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Trying to detect Alzheimer’s from MRIs



Trying to detect Alzheimer’s from MRIs



Unsupervised Learning via diffusion maps

Diffusion component representation of two normal brains (dark
blue and light blue) and two Alzheimer brains (red, yellow)



Unsupervised Learning via diffusion maps

Sometimes our diffusion component analysis approach worked
very well, and sometimes it failed. Why?

Alzheimer MRI data are too complicated to develop a thorough
theoretical analysis.

Look at existing theory for simpler situations.

Surprise:
No useful theory about performance of diffusion maps.

Bigger surprise:
There is no useful theory about performance of spectral
clustering, despite the fact that it has been around for decades!
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Spectral clustering: learning the “shape” of data

Existing theory for the performance of spectral clustering either
assumes that the clusters are infinitely far apart or that the
associated graph has disconnected components as expressed
in a “perfect” binary weight matrix.



Spectral clustering, graph cuts, community detection

Community detection Spectral clustering Graph cuts

Three NP-hard problems ...



Data clustering and unsupervised learning
Question: Given a set of N data points in Rd , how to partition
them into k clusters based on their similarity?

K-means: minimize the total within-cluster sum of squared
error to estimate the partition.

min
{Γl}k

l=1

k∑
l=1

∑
i∈Γl

∥∥∥xi −

centroid︷ ︸︸ ︷
1
|Γl |

∑
i∈Γl

xi

∥∥∥2

︸ ︷︷ ︸
within-cluster sum of squares

where {Γl}kl=1 is a partition of {1, · · · ,N}.



Limitation of k -means

K -means only works for datasets with individual clusters:

isotropic and within convex boundaries, well-separated



Kernel k -means and nonlinear embedding

Goal: map the data into a feature space so that they are
well-separated and k -means would work.

ϕ: nonlinear map−−−−−−−−−−→

How: locally-linear embedding, isomap, multidimensional
scaling, Laplacian eigenmaps, diffusion maps, etc.

Focus: We will focus on Laplacian eigenmaps. Spectral
clustering consists of Laplacian eigenmaps followed by
k -means clustering.



Spectral clustering
Spectral clustering1 consists of two steps:
I Laplacian eigenmaps
I “Rounding” procedure (e.g. k-means)

Laplacian eigenmap−−−−−−−−−−−−→

1[Luxburg, 07], [Shi, Malik, 02], [Belkin, Niyogi, 03]



The Graph Laplacian

One key ingredient of spectral clustering is the graph Laplacian.

Given {xi}Ni=1 ∈ Rd , we construct a similarity (weight) matrix W .

The graph Laplacian is

L = D −W

where D = diag(W1N) is
the degree matrix.

The spectra of L are related to the graph’s connectivity, especially λ2(L).



The Graph Laplacian

The incidence matrix ∇ of a graph is

∇ :=


∇ = −1 if v is the initial vertex of the edge
∇ = 1 if v is the terminal vertex of the edge
∇ = 0 if v is not in the edge,

where we assume each edge has an arbitrary (but fixed)
orientation. If we have an undirected graph, we can obtain the
incidence matrix by choosing a (fixed) orientation of the edges.
If f is a function acting on the vertices, then

∇f = {f (vj)− f (vi)}i,j

Hence ∇ is a kind of difference operator.
The unweighted graph Laplacian L can be written as L = ∇T∇.



Laplacian eigenmap

Denote the eigenvectors of L by u1, · · · ,uN with associated
real, non-negative eigenvalus λ1, · · · , λN .

The Laplacian eigenmap is defined asϕ(x1)
...

ϕ(xN)

 := [u1, · · · ,un]︸ ︷︷ ︸
U

∈ RN×n

where {ul}nl=1 are the eigenvectors w.r.t. the n smallest
eigenvalues.



Laplacian eigenmaps, k -means, spectral clustering

ϕ: nonlinear map−−−−−−−−−−→

ϕ maps data in Rd to Rn; coordinates in terms of eigenvectors:

ϕ : xi︸︷︷︸
Rd

−→ ϕ(xi )︸ ︷︷ ︸
Rn

.

Then we apply k -means to {ϕ(xi)}Ni=1 to perform clustering.



