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What are networks / graphs?
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There are many network-related problems.

How to find communities?

Dolphins social network

¥
Adamic, Glance. The political blogosphere and the 2004 US election: divided they blog. 36-43 (2005). Leskovec et. al 2008
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My research discussed some Network-related problems.

How to find
communities?

Y. Zhang, K. Rohe. Understanding Regularized

Spectral Clustering via Graph Conductance.
NeurlPS, 2018.

Regularized Spectral
Clustering

How to simultaneously

Network analyze different

Y. Zhang, M. Berthe, C. Wells, K. Michalska,
K. Rohe. Discovering Political Topics in Social

Graph Contextualization : _ ,
Network Discussion threads with Graph

related  sources of data (e.g. with PairGraphText o ,
work srvarsln . ()] Con.te>?tuahzat10n. The Annals of Applied
Statistics, 12(2), 1096-1123, 2018.
Y. Zhang, K. Rohe, S. Roch. Reducing Seed
How to sample on a Respondent Driven Bias in Respondent-Driven Sampling by
network? Sampling Estimating Block Transition Probabilities.
under revision at The Annals of Statistics.
H. Zhou, Y. Zhang, V. Ithapu, S. Johnson, G. Wahba, V. Singh. When can Multi-
Domain Adaptation Site Datasets be Pooled for Regression: Hypothesis Tests, 12-consistency and
Neuroscience Applications. ICML, 2017.
Other : Y. Zhang, Q. L1, F. Charles, K. Rohe. Direct Evidence for Null Volatility in
Election Polls : ., :
Work Election Polling. in preparation.
Gravitational X.Zhu, L. Wen, G. Hobbs, Y. Zhang, et al. Detection and localization of single-
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Given a graph, one key problem is to find communities.

Dolphins social network

4
Adamic, Glance. The political blogosphere and the 2004 US election: divided they blog. 36-43 (2005). Leskovec et. al 2008




Spectral Clustering is one popular approach.

Graph G = (V, F)
| | . (1 ifin~ g
Adjacency Matrix A € {0,1} , where A;; = «

0 o.w.
\

Graph Laplacian L = I — D_1/2AD_1/2, where D;; = Z A;; is degree of node 1.

J

Spectral Clustering partitions the graph based on top eigenvectors of L.



an example

A simulated network with
N = 10000 nodes
K = 4 equal-size blocks

Two nodes in theé
same block? Yes No

connect (edge)
probability 0 © 0

top (smallest) 10
eigenvalues

0.8+

0.6+

0.4+

0.2-

0.0+

A A A A

top2-4
eigenvectors

0.02 -
0.00 1
—-0.02 1
—0.04 -

0.02 4
0.00 1
—-0.02 -

—-0.04

0.04 -
0.02 1
0.00 -
—0.02 -
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However, in practice, Spectral Clustering always fails.

top eigenvectors

0.50 1
0.251
0.00 1 ' "F

—0.25+

——
—
—

In practice, eigenvectors always
0.04 I . .
021 localize on just several nodes.

~0.4-

~0.6- This leads to highly
0.0- ' unbalanced clusters.

~0.2-
~0.4-
~0.6+

0 25000 50000 75000

Social network
[Y. Zhang, et al. 2018]



Regularization solves the problem.

Regularization adds a tiny edge on every pair of nodes. i.e. replace G by G..

Regularized Adjacency Matrix A, = A + %J , where J is an all-one matrix.

Regularized Graph Laplacian L, =1 — D-'/24,D-'/2 where D, = D + 1.
[T. Qin et al. 2013, A. Amini et al. 2013, K. Chaudhuri et al. 2012,]

regularized

0.15+
0.10+

0.05 N I . lar; .
0.00- n practice, regularization

- —0.05- delocalizes eigenvectors.

0.1+
0.0+ .
MWT"- ” This leads to more
~0.1 1

balanced clusters.

0.2+

0.0 1 - Why?

0 25000 50000 75000

Social network
[Y. Zhang, et al. 2018] 10



Why Spectral Clustering fails?
graph conductance & noises
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Spectral Clustering likes sets with small conductance!

Given a node set S with vol(S) < vol(5¢), its graph conductance is:

cut(.S) num of edges cut

¢(5) = =

vol(S)  sum of node degrees

min $(S) relaxes to Spectral Clustering. [U. Luxburg, 2007]

Then, what Kinds of sets have
small conductance?
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S is g-dangling <~—
(1) |S] =g, (2) S is a tree, (3) cut(S) = 1.

Fact 1: g-dangling set has small conductance 1/(2g — 1).

rest of S
graph

a 6-dangling set
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There are many g-dangling sets!

inhomogeneous random graph model: independent edges (e.g. erdés-Rény, SBM)

peripheral node: O(1) expected degree
(edge probability with any node is < b/NN for some constant b)

Theorem 1: (many dangling sets) Suppose an inhomogeneous random
graph model such that for some € > 0, p;; > (1 +€)/N for all nodes 1, j.
If that model contains a non-vanishing fraction of peripheral nodes V,, C V',
such that |V,| > nN for some 1 > 0, then the expected number of distinct
g-dangling sets in the sampled graph grows proportionally to V.
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Graphs with many g-dangling sets have many small eigenvalues.

