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What are networks / graphs?
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There are many network-related problems.

How to find communities?

How to simultaneously 
analyze different sources of 
data (e.g. graph and text)?

How to sample on a network?  
How to estimate on the 
connected samples?

Rohe 2015
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My research discussed some Network-related problems.

Network 
related 
work

How to find 
communities?

Regularized Spectral 
Clustering

Y. Zhang, K. Rohe. Understanding Regularized 
Spectral Clustering via Graph Conductance.  
NeurIPS, 2018.

How to simultaneously 
analyze different 
sources of data (e.g. 
graph and text)?

Graph Contextualization 
with PairGraphText

Y. Zhang, M. Berthe, C. Wells, K. Michalska, 
K. Rohe. Discovering Political Topics in Social 
Network Discussion threads with Graph 
Contextualization. The Annals of Applied 
Statistics, 12(2), 1096-1123, 2018.

How to sample on a 
network?

Respondent Driven 
Sampling

Y. Zhang, K. Rohe, S. Roch. Reducing Seed 
Bias in Respondent-Driven Sampling by 
Estimating Block Transition Probabilities.  
under revision at The Annals of Statistics.

Other 
Work

Domain Adaptation
H. Zhou, Y. Zhang, V. Ithapu, S. Johnson, G. Wahba, V. Singh. When can Multi-
Site Datasets be Pooled for Regression: Hypothesis Tests, l2-consistency and 
Neuroscience Applications. ICML, 2017.

Election Polls Y. Zhang, Q. Li, F. Charles, K. Rohe. Direct Evidence for Null Volatility in 
Election Polling. in preparation.

Gravitational 
Waves

X. Zhu, L. Wen, G. Hobbs, Y. Zhang, et al. Detection and localization of single-
source gravitational waves with pulsar timing arrays. MNRAS, 449:16501663, 
2015.
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Understanding Regularized Spectral Clustering 
via Graph Conductance

Yilin Zhang & Karl Rohe 

University of Wisconsin-Madison

NeurIPS 2018
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Given a graph, one key problem is to find communities.
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Spectral Clustering is one popular approach. 

Adjacency Matrix A 2 {0, 1}N⇥N , where Aij =

(
1 if i ⇠ j

0 o.w.

Graph Laplacian L = I �D�1/2AD�1/2, where Dii =
X

j

Aij

Spectral Clustering partitions the graph based on top eigenvectors of L.

Graph G = (V,E)

is degree of node i.
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an example

Two nodes in the 
same block? Yes No

connect (edge) 
probability 0.8 0.2

A simulated network with 
N = 10000 nodes
K = 4 equal-size blocks

top (smallest) 10 
eigenvalues

top 2 - 4 
eigenvectors
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However, in practice, Spectral Clustering always fails. 

In practice, eigenvectors always
localize on just several nodes.

This leads to highly
 unbalanced clusters.

top eigenvectors

Social network 
[Y. Zhang, et al. 2018]
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Regularization solves the problem.

In practice, regularization
delocalizes eigenvectors.

This leads to more
balanced clusters.

Social network 
[Y. Zhang, et al. 2018]

[T. Qin et al. 2013, A. Amini et al. 2013,  K. Chaudhuri et al. 2012,]

Regularization adds a tiny edge on every pair of nodes. i.e. replace G by G⌧ .

Why?

Adjacency Matrix A⌧ = A+
⌧

N
J , where J is an all-one matrix.Regularized

Graph Laplacian L⌧ = I �D�1/2
⌧ A⌧D

�1/2
⌧ , where D⌧ = D + ⌧I.Regularized
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Why Spectral Clustering fails?
graph conductance & noises

11



Given a node set S with vol(S)  vol(Sc), its graph conductance is:

Spectral Clustering likes sets with small conductance!

min
S

�(S) relaxes to Spectral Clustering. [U. Luxburg, 2007]

�(S) =
cut(S)

vol(S)
=

num of edges cut

sum of node degrees

Then, what kinds of sets have 
small conductance?
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g-dangling sets have small conductance!