Comments on spectral clustering

Pros and Cons of spectral clustering
Pros:
I Spectral clustering enjoys high popularity and conveniently

applies to various settings.
I Supposedly works better than vanilla k -means

Cons:
I Rigorous justification of spectral clustering is still lacking.
I Two-step procedure complicates the theoretic analysis.

Our goal:
I A different route: convex relaxation of spectral clustering.
I Establish a theoretical framework for spectral clustering.



A graph cut perspective

I The matrix W is viewed as a weight matrix of a graph with
N vertices.

I Partitioning the dataset into k clusters is equivalent to
finding a k -way graph cut such that any pair of induced
subgraphs is not well-connected.



A graph cut perspective

Graph cut
The cut is defined as the weight sum of edges whose two ends
are in different subsets,

cut(Γ, Γc) :=
∑

i∈Γ,j∈Γc

wij

where Γ is a subset of vertices and Γc is its complement.

Warning: unbalanced cuts!



RatioCut

RatioCut
The ratio cut induced by the partition {Γa}ka=1 is equal to

RatioCut({Γa}ka=1) =
k∑

a=1

cut(Γa, Γ
c
a)

|Γa|
.

In particular, if k = 2,

RatioCut(Γ, Γc) =
cut(Γ, Γc)

|Γ|
+

cut(Γ, Γc)

|Γc |
.

Minimizing RatioCut is NP-hard in general!



RatioCut and the graph Laplacian
Let 1Γa(·) be an indicator vector which maps a vertex to a
vector in RN via

1Γa (l) =

{
1, l ∈ Γa,

0, l /∈ Γa.

Relating RatioCut to the graph Laplacian

cut(Γa, Γ
c
a) =

〈
L, 1Γa1>Γa

〉
= 1>Γa

L1Γa

RatioCut({Γa}ka=1) =
k∑

a=1

1
|Γa|

〈
L, 1Γa1>Γa

〉
= 〈L, X 〉 ,

X :=
k∑

a=1

1
|Γa|

1Γa1>Γa︸ ︷︷ ︸
a block-diagonal projection matrix



Convex relaxation of RatioCut

Question: What constraints does X satisfy for any given
{Γa}ka=1?

X = Π


1
n1

Jn1 0 · · · 0
0 1

n2
Jn2 · · · 0

...
...

. . .
...

0 0 · · · 1
nk

Jnk

Π>

where Π is a permutation matrix, and Jn is an n × n “1" matrix.

Convex sets
Given a partition {Γa}ka=1, the corresponding X satisfies
I X is positive semidefinite, X � 0
I X is nonnegative, X ≥ 0 entrywise
I the constant vector is an eigenvector of X : X1N = 1N

I the trace of X equals k , i.e., Tr(X ) = k



Relaxation of RatioCut

RatioCut-SDP - SDP relaxation of RatioCut
We relax the ratio cut by

min
Z∈RN×N

〈L,Z 〉 s.t. Z � 0, Z ≥ 0, Tr(Z ) = k , Z1N = 1N .

Advantage: It is a semidefinite program2 which is solvable in
polynomial time.

Question: When does convex relaxation give exact recovery?

2[Peng, Wei, 07], [Mixon, etc, 16], [Xing, Jordan, 03] ...



Intuition

I Intra-cluster:
algebraic
connectivity

λ2(La),

the second smallest
eigenvalue of the
Laplacian associated
with the a-th cluster.

I Inter-cluster connectivity: the maximal outer-cluster degree.

douter,max = max
i

∑
j: not share membership

with node i

wij

I Note that both λ2(La) and douter,max are determined by {Γa}k
a=1.



Finding the optimal graph cut via SDP relaxation

Main theorem [Ling, Strohmer, FOCM]
I If a graph cut {Γa}ka=1 satisfies

douter,max <
1
4

min
1≤a≤k

λ2(La)

then it is the globally optimal graph cut under Ratiocut.
I The RatioCut convex relaxation recovers X associated to
{Γl}kl=1 exactly!

I Even though finding the optimal Ratiocut is NP-hard, there
is a regime where a poly-time algorithm works!

I Purely deterministic and depends on the algebraic
properties of Laplacian. Near-optimal.

I A similar result holds for normalized cut with an
interpretation from a random walk perspective.



