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The observation model:

• We observe a “signal plus noise” matrix Y of the form

Y = X + G

• Y is of size p-by-n, where p and n are large.

• X is a rank r signal matrix, where r � p, n.

• G is a matrix of additive Gaussian noise.

The goal: Estimate X from Y.
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A more detailed look:

• Write the SVD of X:

X =

r∑
k=1

tkukv
T
k ,

where tk > 0, and the uk, vk are orthonormal vectors.

• Write the SVD of Y:

Y =

min{p,n}∑
k=1

λkûkv̂
T
k ,

where λk > 0, and the ûk, v̂k are orthonormal vectors.

• The entries of G have distribution Gij ∼ N(0, 1/n).

• We study the problem as p, n grow to infinity, and r stays fixed:

lim
n→∞

p

n
= γ <∞
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The loss function:

• We measure the error between X and X̂ with a weighted loss.

• Specificically, we use a loss function of the form:

L(X̂,X) = ‖Ω(X̂−X)ΠT‖2F

• Here, Ω and Π are matrices with p columns and n columns, respectively.
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Why weighted loss? We consider three applications:

• Submatrix denoising

• Heteroscedastic noise

• Missing data
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Submatrix denoising:

• Suppose we are only interested in estimating a submatrix X0 of X.

• We use information from the entire matrix X, but only penalize errors on X0.

• Let Ω and Π project onto the rows and columns of X0; then the natural loss is

L(X̂,X) = ‖Ω(X̂−X)ΠT‖2F

• We can show that denoising the full X and projecting onto X0 is typically better than
denoising X0 directly.
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Heteroscedastic noise:

• Observe Y′ = X′ + N, where N has rank 1 variance structure:

N = A1/2GB1/2.

Our goal is to estimate X′.

• Whiten the noise:

Y = A−1/2Y′B−1/2 = A−1/2X′B−1/2 + G ≡ X + G

• Estimate X = A−1/2X′B−1/2 with a method tailored for white noise, and then unwhiten:

X̂′ = A1/2X̂B1/2

• The mean squared error is then

‖X̂′ −X′‖2F = ‖A1/2X̂B1/2 −A1/2XB1/2‖2F = ‖A1/2(X̂−X)B1/2‖2F ,

which is a weighted loss.

• It can be shown (later in this talk) that whitening improves the signal-to-noise ratio.
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Missing data:

• We observe F(Y′), M random entries of Y′ = X′ + G. Our goal is to estimate X′.

• Assume rank 1 sampling, with row and column sampling probabilities P and Q.

• It can be shown that

Y ≡ P−1/2F∗(F(Y′))Q−1/2 ∼ X + white noise

where X = P−1/2X′Q−1/2.

• We denoise Y to get X̂, then estimate X′ by X̂′ = P1/2X̂Q1/2.

• The mean squared error is then:

‖X̂′ −X′‖2F = ‖P1/2X̂Q1/2 −P1/2XQ1/2‖2F = ‖P1/2(X̂−X)Q1/2‖2F ,

which is a weighted loss.
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Return to Y = X + G, Gij ∼ N(0, 1/n), X rank r.

• A standard approach to estimating X is singular value shrinkage.

• Singular value shrinkage performs an SVD of Y:

Y =

min(n,p)∑
k=1

λkûkv̂
T
k

• We then replace the observed singular values λj with new singular values tk, leaving the
observed singular vectors fixed:

X̂ =

r∑
k=1

t̂kûkv̂
T
k

• Since X has rank r, we set all but the top r components of X̂ to 0.
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• With unweighted Frobenius loss, singular value shrinkage is known to be an optimal
procedure (Shabalin and Nobel, 2013; Donoho and Gavish, 2014).

• Furthermore, there are explicit formulas for the asymptotically optimal singular values
t̂1, . . . , t̂r of X̂.

• Computing the optimal singular values t̂k requires knowing two things:

1. The angles between the population singular vectors uk and vk and the empirical
singular vectors ûk and v̂k.

2. The relation between the population singular values tk and the empirical
eigenvalues λk of Y .

• These are derived by Paul (2007).
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• The top r singular values of Y converge almost surely to the following expression:

λk =

{√
(t2k + 1)(1 + γ/t2k), if t2k >

√
γ

1 +
√
γ, otherwise
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• The cosines between empirical and population singular vectors converge almost surely:

〈uj, ûk〉2 −→ c2j,k =

{
1−γ/t4k
1+γ/t2k

, if j = k and t2k >
√
γ

0, otherwise

〈vj, v̂k〉2 −→ c̃2j,k =

{
1−γ/t4k
1+1/t2k

, if j = k and t2k >
√
γ

0, otherwise
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• The asymptotic mean squared error (AMSE) is:

‖X̂−X‖2F =

r∑
k=1

(t2k + t̂2k − 2tkt̂kckc̃k).

• This is minimized by:

t̂k = tkckc̃k,

with error

AMSE =

r∑
k=1

t2k(1− c2kc̃2k).

• So long as t2k >
√
γ, t̂k is estimable from the observed data. Otherwise, the kth

component of X is lost in the noise.
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What about weighted Frobenius loss, L(X̂,X) = ‖Ω(X̂−X)ΠT‖2F?

• We generalize singular value shrinkage to the class of spectral estimators, of the form:

X̂ = ÛB̂V̂T .

• Û ∈ Rp×r and V̂ ∈ Rn×r are the top singular vectors of Y.

