTC becomes traditional convolution

Stable Path: Geodesic
No Rotation: Derivative along connection is 0

More Formally:



Wavelet-like 

Operations

 We can use ‘hand crafted’ 

kennels to preform traditional 

signal processing tasks (like edge 

detection) on deformable 

domains

 However, since most interesting 

manifolds do no have any 

homogenous structure, true 

wavelets remain illusive 



ConvNets Using a simple 2 Layer PTConv network, we classify 

handwritten digits from the MNIST database  



Correspondences via shapeNet architecture

“Triplet” Loss: 
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Correspondences via shapenet
architecture



Auto-Encoding on new surfaces

New Surface--New Images:

PTC VAE Reconstruction:



Geometric 

Disentanglement via 

PTC-VAE

Tatro, SCS., and Lai 2020

 Since PTC is intrinsically 

defined is automatically 

disentangles information 

when put into a standard VAE

 Each row should show the 

same individual in different 

‘poses’ and each column 

should be the same ‘pose’ of 

a different animal



By interpolating in the latent spaces, we can 

easily change Identity or Pose independently

Thanks to Joey for 

the movie!



Limitations and Other Work

 Singularities in vector fields may cause inconsistent frames:

 Our solution: Use multiple vector fields

 Equivariant Convolution (Ovsjanikov ‘19): Split network into patches 
and then do PTC on each patch

 Then need some type of canonical segmentation 

 Gauge Networks (Cohen ‘19): Exploit symmetry of manifolds to 
define gauge transition between different patches

 Most interesting manifolds don’t have this level of symmetry

 Narrowband PTC (Jin ‘19): Extend PTC into reach of manifold to 
better deal with point cloud discretization



Chart Based Auto-Encoders for 

Manifold Structured Data

SCS., Chen and Lai



Chart Based Parameterization of Data

What is a good representation?

• Is it easy to learn?

• Is it easy to use?

• Does it capture the manifold 

structure of the data? 



Chart Parameterization or Auto-

Encoding?



Faithful Representation:



Theoretical Properties of Patch Encoding



Construction of Simplicial Faithful Rep.



Architecture and Loss

Reconstruction Error
Log-Likelihood of Chart Prediction

—Weighted by 1/Recon. Error



Transitions
Visualizing the training of a 1d 

manifold can help us to understand 

the behavior of these networks



Learning a Sphere





Interpolation 

between frames 

doesn’t work 

with standard 

autoencoder 

because the 

linear path 

between 

representations 

doesn’t respect 

the cyclic nature 

of human gait



Ongoing and 

Future Work

•Conformal deformations ≈ reweighted graph

•ML on deformed graphs ≈ Attention models?

Conormal LB Eigen Systems for Graphs:

•Shape analysis—PTC is intrinsic can be used to analyze geometric info

•Generative models for computer graphics/VR/AR

•Stability Analysis for deforming manifolds

•‘Scale-invariant’ convolutions

Applications of PTC

•CAE gives an idea of ‘part’ based parameterization

•PTC gives tool to analyze geometric structure of molecules/proteins

Application in Computational Chemistry

•Similar manifold analysis for GAN/wGAN models

•Using non-parametric statistics for better bounds

Theoretical Analysis of Deep Learning



Thank You

Questions?
Comments?

Concerns?

 Ideas for future 

work?

Slides available at: https://sites.google.com/view/stefancschonsheck