A short tour of the proof - Game of Cones

We are dealing with

min
Z∈RN×N

〈L,Z 〉 s.t. Z � 0, Z ≥ 0, Tr(Z ) = k , Z1N = 1N︸ ︷︷ ︸
Linear constraints: A(Z )=b

.

I Use Lagrangian duality:

L(Z ,λ) = 〈L,Z 〉 − 〈A(Z )− b,λ〉

where Z is in the positive semidefinite and nonnegativity
cone, denoted by K.

I Dual program

max 〈λ,b〉 s.t. A∗(λ) + L ∈ K∗

where K∗ is the dual cone3.

3K∗ := {z : 〈z, x〉 ≥ 0, ∀x ∈ K}



A short tour of the proof - Game of Cones

I Dual program

max 〈λ,b〉 s.t. A∗(λ) + L ∈ K∗

where K∗ is the dual cone4.
I Construct λ to certify the optimality of a graph cut, with

help of spectral graph theory.
I Construction of λ is rather technical and involves methods

derived by X. Li, Y. Li, S. Ling, T.S. and K. Wei in [When Do
Birds of a Feather Flock Together? K-Means, Proximity,
and Conic Programming, Mathematical Programming,
2018.]

4K∗ := {z : 〈z, x〉 ≥ 0, ∀x ∈ K}



Some observations

Known theoretical bounds for SDP relaxation of k-means
clustering have the undesirable property that they do depend
on the number of clusters.

This is not the case for our SDP relaxation of spectral
clustering. The bounds are independent of the number of
clusters

Our theorem also yields a certificate of optimality: Assume
someone gives us a graph partition {Γa}ka=1 and claims it is the
optimal RatioCut. This is in general very difficult to verify.
Easy test: If the partition {Γa}ka=1 satisfies

douter,max <
1
4

min
1≤a≤k

λ2(La),

then it is indeed optimal.



Spectral clustering for two concentric circles

We consider

x1,i =

[
cos(2πi

n )

sin(2πi
n )

]
, 1 ≤ i ≤ n; x2,j =

m
n

[
cos(2πj

m )

sin(2πj
m )

]
, 1 ≤ j ≤ m

where m > n.



Spectral clustering for two concentric circles

Corollary (Ling, Strohmer, 2018)
The RatioCut-SDP recovers the underlying two clusters exactly
if

∆︸︷︷︸
minimal separation

= Ω(n−1).

where n−1 is the distance of two adjacent points on one circle.

It is near-optimal.



Community detection under stochastic block model

Each community has n/2 nodes
I if member i and j are in the same community, pair them

with probability p;
I if member i and j are in different communities, pair them

with probability q
Assume p > q. Given the adjacency matrix, how to find out the
underlying communities?

p q p



Graph cuts and the stochastic block model

Corollary (Ling, Strohmer, 2018)
Let p = α log n

n and q = β log n
n . The RatioCut-SDP recovers the

underlying communities exactly if

α > 13
(√

β +
√

2
)2

with high probability.
The information theoretic lower bound for exact recovery5 is

α > (
√
β +
√

2)2.

If α < (
√
β +
√

2)2, exact recovery is impossible.

5[Abbe, Bandeira, Hall, 2016]



Outlook for random data model

Open problem
Suppose there are n data points drawn from a probability
density function p(x) supported on a manifoldM.
How can we estimate the second smallest eigenvalue of the
graph Laplacian (either normalized or unnormalized) given the
kernel function Φ and σ?

The solution will require tools from empirical process,
differential geometry, spectral graph theory, etc6.

6[Singer, 06], [Belkin, etc, 08], [Trillos, etc, 16], ...



Semisupervised clustering

Assume we know for a small number of points to which cluster
they belong. How can we incorporate this knowledge?

The SDP approach provides a natural framework for clustering
when a few labels are known.
SDP with additional linear constraints.

min 〈L,Z 〉 subject to Z � 0,
Z ≥ 0,
Tr(Z ) = k ,
Z1N = 1N

Zj,k = Zm,n j , k ,m,n ∈ I



Semisupervised clustering

No good theory yet



Graph Laplacians and t-SNE

(Borrowing from slides by Stefan Steinerberger)

t-SNE:
Main problem: given a set of high-dimensional points
{x1, . . . , xn} ∈ Rd we would like to get an ‘equivalent’
representation {y1, . . . , yn} ∈ R2 so we can have a look.
Somewhat ill-posed but ’clusters should remain clusters.’