• B̂ is an r-by-r matrix, to be optimized over:

B̂ = argmin
B̂′
L(ÛB̂V̂T ,X)
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Optimal spectral denoising:

• Solving for the optimal B̂ is easy in principle:

B̂ = D−1Cdiag(t)C̃TD̃−1,

where t = (t1, . . . , tr), and

D = ÛTΩTΩÛ

D̃ = V̂TΠTΠV̂

C = ÛTΩTΩU

and

C̃ = V̂TΠTΠV

• These are the matrices of weighted inner products between singular vectors of X and Y.
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Estimating B̂ = D−1Cdiag(t)C̃TD̃−1:

• The singular values t1, . . . , tr are estimable, as we’ve seen.

• The matrices D = ÛTΩTΩU and D̃ = V̂TΠTΠV are observed.

• We must estimate C and C̃, or all inner products of the form

ûTkΩTΩul

and

v̂Tk ΠTΠvl

for 1 ≤ k, l ≤ r.

• We will show the formulas on the next slide.
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Estimating the weighted inner products:

• When tj, tk > γ1/4,

ûjΩ
TΩuk →

{
(dk − s2kµ)/ck, if j = k

djk/ck, if j 6= k

and

v̂jΠ
TΠvk →

{
(d̃k − s̃2kν)/c̃k, if j = k

d̃jk/c̃k, if j 6= k

where

µ = lim
p→∞

1

p
tr(ΩTΩ)

and

ν = lim
n→∞

1

n
tr(ΠTΠ)

• Note that ck and c̃k are estimable, as we’ve seen already.
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Sketch of the derivation:

• Decompose ûk into signal and noise components:

ûk = ckuk + skũk

• The unit vector ũk is orthogonal to u1, . . . ,ur, and uniformly random.

û
u

û

• The ũk also satisfy the Hanson-Wright formula. For any bounded A:

ũTkAũk ∼
1

p
tr(A).
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Sketch of the derivation:

• Applying Ω gives:

Ωûk = ckΩuk + skΩũk

• Taking inner products with certain vectors, we can read off parameters.

• For example, the squared norm of each side is:

‖Ωûk‖2 = c2k‖Ωuk‖2 + s2kµ

from which we can solve for ‖Ωuk‖2.
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Sketch of the derivation:

• Next, take inner products of Ωuk with each side of

Ωûk = ckΩuk + skΩũk

• This gives:

ûTkΩTΩuk = ck‖Ωuk‖2

• This is known, since we already know ‖Ωuk‖2.

The derivation of the cross terms ûTkΩTΩul, k 6= l, proceeds similarly.
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Submatrix estimation:

• We estimate a submatrix X0 = ΩXΠT of X by estimating X using spectral denoising
with loss L(X̂,X) = ‖Ω(X̂−X)ΠT‖2F , and taking X̂0 = ΩX̂ΠT .

• We compare this approach with optimal singular value shrinkage applied to Y0 = ΩYΠT .
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• Errors are plotted against the fraction of X’s energy contained in X0.

• We prove that unless X0 contains an overwhelming fraction of X’s energy, using the full
matrix outperforms denoising Y0 directly.
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Heteroscedastic noise:

• Observe Y′ = X′ + N, where N has rank 1 variance structure:

N = A1/2GB1/2

• Whiten the noise:

Y = A−1/2Y′B−1/2 = A−1/2X′B−1/2 + G ≡ X + G

• Estimate X = A−1/2X′B−1/2 with optimal spectral denoising with weighted loss

L(X̂,X) = ‖A1/2(X̂−X)B1/2‖2F ,

• Finally, unwhiten: X̂′ = A1/2X̂B1/2.
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Comparison with OptShrink:

• We compare with optimal singular value shrinkage, without whitening (Nadakuditi, 2014):
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• The MSE is plotted as a function of the condition number of A1/2 and B1/2, the noise
covariance matrices.

• The total energy in the noise is constant.
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Whitening improves subspace estimation:

• Suppose Y′ = X′ + Σ1/2G.

• Compare singular vectors of Y′ with the vectors from whitening, SVD’ing, unwhitening.
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• In Leeb and Romanov (2019), we prove that

|unwhitened cosine|
|whitened cosine|

≤ f (κ)

where κ = 1
ptr(Σε) · 1ptr(Σ

−1
ε ), and f (κ) < 1 for κ > 1 and is decreasing.
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Relation with linear prediction:

• Optimal spectral denoising with whitening converges to the Wiener filter as p/n→ 0.
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• Optimal spectral shrinkage converges to a suboptimal linear filter.
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Missing data:

• We observe F(Y′), M random entries of Y′ = X′ + G.
• Rank 1 sampling structure, with row and column sampling probabilities P and Q.
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• Estimate X = P−1/2X̃Q−1/2 with optimal spectral denoiser with respect to loss

L(X̂,X) = ‖P1/2(X̂−X)Q1/2‖2F ,

and define
̂̃
X = P1/2X̂Q1/2.

• Compare to nuclear-norm regularized least squares of Candès and Plan (2010).
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Summary:

• We study the problem of estimating low-rank X from Y = X + G.

• We use weighted loss of the form L(X̂,X) = ‖Ω(X̂−X)ΠT‖2F .

• We have introduced spectral denoisers of the form X̂ = ÛB̂V̂ T .

• Using new asymptotic results for the spiked model, we derived the optimal B̂.

• Applications include submatrix estimation; heteroscedastic noise; and missing data.
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