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Success in modern visual recognition research
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Ingredients for success today
1. Big compute (GPUs)

3. Big models (deep neural nets)

WhICh ingredient will be the bottleneck for
tomorrow’s success’?

2. Big Iabeled data




Ingredients for success today
1. Big compute (GPUs)

Titan X

3. Big models (deep neural nets)




Direct supervision can be costly
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70,000+ annotation hours for 328K images but only
80 object categories (MS COCOQO)
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Requires pixel-level semantic labels



Direct supervision can be challenging

“

Ambiguity in what to label

right image more masculine?



Learning to understand visual data
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Raw sensory input
Diverse data
Multi-modal sensory inputs
Dynamic environments

Minimal human supervision

[Smith & Gasser 2005, The Development of Embodied Cognition: Six Lessons from Babies; Lake et al. 2016, Building Machines That Learn and Think Like People]



Outline

* VVisual scene understanding with minimal human supervision

" [ocalize objects with only image-level tag
annotations?

" Generate fine-grained object details without
fine-grained annotations?

" Segment object instances in real-time?




Learning to localize objects with image-label supervision

Training image
ldogl

14

— Image classification network
Global Average Pooling [Zhou et al. 2016]

Model focuses only on the most discriminative

part (i.e. dog’s face) for image classification
[Weber et al. 2000, Pandey & Lazebnik 2011, Deselaers et al. 2012, Song et al. 2014, ...]



Our idea: Hide and Seek (HaS)

Training image
ldogl

[K. Singh and Y. J. Lee, “Hide-and-Seek”, ICCV 2017]



Our idea: Hide and Seek (HaS)
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Image classification network
Global Average Pooling [Zhou et al. 2016]

Training image
ldogl

Hide patches to force the network to seek
other relevant parts

[K. Singh and Y. J. Lee, “Hide-and-Seek”, ICCV 2017]



Divide the training image into a grid of patch size Sx S
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Traming Image
with label ‘dog’



Divide the training image into a grid of patch size Sx S

Training image
with label ‘dog’



Randomly hide patches
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Training image
with label ‘dog’



Randomly hide patches
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Randomly hide patches

Training image
with label ‘dog’

Epoch 1

Epoch 2
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~eed each hidden image to
image classification CNN

Epoch 1

Epoch 2
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Training image
with label ‘dog’
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~eed each hidden image to
'mage classification CNN
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Training image
with label ‘dog’
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During testing feed full image into trained network

174
Trained CNN

Test image Class Activation Map (CAM)
[Zhou et al. 2016]

Predicted label: ‘dog’



Setting the hidden pixel values

Need to assign mean RGB value (p)
to hidden pixels to ensure same
filter activations in expectation
during training and testing:

< kxk kxk
4”[2/&';(1 WiTXi] = Zzle w;

Filter weights RGB pixel value

Training



Experiments

* ILSVRC 2016 for object localization
* 1000 categories
* 1.2 million training images, 50 thousand validation and test images



Hide-and-Seek localizes objects more fully

AlexNet-GAP
[Zhou et al.”16]

Ours

* Improvement of 27.66 to 30.04
pixel localization average
precision (AP) for ResNet-50

e Generalizes across networks
(AlexNet, GooglLeNet, ResNet)



Hide-and-Seek as data augmentation

Original Image

Random Rotation Random Crop



Hide-and-Seek as data augmentation
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v agaric ﬂ\ | monkey
grille mushroom grape spider monkey
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fire engine | dead-man’'s-fingers currant howler monkey

Image classification (76.1>77.2) +1.1% Semantic segmentation (48.0>49.3) +1.3%
ResNet-50 [He et al. 2015], ImageNet AlexNet FCN [Long et al. 2015], PASCAL 2011

!
4

Female, Age: 24 »‘ Male, Age: 32
Emotion/Age recognition (93.6>94.8) +1.2% Person ntification ) +1.6%
Custom network of [Khorrami et al. 2015], Cohn-Kanade+ IDE+CamStyle [Zhong et al. 2018], DukeMTMC-relD

Independent, re-discoveries: Zhong et al. arXiv 2017, Random erasing; Ghiasi et al. NeurlPS 2018, DropBlock; ...



