Matrix Denoising with Weighted Loss

William Leeb

University of Minnesota, Twin Cities

UC Davis MADDD Seminar March 10th, 2020

The observation model:

 \bullet We observe a "signal plus noise" matrix ${\bf Y}$ of the form

 $\mathbf{Y} = \mathbf{X} + \mathbf{G}$

- **Y** is of size p-by-n, where p and n are large.
- X is a rank r signal matrix, where $r \ll p, n$.
- $\bullet~{\bf G}$ is a matrix of additive Gaussian noise.

The goal: Estimate X from Y.

A more detailed look:

• Write the SVD of **X**:

$$\mathbf{X} = \sum_{k=1}^{r} t_k \mathbf{u}_k \mathbf{v}_k^T,$$

where $t_k > 0$, and the \mathbf{u}_k , \mathbf{v}_k are orthonormal vectors.

• Write the SVD of **Y**:

$$\mathbf{Y} = \sum_{k=1}^{\min\{p,n\}} \lambda_k \hat{\mathbf{u}}_k \hat{\mathbf{v}}_k^T,$$

where $\lambda_k > 0$, and the $\hat{\mathbf{u}}_k$, $\hat{\mathbf{v}}_k$ are orthonormal vectors.

- The entries of **G** have distribution $G_{ij} \sim N(0, 1/n)$.
- We study the problem as p, n grow to infinity, and r stays fixed:

$$\lim_{n \to \infty} \frac{p}{n} = \gamma < \infty$$

The loss function:

• We measure the error between \mathbf{X} and $\widehat{\mathbf{X}}$ with a *weighted loss*.

• Specificically, we use a loss function of the form:

$$\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\Omega(\widehat{\mathbf{X}} - \mathbf{X})\Pi^T\|_F^2$$

• Here, Ω and Π are matrices with p columns and n columns, respectively.

Why weighted loss? We consider three applications:

• Submatrix denoising

• Heteroscedastic noise

• Missing data

Submatrix denoising:

- Suppose we are only interested in estimating a submatrix \mathbf{X}_0 of \mathbf{X} .
- We use information from the entire matrix \mathbf{X} , but only penalize errors on \mathbf{X}_0 .
- Let Ω and Π project onto the rows and columns of \mathbf{X}_0 ; then the natural loss is $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\Omega(\widehat{\mathbf{X}} - \mathbf{X})\Pi^T\|_F^2$

• We can show that denoising the full \mathbf{X} and projecting onto \mathbf{X}_0 is typically better than denoising \mathbf{X}_0 directly.

Heteroscedastic noise:

• Observe $\mathbf{Y}' = \mathbf{X}' + \mathbf{N}$, where **N** has rank 1 variance structure:

$$\mathbf{N} = \mathbf{A}^{1/2} \mathbf{G} \mathbf{B}^{1/2}$$

Our goal is to estimate \mathbf{X}' .

• Whiten the noise:

$$\mathbf{Y} = \mathbf{A}^{-1/2} \mathbf{Y}' \mathbf{B}^{-1/2} = \mathbf{A}^{-1/2} \mathbf{X}' \mathbf{B}^{-1/2} + \mathbf{G} \equiv \mathbf{X} + \mathbf{G}$$

- Estimate $\mathbf{X} = \mathbf{A}^{-1/2} \mathbf{X}' \mathbf{B}^{-1/2}$ with a method tailored for white noise, and then unwhiten: $\widehat{\mathbf{X}}' = \mathbf{A}^{1/2} \widehat{\mathbf{X}} \mathbf{B}^{1/2}$
- The mean squared error is then

$$\|\widehat{\mathbf{X}}' - \mathbf{X}'\|_F^2 = \|\mathbf{A}^{1/2}\widehat{\mathbf{X}}\mathbf{B}^{1/2} - \mathbf{A}^{1/2}\mathbf{X}\mathbf{B}^{1/2}\|_F^2 = \|\mathbf{A}^{1/2}(\widehat{\mathbf{X}} - \mathbf{X})\mathbf{B}^{1/2}\|_F^2,$$

which is a weighted loss.

• It can be shown (later in this talk) that whitening improves the signal-to-noise ratio.