Theorem 2: (many small eigenvalues) If a graph contains ) g-dangling
sets, and the rest of the graph has volume at least 4¢*, then there are at least
(/2 eigenvalues that is smaller than (g — 1)~!. (conceals true cluster even
with large k and causes computational inefficiency)
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an example (recall)

A simulated network with

N = 10000 nodes

K = 4 equal-size blocks

T desin the . |
WO Nodacs 1n e:YGSENO

same block?

connect (edge)
probability

top (smallest) 10
eigenvalues

0.8+

0.6+

0.4+

0.2-

0.0+

A A A A
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top2-4
eigenvectors

0.02 -
0.00 1
—-0.02 1
—0.04 -

0.02 4
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—-0.04
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0

2500 5000 7500 10000




the updated example

A simulated network with top 10 eigenvalues
10000 core nodes

4 equal-size core blocks 0.75-
100 peripheral nodes Type

Two core nodes 1n: v N ” .............. :
: YCS! Q) : A vanilia :
the same block? g £ 0.25-
----------------------------------------------------------------------- : A :
E E : A AAAAAL
: E : A :
connect prob 0.8:0.2 : 0.004
; ; e e e e e e e e e A e A A R A RN A R R AR RN AR AR R AR R REnn s &
peripheral nodes | 001
connect prob | 2 : 3 ; ;
e * 0.20- 0.501 .
] 015+ 0.25 0.0 0.2+ 0.3 1 E
. E * 0104 0.00+ -0.21 0.0+ 0.0+ .
peripheral - core : o0s] 921 :
5 2 SE_OS £ 0.00- 0.6 —0.4 —06 :
connect prob : ’ ° oo f—2 paf— L
- I 0.0- 0.0- 0o 0.4 :
—0.24 : 0.0 040- 83- :
—0.44 0.0 —0-29 024 02 :
—06 -0.2 -04 - . :
12 13 14 15 16 :
044 0.2 0.25 0.2 H
0.2 0.2 0.0 0.00 o1 :
0.0 0.0 0.2 ~0.25- Ny :
-0.24 . - . M
_0.2 0 0.4 ~0.50 0z :
17 18 19 20 21 :
i i 0.3 :
0-27 03 0% 021 0.4+ :
0.0 o0 997 00 0.0- :
-0.2 -01 -0.24 :8%: -0.4 E
02 03 ‘ 0 25005000 75001000¢ :
22 23 24 25 :
0.0 0.2 0.4 :
-0.2 4 0.2 0.2 :
-0.4- 0.0 0.0 0.0 :
-0.6 02 -0.21 -0.2+ :
0 25005000750010000 04 0 25005000750010000 0 25005000750010000 0 25005000750010000 :
------------------------------------------------------------------------------------------------------------------------------------------------- -



the updated example

A simulated network with
10000 core nodes

4 equal-size core blocks
100 peripheral nodes

Two core nodes in |
:Yesi No
the same block? g

connect prob 0.8 0.2

peripheral nodes
connect prob |

peripheral - core :

connect prob

top 10 eigenvalues
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the updated example

A simulated network with top 10 eigenvalues L
0.02 -
10000 core nodes cecece 0.00-
4 equal-size core blocks 0.75- e oo o
100 peripheral nodes Type .
] E 050~ . ® reqgularized 0.00-
Two core nodes 1n: Yes| No " 0.02-

: ’ A vanlila :

the same block? | 0.25- 0,041
------------ A A A A A A A A 0.02 1
0.00 -
connect prob 0.8 0.2 0.0044 " L0021

0 2500 5000 7500 10000

peripheral nodes

connect prob 2 ] : : :
] - 0.501
S 8‘122_ 0.55 4 0.0 0.2- 0.3+
. 1 010 0.004 -0.24 0.0+ 0.0+
peripheral - core | 025
: 2 SE_OS 0.00- : ~0.6- 0.4 0.6
connect prob ’ : oo f— i f— L
] 0.0 : : 0.4 1
0.2 0.2 0.0 0.2 0.2
s 0.01 —0.24 0.04 0.0+
—0.4+ oo 04 -0.21 -0.21
-06 - -0.
12 13 14 15 16
0.4 0.2 0.25 0o
0.24 0.2 0.0 0.00 011
o0 021 o5l -0.25 07
-0.2+ _0.4 ' ~0.50 -
17 18 19 20 21
0.3 0.2 0.3
0.2+ 024 0.1 8%" 04+
i 0.1 0.0 14 i
0.0 0.0 014 0.0 0.0
-0.21 -0.1 -0.2 —8;- -0.4
-0.2 -03 —v.2n T T
0 25005000 75001000¢
22 23 24 25
0.0 T 0.4 4
0.2
-0.2 4 0.0 0.2 0.2
-0.44 02, 0.0 L 0.0+
-0.6 _0'4 -0.21 -0.2 4
0 25005000750010000 O 25005000 750010000 0 25005000750010000 0 25005000750010000
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Recall: Why Spectral Clustering fails?