Limitations

AlexNet-GAP
[Zhou et al.”16]

Ours
Merging spatially-close

instances together

Localizing co-occurring
context




Our visual world is dynamic

* Motion facilitates visual categorization and segmentation
* VVideo provides motion and temporal cues for free!



Our visual world is dynamic
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Videos tagged
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Images tagged ffj f ,"
with “car”

Unsupervised Foreground Object
Segmentation in Video
[Lee & Grauman, ICCV’11; Xiao & Lee CVPR’16]

Weakly-supervised object detection
[Singh, Xiao, Lee CVPR’17; Singh & Lee CVPR’19]

* Improvement of 5.0 AP on PASCAL 07 & 12 object detection for
state-of-the-art weakly-supervised methods [Bilen ’17, Tang ‘17]



Outline

* VVisual scene understanding with minimal human supervision

" [ocalize objects with only image-level tag
annotations?

" Generate fine-grained object details without
fine-grained annotations?

" Segment object instances in real-time?




Task: Which birds belong to the same species?

Easy to tell that A and B shouldn't be grouped with Cand D
... but how about C and D?



Task: Which birds belong to the same species?

Barrow’s Goldeneye California Gull Yellow-billed Cuckoo Black-billed Cuckoo

Easy to tell that A and B shouldn't be grouped with Cand D
... but how about C and D?

All birds belong to different fine-grained categories



What did we learn?




What did we learn? Multiple factors of variation

Different background
Different shape



What did we learn? Existence of a natural hierarchy




What did we learn? Existence of a natural hierarchy

Same background
Same shape
Different color/texture



Goal: A generative model for fine-grained objects

* Generation requires a deep understanding of visual data

 Humans not only recognize patterns ...

* but can also generate new examples, parse an object into parts &
relations, combine related concepts to generate new samples, etc.
[e.g., Lake et al. 2016, Building Machines That Learn and Think Like People]



Goal: A generative model for fine-grained objects

* Disentangle factors of variation (background, shape, appearance)
hierarchically without:
(1) fine grained category labels
(2) part annotations or segmentation masks
(3) ground-truth hierarchy

* Hypothesis: Discovered representation will be useful for
unsupervised fine-grained clustering (“discovery”) of real images

Disentangled representation learning: [Bengio et al. ‘14, Chen et al. ‘16, Yang et al. ‘17, Higgins et al. ‘17, Hu et al.

Unsupervised object category discovery: [Sivic et al. ‘05, Lee and Grauman ‘10, Xie et al. ‘16, Yang et al. ‘16, ...]

18 ...

]



Unsupervised image generation

One-shot generation

Random noise

by

[Goodfellow et al. ‘14, Radford et al. 16,
Gulrajani et al. ‘17, ...]




Unsupervised image generation

One-shot generation

Random noise

SEAA
Vilhd

[Goodfellow et al. ‘14, Radford et al. ‘16,
Gulrajani et al. ‘17, ...]

Stagewise generation

Random noise

SE
VB

[Im et al. ‘16, Kwak and Zhang ‘16, Yang et al. ‘17, ...]




Unsupervised image generation

One-shot generation Our idea:
Random noise Hiera rChical generatiOn

3% -,
e e

[Goodfellow et al. ‘14, Radford et al. ‘16,
Gulrajani et al. ‘17, ...]

Latent background code

Stagewise generation !’ﬁ aAd

Random noise

[Im et al. ‘16, Kwak and Zhang ‘16, Yang et al. ‘17, .