Missing data:

- We observe $\mathcal{F}(\mathbf{Y}')$, *M* random entries of $\mathbf{Y}' = \mathbf{X}' + \mathbf{G}$. Our goal is to estimate \mathbf{X}' .
- Assume rank 1 sampling, with row and column sampling probabilities **P** and **Q**.
- It can be shown that

$$\mathbf{Y} \equiv \mathbf{P}^{-1/2} \mathcal{F}^*(\mathcal{F}(\mathbf{Y}')) \mathbf{Q}^{-1/2} \sim \mathbf{X} + \text{white noise}$$

where $\mathbf{X} = \mathbf{P}^{-1/2} \mathbf{X}' \mathbf{Q}^{-1/2}$.

- We denoise **Y** to get $\widehat{\mathbf{X}}$, then estimate $\mathbf{X'}$ by $\widehat{\mathbf{X'}} = \mathbf{P}^{1/2} \widehat{\mathbf{X}} \mathbf{Q}^{1/2}$.
- The mean squared error is then:

$$\|\widehat{\mathbf{X}}' - \mathbf{X}'\|_{F}^{2} = \|\mathbf{P}^{1/2}\widehat{\mathbf{X}}\mathbf{Q}^{1/2} - \mathbf{P}^{1/2}\mathbf{X}\mathbf{Q}^{1/2}\|_{F}^{2} = \|\mathbf{P}^{1/2}(\widehat{\mathbf{X}} - \mathbf{X})\mathbf{Q}^{1/2}\|_{F}^{2}$$

which is a weighted loss.

Return to $\mathbf{Y} = \mathbf{X} + \mathbf{G}$, $G_{ij} \sim N(0, 1/n)$, \mathbf{X} rank r.

- A standard approach to estimating **X** is *singular value shrinkage*.
- Singular value shrinkage performs an SVD of **Y**:

$$\mathbf{Y} = \sum_{k=1}^{\min(n,p)} \lambda_k \hat{\mathbf{u}}_k \hat{\mathbf{v}}_k^T$$

• We then replace the observed singular values λ_j with new singular values t_k , leaving the observed singular vectors fixed:

$$\widehat{\mathbf{X}} = \sum_{k=1}^{7} \widehat{t}_k \widehat{\mathbf{u}}_k \widehat{\mathbf{v}}_k^T$$

• Since **X** has rank r, we set all but the top r components of $\widehat{\mathbf{X}}$ to 0.

- With unweighted Frobenius loss, singular value shrinkage is known to be an optimal procedure (Shabalin and Nobel, 2013; Donoho and Gavish, 2014).
- Furthermore, there are explicit formulas for the asymptotically optimal singular values $\hat{t}_1, \ldots, \hat{t}_r$ of $\hat{\mathbf{X}}$.
- Computing the optimal singular values \hat{t}_k requires knowing two things:
 - 1. The angles between the *population singular vectors* \mathbf{u}_k and \mathbf{v}_k and the *empirical singular vectors* $\hat{\mathbf{u}}_k$ and $\hat{\mathbf{v}}_k$.
 - 2. The relation between the *population singular values* t_k and the *empirical eigenvalues* λ_k of **Y**.
- These are derived by Paul (2007).

• The top r singular values of \mathbf{Y} converge almost surely to the following expression:

• The cosines between empirical and population singular vectors converge almost surely:

$$\langle \mathbf{u}_j, \hat{\mathbf{u}}_k \rangle^2 \longrightarrow c_{j,k}^2 = \begin{cases} \frac{1-\gamma/t_k^4}{1+\gamma/t_k^2}, & \text{if } j=k \text{ and } t_k^2 > \sqrt{\gamma} \\ 0, & \text{otherwise} \end{cases}$$

$$\langle \mathbf{v}_j, \hat{\mathbf{v}}_k \rangle^2 \longrightarrow \tilde{c}_{j,k}^2 = \begin{cases} \frac{1-\gamma/t_k^4}{1+1/t_k^2}, & \text{if } j=k \text{ and } t_k^2 > \sqrt{\gamma} \\ 0, & \text{otherwise} \end{cases}$$

• The asymptotic mean squared error (AMSE) is:

$$\|\widehat{\mathbf{X}} - \mathbf{X}\|_F^2 = \sum_{k=1}^r (t_k^2 + \hat{t}_k^2 - 2t_k \hat{t}_k c_k \tilde{c}_k).$$

• This is minimized by:

$$\hat{t}_k = t_k c_k \tilde{c}_k,$$

with error

AMSE =
$$\sum_{k=1}^{r} t_k^2 (1 - c_k^2 \tilde{c}_k^2).$$

• So long as $t_k^2 > \sqrt{\gamma}$, \hat{t}_k is estimable from the observed data. Otherwise, the k^{th} component of X is lost in the noise.