Answer: t-distributed stochastic neighborhood embedding
(van der Maaten & Hinton, 2008)

Main idea: Turn configurations of points into probability
distributions and force these distributions to be similar.



MNIST



Laplacian eigenmaps



t-SNE



Main idea of t-SNE

I Create a probability distribution in high dimensions.
I Create another on a set of points in two dimensions.
I Measure the KL-divergence between them and move the

points in low dimensions around so that KL becomes small.

KL Divergence (Kullback & Leibler, 1951)

DKL(P||Q) =
∑

i

P(i) log
P(i)
Q(i)



t-SNE algorithm

Given a set of {x1, . . . , xn} ∈ Rd , t-SNE searches for
{y1, . . . , yn} ∈ R2 that minimizes the loss

L(y1, . . . , yn) = −
n∑

i=1

n∑
j=1,j 6=i

p(xi , xj) log
q(yi , yj)

p(xi , xj)
,

where the functions p and q are given by

p(xi , xj) =
exp(−‖xi − xj‖2/2σ2

i )∑
` 6=i exp(−‖xi − x`‖2/2σ2

i )

and

q(yi , yj) =

(
1 + (‖yi − yj‖2

)−1∑
` 6=i
(
1 + (‖yi − y`|2

)−1



Connections between t-SNE and Laplacians
t-SNE uses a gradient descent algorithm to compute a solution
to this non-convex problem.

I Can show: [Steinerberger, Clustering with t-SNE, provably]
For large parameters in the algorithm that computes the
t-SNE solution, one obtains Laplacian Eigenmaps

I Observation: Laplacian Eigenmaps give good initialization
of t-SNE algorithm

Questions:
I Can we modify Laplacian Eigenmaps by somehow adding

“repulsion” to obtain better embedding in R2 without taking
the t-SNE detour?

I Discard Kullback-Leibler interpretation of t-SNE, instead
think of it as particle systems. Adopting this viewpoint, can
we design good visualization methods based on particle
systems & dynamical systems?



Conclusion and Outlook
I First meaningful theory for performance of spectral

clustering
I Provides deterministic bounds for optimal graph cuts

I Solved: Strong consistency of Laplacians for community
detection [Shaofeng Deng, Oct.2019]

I Open problem: optimal estimates for random data models
I Open problem: theory for semisupervised clustering
I Open problem: how to modify Laplacian eigenmap to

obtain better visualization tool

S.Ling and T.Strohmer. Certifying Global Optimality of Graph Cuts via
Semidefinite Relaxation: A Performance Guarantee for Spectral
Clustering. Foundations of Comp. Math., to appear. [and on the arxiv]

Interested in data science? Check out cedar.ucdavis.edu
Center for Data Science and Artificial Intelligence Research



Conclusion and Outlook
I First meaningful theory for performance of spectral

clustering
I Provides deterministic bounds for optimal graph cuts
I Solved: Strong consistency of Laplacians for community

detection [Shaofeng Deng, Oct.2019]
I Open problem: optimal estimates for random data models
I Open problem: theory for semisupervised clustering
I Open problem: how to modify Laplacian eigenmap to

obtain better visualization tool

S.Ling and T.Strohmer. Certifying Global Optimality of Graph Cuts via
Semidefinite Relaxation: A Performance Guarantee for Spectral
Clustering. Foundations of Comp. Math., to appear. [and on the arxiv]

Interested in data science? Check out cedar.ucdavis.edu
Center for Data Science and Artificial Intelligence Research



Conclusion and Outlook
I First meaningful theory for performance of spectral

clustering
I Provides deterministic bounds for optimal graph cuts
I Solved: Strong consistency of Laplacians for community

detection [Shaofeng Deng, Oct.2019]
I Open problem: optimal estimates for random data models
I Open problem: theory for semisupervised clustering
I Open problem: how to modify Laplacian eigenmap to

obtain better visualization tool

S.Ling and T.Strohmer. Certifying Global Optimality of Graph Cuts via
Semidefinite Relaxation: A Performance Guarantee for Spectral
Clustering. Foundations of Comp. Math., to appear. [and on the arxiv]

Interested in data science? Check out cedar.ucdavis.edu
Center for Data Science and Artificial Intelligence Research