Generative Adversarial Networks (GANs)

 Enforces generated images to match
distribution of real images
 Doesn’t provide fine-grained control

Generator Discriminator

B — real or fake

minmax V(D,G) = Egwpyyo (@108 D ()] + Ezny, () [log(1 — D(G(2)))]

VAN

fake

[l. Goodfellow et al., “Generative Adversarial Networks”, NIPS 2014]



Maximize Mutual Information (InfoGAN)

* Maximize mutual information between
latent code and generated image

e Still unsupervised
minmax V(D,G) — X - I(e,G(z,¢))

0000 |c

fake

B { real or fake
c| ©O000O
G D

I(C, G(Za C)) — ]Ewwpc(c),wNG(z,C) [log Q(C|$)] + H(C)
[X. Chen et al., “InfoGAN: Interpretable Representation Learning by Information Maximizing GANs ”, NIPS 2016]




Maximize Mutual Information (InfoGAN)
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I(C, G(Z, C)) — ]Emwpc(c),a:NG(z.,C) [log Q(c|w)] + H(C)

minmax V(D,G) — X - I(e,G(z,c))

* Maximize mutual information between
latent code and generated image
e Still unsupervised

real or fake

c| OO0

[X. Chen et al., “InfoGAN: Interpretable Representation Learning by Information Maximizing GANs ”, NIPS 2016]



Maximize Mutual Information (InfoGAN)
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I(C, G(Za C)) — ]Ewwpc(c),wNG(z,C) [log Q(C|$)] + H(C)

minmax V(D,G) — X - I(e,G(z,c))

* Maximize mutual information between
latent code and generated image
e Still unsupervised

real or fake

c| OO0

[X. Chen et al., “InfoGAN: Interpretable Representation Learning by Information Maximizing GANs ”, NIPS 2016]



Maximize Mutual Information (InfoGAN)

Code 2 ﬁ i g
[C000 ¢ b Y
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No fine-grained disentanglement of background, shape, appearance



Our ldea: Hierarchical, stagewise generation

In each stage, maximize mutual
info between latent code &
R corresponding generated image

Latent background code

b OOQOO| N>

Latent parent code

p (@O~ N

Latent child code

c @000 ~ /S~

[K. Singh*, U. Ojha*, Y. J. Lee “FineGAN: Unsupervised hierarchical disentanglement for fine-grained object generation and discovery” CVPR 2019]



Fine-grained categories can be organized hierarchically

Parent-level (shape)
grouping

Child-level (appearance)
grouping

c OOOOOO OOOOOO OOOOOO 000000 OOOOOO 000000

- # of parent (shape) codes << # of child (appearance) codes
-2 a fixed group of children share same parent code



Fine-grained categories can be organized hierarchically

Parent-level (shape)
grouping

Child-level (appearance)
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grouping "0 s

¢ ©O0000 (OOOOOO 000000
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- # of parent (shape) codes << # of child (appearance) codes
-2 a fixed group of children share same parent code




Fine-grained categories can be organized hierarchically

Parent-levei
groupi

Child-level (appearan
grouping

-,
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ttt tt1 tt1
- # of parent (shape) codes << # of child (appearance) codes

-2 a fixed group of children share same parent code



FineGAN: Hierarchical, stagewise generation
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Parent stage p z Child stage ¢ Z
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All stages trained end-to-end without mask, fine-grained labels



FiIneGAN

P ST\ e g snea - !

Real images with loose bounding box

Background stage

zf\ Background: B

|‘bg_adv

background adversarial loss

. Hierarchical, stagewise generation




FineGAN: Hierarchical, stagewise generation
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parent mutual information loss




FineGAN: Hierarchical, stagewise generation

(Child stage ¢ A

child mutual information loss
final image adversarial loss



FineGAN’'s stagewise image generation

Background Parent Mask Parent Image Child Mask

Background Parent Mask Parent Image Child Mask Child Image




FineGAN’'s stagewise image generation

Background Parent Mask Parent Image Child Mask Child Image

-~

Background




FineGAN’'s stagewise image generation

Parent Mask Parent Image Child Mask

Background Parent Mask Parent Image Child Mask Child Image



Parent 1
cl
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Parent 2
c4
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FineGAN’s hierarchical disentanglement and grouping
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Parent 1
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FineGAN’s hierarchical disentanglement and grouping

Parent 1 [ g ChE e = i Parent 3

c2
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Disentanglement of shape and appearance

same child code, varying parent code

same parent code, varying child code




FineGAN: Unsupervised Hierarchical
Disentanglement for Fine-Grained
Object Generation and Discovery

Krishna Kumar Singh*, Utkarsh Ojha*, and Yong Jae Lee
UC Davis

* equal contribution




How well does FineGAN model the distribution
of fine-grained categories?