What about weighted Frobenius loss, $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\Omega(\widehat{\mathbf{X}} - \mathbf{X})\Pi^T\|_F^2$?

• We generalize singular value shrinkage to the class of *spectral estimators*, of the form:

 $\widehat{\mathbf{X}} = \widehat{\mathbf{U}}\widehat{\mathbf{B}}\widehat{\mathbf{V}}^T.$

- $\widehat{\mathbf{U}} \in \mathbb{R}^{p \times r}$ and $\widehat{\mathbf{V}} \in \mathbb{R}^{n \times r}$ are the top singular vectors of \mathbf{Y} .
- $\widehat{\mathbf{B}}$ is an *r*-by-*r* matrix, to be optimized over:

$$\widehat{\mathbf{B}} = \operatorname*{argmin}_{\widehat{\mathbf{B}}'} \mathcal{L}(\widehat{\mathbf{U}}\widehat{\mathbf{B}}\widehat{\mathbf{V}}^T, \mathbf{X})$$

Optimal spectral denoising:

• Solving for the optimal $\widehat{\mathbf{B}}$ is easy in principle:

$$\widehat{\mathbf{B}} = \mathbf{D}^{-1} \mathbf{C} \operatorname{diag}(\mathbf{t}) \widetilde{\mathbf{C}}^T \widetilde{\mathbf{D}}^{-1},$$

where $\mathbf{t} = (t_1, \ldots, t_r)$, and

 $\mathbf{D} = \widehat{\mathbf{U}}^T \Omega^T \Omega \widehat{\mathbf{U}}$ $\widetilde{\mathbf{D}} = \widehat{\mathbf{V}}^T \Pi^T \Pi \widehat{\mathbf{V}}$ $\mathbf{C} = \widehat{\mathbf{U}}^T \Omega^T \Omega \mathbf{U}$

and

 $\widetilde{\mathbf{C}} = \widehat{\mathbf{V}}^T \Pi^T \Pi \mathbf{V}$

• These are the matrices of *weighted* inner products between singular vectors of \mathbf{X} and \mathbf{Y} .

Estimating $\widehat{\mathbf{B}} = \mathbf{D}^{-1}\mathbf{C}\operatorname{diag}(\mathbf{t})\widetilde{\mathbf{C}}^T\widetilde{\mathbf{D}}^{-1}$:

- The singular values t_1, \ldots, t_r are estimable, as we've seen.
- The matrices $\mathbf{D} = \widehat{\mathbf{U}}^T \Omega^T \Omega \mathbf{U}$ and $\widetilde{\mathbf{D}} = \widehat{\mathbf{V}}^T \Pi^T \Pi \mathbf{V}$ are observed.
- We must estimate \mathbf{C} and $\widetilde{\mathbf{C}}$, or all inner products of the form

 $\hat{\mathbf{u}}_k^T \Omega^T \Omega \mathbf{u}_l$

and

 $\hat{\mathbf{v}}_k^T \Pi^T \Pi \mathbf{v}_l$

for $1 \leq k, l \leq r$.

• We will show the formulas on the next slide.

Estimating the weighted inner products:

• When $t_j, t_k > \gamma^{1/4}$,

$$\hat{\mathbf{u}}_{j}\Omega^{T}\Omega\mathbf{u}_{k} \to \begin{cases} (d_{k} - s_{k}^{2}\mu)/c_{k}, & \text{if } j = k \\ d_{jk}/c_{k}, & \text{if } j \neq k \end{cases}$$

and

$$\hat{\mathbf{v}}_{j}\Pi^{T}\Pi\mathbf{v}_{k} \to \begin{cases} (\tilde{d}_{k} - \tilde{s}_{k}^{2}\nu)/\tilde{c}_{k}, & \text{if } j = k\\ \tilde{d}_{jk}/\tilde{c}_{k}, & \text{if } j \neq k \end{cases}$$

where

$$\mu = \lim_{p \to \infty} \frac{1}{p} \operatorname{tr}(\Omega^T \Omega)$$

and

$$\nu = \lim_{n \to \infty} \frac{1}{n} \operatorname{tr}(\Pi^T \Pi)$$

• Note that c_k and \tilde{c}_k are estimable, as we've seen already.