» Spectral Clustering likes sets with small conductance.

D
o T]

angling sets have small conductance.
here are lots of dangling sets, which lead to lots of small eigenvalues.

T

his conceals true clusters even with large k.
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Why does regularization fix this?
Regularization changes the graph conductance.

21



CoreCut: (conductance on the regularized graph)

cut(S) + %|951]5¢|

CoreCut,(S5) = 20l(5) + 7191

(qb( 3 G)} with & >(CoreCut)

l relaxes to l relaxes to

) ) )
Vanilla-SC »| Regularized-SC
( J with G, [ e )

22



0.6

0.81 core sets | peripheral sets

Conductance finds peripheral sets.
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0.84 core sets

e | Type
: ® CoreCut

0.2

0.0+

Conductance finds peripheral sets.

CoreCut finds core sets.
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Conductance finds peripheral sets.

CoreCut finds core sets.

0.8+

0.6+

0.2+

0.04

core sets |

peripheral sets

|
|
i
1 [
L e T
1 . : i
I § H H
1 ' H
1 : i
1 . i
1 ' H
1 '
(e ®) |
A A :
o
! A
S; S, S, S, S, S
Sets

Type
® CoreCut
A (S, G)

Regularization increases conductance for peripheral sets significantly,
but does not affect core sets that much.
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CoreCut succeeds when the regularizer
overwhelms peripheries but is negligible to the core.

Assumptions:

For a graph G and subsets S, S, there exists €, a, s.t.

1. |S¢| < €|V] and vol(S.) < evol(V), Se is small enough.
_ 1 —€ _
2. d(Se) < 20+ o) d(.S), S is dense enough.
a(l — ¢ S is a good cut.
3. ¢(95) < o
Propositions:
a(l —€)

Under Assumption 1, if we choose 7 > ad(S,), then CoreCut,(S.) > o
Q

If we choose 7 < §d(S) for some § > 0, then CoreCut,(S) < ¢(S) + 4.

Corollary:

Under Assumptions 1-3, if we choose 7 s.t. My suggestion in practice:

ad(S.) < T < 6d(S),
where § = a(l —€)/(1 + a) — ¢(5), then 5
CoreCut,(.5) < CoreCut(S). . average degree of G.

Set 7 to be (square root of)

20



vanilla

37 networks from http://snap.stanford.edu/data

Balance vs balance.

1000 -

100 -

Regularization increases balance.

)
N
L)
@® 5e+05 T
@ S
. . 1e+06 =
® (] °
()
...
o0 (<]
e o
1e+03 1e+05
regularized

more balanced
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100 -

Running time in seconds.
Regularized runs ~8x faster.

0.1 1.0
regularized

faster

10.0


http://snap.stanford.edu/data

Summary

Why Spectral Clustering fails?
Spectral Clustering likes sets with small conductance.
Noises such as g-dangling sets have small conductance.

Why Regularization fixes?

Regularized SC likes sets with small CoreCut.
CoreCut focuses on the core!

Regularized Spectral Clustering
is more balanced & faster!
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Any questions’?
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Appendix slides...
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Techniques very similar to the ones used for RatioCut can be used to derive normalized spectral
clustering as relaxation of minimizing Ncut. In the case k = 2 we define the cluster indicator vector f

by

vol A
vol(A) e~ A
vol(4) if v; € A.

vol(4) ifv, e A
ﬁ={_ (6)

Similar to above one can check that (Df)'1 =0, f’Df = vol(V), and f'Lf = vol(V) Ncut(A, A). Thus
we can rewrite the problem of minimizing Ncut by the equivalent problem

mjnf’Lf subject to f asin (6), Df L1, f'Df = vol(V). (7)

Again we relax the problem by allowing f to take arbitrary real values:

}relﬁzr% f'Lf subject to Df L1, f'Df = vol(V). (8)

Now we substitute g := D'/2f. After substitution, the problem is

rrelﬁan ¢'D~Y2LD71/2g subject to g L D21, ||g||?> = vol(V). (9)
g n

[Luxburg et al. 2007]
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Spectral Clustering is fooled by randomness!

Think regression: What do you say if the model perfectly
interpolates the data (MSE = 0)? Overfitting!

Spectral clustering overfits to conductance!

Don’t be fooled by randomness!
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Vanilla SC overfits!

data: graph (e.g. SBM)
f: conductance (or Rayleigh Quotient)

f: partition (eigenvector)

= arg mein f(0, TrainingData)

Think regression: What do you say if the model perfectly
interpolates the data (MSE = 0)? Overfitting!

Vanilla SC overtfits to conductance. It’s fooled by randomness.
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In statistical learning theory, there are tools to address overfitting.

Regularize to prevent overfitting.

Cross Validation to
* measure overfitting
e assess the regularization

We can also do this in graphs!
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