* Favorable Inception scores, Fréchet Inception Distance compared
to state-of-the-art unconditional image generators

Birds Dogs Cars

InfoGAN [Chen "16] 13.20 29.34 17.63
LR-GAN [Yang ‘17] 34.91 54.91 88.80
StackGANvV2 [Zhang ‘18] 13.60 31.39 16.28

Ours 11.25 25.66 16.03




How useful is the learned
representation?

* Fine-grained real image clustering:
Significant improvement over state-of-the-
art deep clustering methods

: DEPICT J . ii#es
Clustering Accuracy (NMI) ol

Birds Dogs Cars

JULE [Yang ‘16] 0.203 0.148 0.237
DEPICT [Xie "16] 0.297 0.183 0.329
Ours 0.403 0.233 0.354



Discussion

* Limitations
* # of parents, children are hyperparameters

* Discovered latent modes of variation may not correspond to those annotated
by a human

« Still far behind fully-supervised fine-grained recognition accuracy

* Important initial step in tackling challenging problem of unsupervised
fine-grained object modeling



Outline

* VVisual scene understanding with minimal human supervision

" [ocalize objects with only image-level tag
annotations?

" Generate fine-grained object details without
fine-grained annotations?

" Segment object instances in real-time?




Real-time Instance Segmentation

\ .
‘-‘ - " ', ’

1

Input Image Semantic Segmentation Instance Segmentation

 So far, no robust real-time (>30 fps) algorithm exists
* You Only Look At CoefficienTs [Bolya, Zhou, Xiao, Lee, ICCV 2019]



Mask R-CNN: Accurate but not fast enough (<10 fps)
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e Stage 1: use Region Proposal Network to generate region proposals

e Stage 2: pool features for each proposal (via ROI-align) and classify
[K. He et al., “Mask R-CNN”, ICCV 2017]
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Mask R-CNN: Accurate but not fast enough (<10 fps)

e e o e e o e m e e M M e e M M e e e e e e e ay,

Can we create a one-stage model for
real-time instance segmentation?



YOLACT architecture
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YOLACT architecture
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YOLACT architecture

Feature Pyramid

(=7

Feature Backbone A

-~

Prototypes

e Attach an FCN (“ProtoNet”) to the largest feature layer (P3) to
produce k image-resolution prototype masks




YOLACT architecture

Feature Pyramid Mask Coefficients
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* In parallel, predict k mask coefficients for each anchor box (in addition
to class confidences and box coefficients)




YOLACT architecture

Feature Pyramid Mask Coefficients

Feature Backbone

Prototypes

* For each instance, linearly combine prototypes using corresponding
predicted coefficients




YOLACT architecture

~N

Assembly

N

Feature Pyramid Mask Coefficients

Feature Backbone

Prototypes

* For each instance, linearly combine prototypes using corresponding
predicted coefficients



YOLACT architecture

~N

Feature Pyramid Mask Coefficients Assembly

Feature Backbone

Prototypes

* For each instance, linearly combine prototypes using corresponding
predicted coefficients



YOLACT architecture

Assem bly

Feature Pyramid Mask Coeff|C|ents
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* Finally, crop with the predicted bounding box and threshold




YOLACT architecture

Feature Backbone
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Feature Pyramid
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Prototypes

* Finally, crop with the predicted bounding box and threshold




YOLACT architecture

~
Feature Pyramid Mask Coefficients Assembly
)
(=3 d i
Feature Backbone 7 ) ]
P i
_ Class, Box '
cs / PSS
c4a / PAa
L
v
P33
Prototypes
J

* Finally, crop with the predicted bounding box and threshold



Prototype behavior

* Spatially partition the image
* Segment background
* Detect instance contours

* Encode position-sensitive
directional maps

* Most do a combination

\ﬂ‘



Prototype behavior

e Spatially partition the image

* Segment background
e Detect instance contours

* Encode position-sensitive
directional maps

* Most do a combination



Prototype behavior

e Spatially partition the image

* Segment background
* Encode position-sensitive
directional maps

* Most do a combination



Prototype behavior

* Spatially partition the image
* Segment background
* Detect instance contours

* Encode position-sensitive
directional maps

e _ - '




Prototype behavior

* Spatially partition the image
* Segment background
* Detect instance contours

* Encode position-sensitive
directional maps 3 b

* Most do a combination




/ero-padding in ResNets

Insst(234x3243)

. ) Stage 1

* Needed to keep input and output spatial
resolution same

......