Sketch of the derivation:

• Decompose $\hat{\mathbf{u}}_k$ into signal and noise components:

$$\hat{\mathbf{u}}_k = c_k \mathbf{u}_k + s_k \tilde{\mathbf{u}}_k$$

• The unit vector $\tilde{\mathbf{u}}_k$ is orthogonal to $\mathbf{u}_1, \ldots, \mathbf{u}_r$, and uniformly random.

• The $\tilde{\mathbf{u}}_k$ also satisfy the *Hanson-Wright* formula. For any bounded A:

$$\tilde{\mathbf{u}}_k^T A \tilde{\mathbf{u}}_k \sim \frac{1}{p} \operatorname{tr}(A)$$

Sketch of the derivation:

• Applying Ω gives:

$$\Omega \hat{\mathbf{u}}_k = c_k \Omega \mathbf{u}_k + s_k \Omega \tilde{\mathbf{u}}_k$$

• Taking inner products with certain vectors, we can read off parameters.

• For example, the squared norm of each side is:

$$\|\Omega \hat{\mathbf{u}}_k\|^2 = c_k^2 \|\Omega \mathbf{u}_k\|^2 + s_k^2 \mu$$

from which we can solve for $\|\Omega \mathbf{u}_k\|^2$.

Sketch of the derivation:

• Next, take inner products of $\Omega \mathbf{u}_k$ with each side of

 $\Omega \hat{\mathbf{u}}_k = c_k \Omega \mathbf{u}_k + s_k \Omega \tilde{\mathbf{u}}_k$

• This gives:

$$\hat{\mathbf{u}}_k^T \Omega^T \Omega \mathbf{u}_k = c_k \| \Omega \mathbf{u}_k \|^2$$

• This is known, since we already know $\|\Omega \mathbf{u}_k\|^2$.

The derivation of the cross terms $\hat{\mathbf{u}}_k^T \Omega^T \Omega \mathbf{u}_l$, $k \neq l$, proceeds similarly.

Submatrix estimation:

- We estimate a submatrix $\mathbf{X}_0 = \Omega \mathbf{X} \Pi^T$ of \mathbf{X} by estimating \mathbf{X} using spectral denoising with loss $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\Omega(\widehat{\mathbf{X}} \mathbf{X})\Pi^T\|_F^2$, and taking $\widehat{\mathbf{X}}_0 = \Omega \widehat{\mathbf{X}} \Pi^T$.
- We compare this approach with optimal singular value shrinkage applied to $\mathbf{Y}_0 = \Omega \mathbf{Y} \Pi^T$.

- Errors are plotted against the fraction of \mathbf{X} 's energy contained in \mathbf{X}_0 .
- We prove that unless \mathbf{X}_0 contains an overwhelming fraction of \mathbf{X} 's energy, using the full matrix outperforms denoising \mathbf{Y}_0 directly.

Heteroscedastic noise:

• Observe $\mathbf{Y}' = \mathbf{X}' + \mathbf{N}$, where **N** has rank 1 variance structure:

 $\mathbf{N} = \mathbf{A}^{1/2} \mathbf{G} \mathbf{B}^{1/2}$

• Whiten the noise:

$$\mathbf{Y} = \mathbf{A}^{-1/2} \mathbf{Y}' \mathbf{B}^{-1/2} = \mathbf{A}^{-1/2} \mathbf{X}' \mathbf{B}^{-1/2} + \mathbf{G} \equiv \mathbf{X} + \mathbf{G}$$

- Estimate $\mathbf{X} = \mathbf{A}^{-1/2} \mathbf{X}' \mathbf{B}^{-1/2}$ with optimal spectral denoising with weighted loss $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\mathbf{A}^{1/2} (\widehat{\mathbf{X}} - \mathbf{X}) \mathbf{B}^{1/2} \|_F^2$,
- Finally, unwhiten: $\widehat{\mathbf{X}}' = \mathbf{A}^{1/2} \widehat{\mathbf{X}} \mathbf{B}^{1/2}$.