Fact 1: g-dangling set has small conductance 1/(2g � 1).

a 6-dangling set

S is g-dangling ()
(1) |S| = g, (2) S is a tree, (3) cut(S) = 1.
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There are many g-dangling sets!
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inhomogeneous random graph model: independent edges (e.g. erdös-Rény, SBM)

peripheral node: O(1) expected degree

(edge probability with any node is < b/N for some constant b)



Graphs with many g-dangling sets have many small eigenvalues.
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an example (recall)

Two nodes in the 
same block? Yes No

connect (edge) 
probability 0.8 0.2

A simulated network with 
N = 10000 nodes
K = 4 equal-size blocks

top (smallest) 10 
eigenvalues

top 2 - 4 
eigenvectors
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the updated example
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Two core nodes in 
the same block? Yes No

connect prob 0.8 0.2

A simulated network with 
10000 core nodes
4 equal-size core blocks
100 peripheral nodes

peripheral nodes 
connect prob 0.01

peripheral - core
connect prob 2.5E-05

top 10 eigenvalues



the updated example
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Two core nodes in 
the same block? Yes No

connect prob 0.8 0.2

A simulated network with 
10000 core nodes
4 equal-size core blocks
100 peripheral nodes

peripheral nodes 
connect prob 0.01

peripheral - core
connect prob 2.5E-05

top 10 eigenvalues



the updated example
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Two core nodes in 
the same block? Yes No

connect prob 0.8 0.2

A simulated network with 
10000 core nodes
4 equal-size core blocks
100 peripheral nodes

peripheral nodes 
connect prob 0.01

peripheral - core
connect prob 2.5E-05

top 10 eigenvalues



Recall: Why Spectral Clustering fails?
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• Spectral Clustering likes sets with small conductance.
• Dangling sets have small conductance.
• There are lots of dangling sets, which lead to lots of small eigenvalues.  

This conceals true clusters even with large k.



Why does regularization fix this?
Regularization changes the graph conductance.
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Regularized SC likes sets with small CoreCut!

CoreCut: (conductance on the regularized graph)

CoreCut⌧ (S) =
cut(S) + ⌧

N |S||Sc|
vol(S) + ⌧ |S|

22



Conductance finds peripheral sets.

Conductance finds peripheral sets. 
CoreCut finds core sets.
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Conductance finds peripheral sets.

Conductance finds peripheral sets. 
CoreCut finds core sets.
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CoreCut finds core sets.



CoreCut ignores peripheral sets and focuses on the core!

Conductance finds peripheral sets.

Conductance finds peripheral sets. 
CoreCut finds core sets.

25

Regularization increases conductance for peripheral sets significantly, 
but does not affect core sets that much.

CoreCut finds core sets.



CoreCut succeeds when the regularizer 
overwhelms peripheries but is negligible to the core.
Assumptions:

For a graph G and subsets S, S✏, there exists ✏, ↵, s.t.

1. |S✏| < ✏|V | and vol(S✏) < ✏vol(V ),

2. d̄(S✏) <
1� ✏

2(1 + ↵)
d̄(S),

3. �(S) <
↵(1� ✏)

1 + ↵
.

Propositions:

Under Assumption 1, if we choose ⌧ � ↵d̄(S✏), then CoreCut⌧ (S✏) >
↵(1� ✏)

1 + ↵
.

If we choose ⌧ < �d̄(S) for some � > 0, then CoreCut⌧ (S) < �(S) + �.

S✏ is small enough.

S is dense enough.

S is a good cut.
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Corollary:

Under Assumptions 1-3, if we choose ⌧ s.t.

↵d̄(S✏)  ⌧  �d̄(S),

where � = ↵(1� ✏)/(1 + ↵)� �(S), then

CoreCut⌧ (S) < CoreCut⌧ (S✏).

My suggestion in practice:
Set ⌧ to be (square root of)

average degree of G.



Real data examples.

37 networks from  http://snap.stanford.edu/data
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Balance vs balance.
 Regularization increases balance.
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Running time in seconds.
 Regularized runs ~8x faster.

more balanced faster
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http://snap.stanford.edu/data


Regularized Spectral Clustering 
is more balanced & faster!
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Summary

Why Spectral Clustering fails?
Spectral Clustering likes sets with small conductance.
Noises such as g-dangling sets have small conductance.

Why Regularization fixes?
Regularized SC likes sets with small CoreCut.
CoreCut focuses on the core!



Thank you!
Any questions?
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Appendix slides…
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conductance relaxes to Vanilla SC

[Luxburg et al. 2007]



Spectral Clustering is fooled by randomness!

Think regression: What do you say if the model perfectly 
interpolates the data (MSE = 0)?  Overfitting!

Spectral clustering overfits to conductance!

Don’t be fooled by randomness!
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Vanilla SC overfits!
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Think regression: What do you say if the model perfectly 
interpolates the data (MSE = 0)?  Overfitting!

Vanilla SC overfits to conductance.  It’s fooled by randomness.



In statistical learning theory, there are tools to address overfitting.
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Regularize to prevent overfitting.

Cross Validation to 
• measure overfitting 
• assess the regularization

We can also do this in graphs!


