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The observation model:

e We observe a “signal plus noise” matrix Y of the form

Y=X+G

® Y is of size p-by-n, where p and n are large.

e X is a rank r signal matrix, where r < p, n.

e (G i1s a matrix of additive Gaussian noise.

The goal: Estimate X from Y.
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A more detailed look:

e Write the SVD of X:

r
X = E tkung,
k=1

where £, > 0, and the u;, v, are orthonormal vectors.

e Write the SVD of Y:

where A\, > 0, and the uy, v, are orthonormal vectors.
e The entries of G have distribution G;; ~ N(0,1/n).

e We study the problem as p, n grow to infinity, and r stays fixed:

lim B:7<oo
n—oo 1
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The loss function:

e We measure the error between X and X with a weighted loss.

e Specificically, we use a loss function of the form:

L(X,X) = |X - X)117)|%

e Here, () and II are matrices with p columns and n columns, respectively.
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Why weighted loss? We consider three applications:

e Submatrix denoising

e Heteroscedastic noise

e Missing data
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Submatrix denoising:

e Suppose we are only interested in estimating a submatrix X of X.

e We use information from the entire matrix X, but only penalize errors on Xj.

e Let () and II project onto the rows and columns of Xg; then the natural loss is

L(X,X) = QX - X)) %

e We can show that denoising the full X and projecting onto Xy is typically better than
denoising X, directly.
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Heteroscedastic noise:

e Observe Y' = X’ + N, where N has rank 1 variance structure:
N = AY2GBY2.
Our goal is to estimate X'.
e Whiten the noise:

Y — A—1/2Y/B—1/2 _ A—l/Qx/B—l/Z +QG=X+G

e Estimate X = A~12X'B~/2 with a method tailored for white noise, and then unwhiten:
)2/ _ Al/QXBl/Q
® The mean squared error is then
X' = X|[7 = [APXBY2 — AVEXBY? 7 = [AA(X - X)B?|I7,
which is a weighted loss.

e [t can be shown (later in this talk) that whitening improves the signal-to-noise ratio.
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Missing data:

e We observe F(Y'), M random entries of Y’ = X’ 4+ G. Our goal is to estimate X'.
e Assume rank 1 sampling, with row and column sampling probabilities P and Q.

® |t can be shown that
Y =P 12F(F(Y')Q Y2 ~ X + white noise

where X = P~12X'Q~1/2.
e We denoise Y to get X, then estimate X' by X' = P1/2§Q1/2.

® The mean squared error is then:
IX/ - X'||} = [P?XQY” - PV°XQ'2 |} = |PV*(X - X)Q'?|I%,

which is a weighted loss.
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Return to Y = X + G, G;; ~ N(0,1/n), X rank 7.

e A standard approach to estimating X is singular value shrinkage.

e Singular value shrinkage performs an SVD of Y:

min(n,

p)
Y= > Ny
k=1

e We then replace the observed singular values A; with new singular values t;, leaving the
observed singular vectors fixed:

.
X =Y vy
k=1

e Since X has rank r, we set all but the top r components of X to 0.
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e With unweighted Frobenius loss, singular value shrinkage is known to be an optimal
procedure (Shabalin and Nobel, 2013; Donoho and Gavish, 2014).

e Furthermore, there are explicit formulas for the asymptotically optimal singular values
fl,... ,f} of X.

e Computing the optimal singular values 5 requires knowing two things:

1. The angles between the population singular vectors u;, and v and the empirical
singular vectors u; and vy..

2. The relation between the population singular values t; and the empirical
ergenvalues A\, of Y .

® These are derived by Paul (2007).

10/30



e The top r singular values of Y converge almost surely to the following expression:

" {\/(t%+1)(1+v/t2), if £ > /7

L+ /7, otherwise
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e The cosines between empirical and population singular vectors converge almost surely:

-/t . .
1/ if 5=k and t%>\ﬁ
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® The asymptotic mean squared error (AMSE) is:

r

IX = X|[7 =) (th + G — 2txlrercy).
k=1

e This is minimized by:
tr = tpCrCr,

with error

AMSE =) " #i(1 — ¢;é}).
k=1

® So long as t5 > Vat ti is estimable from the observed data. Otherwise, the k"
component of X is lost in the noise.
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What about weighted Frobenius loss, £()A(, X) = ||Q(}A( — X)ITH||%?

e We generalize singular value shrinkage to the class of spectral estimators, of the form:

e U c R™ and V € R™" are the top singular vectors of Y.

e Bisan r-by-r matrix, to be optimized over:

B = argmin £L(UBV’, X)
B’
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Optimal spectral denoising:

e Solving for the optimal B is easy in principle:

AN

B = D !'Cdiag(t)C'D !,

where t = (t1,...,%,), and

D = UTQTOU

D = VITIinv

C = UTQTquU
and

C = Vvininv

e These are the matrices of weighted inner products between singular vectors of X and Y.
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Estimating B = D~'Cdiag(t)C"D:

e The singular values ¢4, ..., %, are estimable, as we've seen.

e The matrices D = UTQTQU and D = VITI’TIV are observed.

e We must estimate C and 6, or all inner products of the form
u;, Q' Quy
and
Vi Tlv,

for 1 <k, [ <r.

e We will show the formulas on the next slide.
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Estimating the weighted inner products:

e When ¢;,¢; > A

Ci a2
ﬁjQTQUk N ( k Skl“)/clﬂ
dj/{:/cka
and
d — 5v) /e
Q]HTHV]C N (~ k i Sk”)/clﬁ
djk/ck7
where
1
i=lim ~tr(Q'Q)
p—00 P
and

|
v = lim —tr(II' 1)

n—oo N,

e Note that ¢; and ¢, are estimable, as we've seen already.

if j =k
if j £k

if j =k
if j £k
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Sketch of the derivation:

e Decompose 1; into signal and noise components:

iik = cpU; + Spuy

e The unit vector u; is orthogonal to uy, ..., u,, and uniformly random.

e The uy also satisty the Hanson- Wright formula. For any bounded A:

1
u;, Ay, ~ —tr(A).
p
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Sketch of the derivation:

e Applying ) gives:

Quy. = c.Quy + spfag

e Taking inner products with certain vectors, we can read off parameters.

e For example, the squared norm of each side is:

| €2 ||

= cil| Quil* + s

from which we can solve for ||Quy||*.
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Sketch of the derivation:

e Next, take inner products of 2u; with each side of

Quy. = c.Quy + spfug

e This gives:

ﬁgQTQuk = CkHQukHQ

e This is known, since we already know [|Quy]|%.

The derivation of the cross terms i Q' Quy, k # [, proceeds similarly.
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Submatrix estimation:

® We estimate a submatrix X = QXTI of X by estimating X using spectral denoising
with loss £(X, X) = ||QUX — X)I17|%, and taking X, = QX117

e We compare this approach with optimal singular value shrinkage applied to Y, = QYTI”.
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e [Frrors are plotted against the fraction of X'’s energy contained in Xj.

e We prove that unless X contains an overwhelming fraction of X'’s energy, using the full
matrix outperforms denoising Y directly.
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Heteroscedastic noise:

e Observe Y' = X’ + N, where N has rank 1 variance structure:

N — Al/ZGBl/Z

e [Vhiten the noise:

Y — A—1/2YIB—1/2 _ A—l/Qx/B—l/Q +QG=X+G
e Estimate X = A~Y2X'B~1/2 with optimal spectral denoising with weighted loss
LX.X) = |AVA(X - X)BY|7.

e Finally, unwhiten: X' = AV2XBL/2,
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Comparison with OptShrink:

e We compare with optimal singular value shrinkage, without whitening (Nadakuditi, 2014):

—e— OptShrink
——Spectral denoising| |

log MSE
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log condition number

e The MSE is plotted as a function of the condition number of A2 and B'/2, the noise
covariance matrices.

e The total energy in the noise is constant.
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Whitening improves subspace estimation:

e Suppose Y' = X' + 21/2G.

e Compare singular vectors of Y’ with the vectors from whitening, SVD’ing, unwhitening.
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e In Leeb and Romanov (2019), we prove that

lunwhitened cosine|

< f(k)

[whitened cosine|

where Kk = %tr(Zg) : %tr(Z;l), and f(k) < 1for k > 1 and is decreasing.
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Relation with linear prediction:

e Optimal spectral denoising with whitening converges to the Wiener filter as p/n — 0.

0.9 T

—e— OptShrink
—p— Spectral denoising
—— Wiener filter (oracle)

0.8 -

e Optimal spectral shrinkage converges to a suboptimal linear filter.
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Missing data:

e We observe F(Y'), M random entries of Y' = X'+ G.
e Rank 1 sampling structure, with row and column sampling probabilities P and Q.
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e Estimate X = P~V QPNCQ_V 2 with optimal spectral denoiser with respect to loss
LX,X) = |[P7X ~ X)Q2|3,

and define X = Pl/QXQl/Q.

e Compare to nuclear-norm regularized least squares of Candes and Plan (2010).
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Summary:

e We study the problem of estimating low-rank X from Y = X 4+ G.
o We use weighted loss of the form £(X, X) = [|Q(X — XOIT|5..
e We have introduced spectral denoisers of the form X = UBVT.

e Using new asymptotic results for the spiked model, we derived the optimal B.

e Applications include submatrix estimation; heteroscedastic noise; and missing data.
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