Comparison with OptShrink:

• We compare with optimal singular value shrinkage, without whitening (Nadakuditi, 2014):

- The MSE is plotted as a function of the condition number of $\mathbf{A}^{1/2}$ and $\mathbf{B}^{1/2}$, the noise covariance matrices.
- The total energy in the noise is constant.

Whitening improves subspace estimation:

- Suppose $\mathbf{Y}' = \mathbf{X}' + \Sigma^{1/2} \mathbf{G}$.
- Compare singular vectors of \mathbf{Y}' with the vectors from whitening, SVD'ing, unwhitening.

• In Leeb and Romanov (2019), we prove that

$$\frac{|\text{unwhitened cosine}|}{|\text{whitened cosine}|} \le f(\kappa)$$

where $\kappa = \frac{1}{p} \operatorname{tr}(\Sigma_{\varepsilon}) \cdot \frac{1}{p} \operatorname{tr}(\Sigma_{\varepsilon}^{-1})$, and $f(\kappa) < 1$ for $\kappa > 1$ and is decreasing.

Relation with linear prediction:

• Optimal spectral denoising with whitening converges to the Wiener filter as $p/n \to 0$.

• Optimal spectral shrinkage converges to a suboptimal linear filter.

Missing data:

- We observe $\mathcal{F}(\mathbf{Y}')$, *M* random entries of $\mathbf{Y}' = \mathbf{X}' + \mathbf{G}$.
- Rank 1 sampling structure, with row and column sampling probabilities \mathbf{P} and \mathbf{Q} .

• Estimate $\mathbf{X} = \mathbf{P}^{-1/2} \widetilde{\mathbf{X}} \mathbf{Q}^{-1/2}$ with optimal spectral denoiser with respect to loss $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\mathbf{P}^{1/2} (\widehat{\mathbf{X}} - \mathbf{X}) \mathbf{Q}^{1/2} \|_F^2$,

and define $\widehat{\widetilde{\mathbf{X}}} = \mathbf{P}^{1/2} \widehat{\mathbf{X}} \mathbf{Q}^{1/2}$.

• Compare to nuclear-norm regularized least squares of Candès and Plan (2010).

Summary:

- We study the problem of estimating low-rank **X** from $\mathbf{Y} = \mathbf{X} + \mathbf{G}$.
- We use weighted loss of the form $\mathcal{L}(\widehat{\mathbf{X}}, \mathbf{X}) = \|\Omega(\widehat{\mathbf{X}} \mathbf{X})\Pi^T\|_F^2$.
- We have introduced spectral denoisers of the form $\widehat{\mathbf{X}} = \widehat{\mathbf{U}}\widehat{\mathbf{B}}\widehat{V}^{T}$.
- Using new asymptotic results for the spiked model, we derived the optimal $\widehat{\mathbf{B}}$.
- Applications include submatrix estimation; heteroscedastic noise; and missing data.

References

• W. Leeb and E. Romanov. Optimal spectral shrinkage and PCA with heteroscedastic noise. arXiv 1811.02201 (2019)

• W. Leeb. Matrix denoising for weighted loss functions and heterogeneous signals. arXiv:1902.09474 (2020)

• E. Dobriban, W. Leeb, and A. Singer. Optimal prediction in the linearly transformed spiked model. Annals of Statistics 48(1), 491-513 (2019)

Additional references

- D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 1617-1642 (2007)
- R. R. Nadakuditi. OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven singular value shrinkage. IEEE Transactions on Information Theory 60(5), 3002-3018 (2014)
- D. Donoho and M. Gavish. Minimax risk of matrix denoising by singular value thresholding. The Annals of Statistics 42(6), 2413-2440 (2014).
- A. A. Shabalin and A. B. Nobel. Reconstruction of a low-rank matrix in the presence of Gaussian noise. Journal of Multivariate Analysis 118, 67-76 (2013).
- E. J. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE 98(6), 925-936 (2010)

Thank you

I acknowledge support from the NSF BIGDATA program and the BSF.