.........

i Stage 2
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Results

® FCIs
387 ® Y Mask-RCNN
] RetinaMask
" * PA-Net
- - 347 MS-RCNN
* First real-time (> 30 fps) I ) : e
Instance segmentation 5 &
algorithm with s @ &
" = sy
competitive results on 28-
the challenging MS 261
COCO dataset 2- . .
eal-time

0 10 20 30 40 50

FPS

Figure 1: Speed-performance trade-off for various instance
segmentation methods on COCO.
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Conclusions

* Tremendous success stories in computer vision, but mostly
limited to specific domains with lots of labeled data ®

* Learn to understand visual data with minimal human supervision

- Challenging since there’s no direct supervision

- But with the right constraints, can push the algorithm to behave in desirable ways
with little to no supervision

- Handling dynamic environments requires fast learning and inference

* Code, additional results available:
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Method Backbone FPS  Time AP  APs9 APy APs APpy APp
PA-Net [29] R-50-FPN 47 2128 36.6 58.0 39.3 16.3 38.1 53.1
RetinaMask [14] R-101-FPN 6.0 166.7 347 554 36.9 14.3 36.7 505
ECIS [24] R-101-C5 6.6 1515 29.5 515 30.2 8.0 3.0 497
Mask R-CNN [17] R-101-FPN 8.6 1163 357 58.0 37.8 15.5 38.1 524
MS R-CNN [20] R-101-FPN 86 1163 38.3 588 41.5 178 404 544
YOLACT-550 R-101-FPN 33.5 298 29.8 485 31.2 9.9 31.3 477
YOLACT-400 R-101-FPN 453 221 249 420 254 5.0 253 450
YOLACT-550 R-50-FPN 450 222 282  46.6 29.2 9.2 203 4438
YOLACT-550 D-53-FPN 40.7 246 28.7  46.8 30.0 9.5 29.6 455
YOLACT-700 R-101-FPN 234 427 3.2 50.6 32.8 12.1 333 47.1

Table 1: MS COCO [28] Results We compare to state-of-the-art methods for mask mAP and speed on COCO test-dev
and include several ablations of our base model, varying backbone network and image size. We denote the backbone archi-
tecture with network—-depth-features, where R and D refer to ResNet [ 1V] and DarkNet [ 36], respectively. Our base
model, YOLACT-550 with ResNet-101, is 3.9x faster than the previous fastest approach with competitive mask mAP.

Method NMS AP FPS Time k. AP FPS Time Method AP  FPS Time
YOLACT Standard 30.0 240 416 8 268 330 304 FCIS w/o Mask Voting 278 95 105.3
Fast 299 335 298 16 27.1 328 305 Mask R-CNN (550 x 550) 32.2 135 739
Mack RCNN Standard 361 86  116.0 * 2‘21 g;; g%g g(l)z fe-mask 207 257 389
Fast 358 99 1010 128 276 315 318 YOLACT-550 (Ours) 299 33.0 303

256 277 298 336

(a) Fast NMS Fast NMS performs only slightly
worse than standard NMS, while being around 12
ms faster. We also observe a similar trade-off im-
plementing Fast NMS in Mask R-CNN.

(b) Prototypes Choices for
k. We choose 32 for its mix

of performance and speed.

Table 2: Ablations All models evaluated on COCO val2017 using our servers. Models in Table 2b were trained for 400k
iterations instead of 800k. Time in milliseconds reported for convenience.

masks produced from an fc layer.

(c) Accelerated Baselines We compare to other
baseline methods by tuning their speed-accuracy
trade-offs. fc-mask is our model but with 16 x 16



