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Success in modern visual recognition research 

Image	classification	

Object	detection	Pose	recognition	

Semantic	segmentation	

…	and	many	more	



Ingredients for success today 
1.	Big	compute	(GPUs)	

2.	Big	labeled	data	

3.	Big	models	(deep	neural	nets)	

Which ingredient will be the bottleneck for 
tomorrow’s success? 



Ingredients for success today 

2.	Big	labeled	data	

3.	Big	models	(deep	neural	nets)	

1.	Big	compute	(GPUs)	

Requires expensive, direct 
human supervision 



Requires	pixel-level	semantic	labels	

 
70,000+ annotation hours for 328K images but only 

80 object categories (MS COCO) 
 

Direct supervision can be costly 



???	

Direct supervision can be challenging 

Annotate	pixels	that	make	
right	image	more	masculine?	

 
Ambiguity in what to label 

 



Learning to understand visual data 

Raw	sensory	input	
	

Diverse	data	
	

Multi-modal	sensory	inputs	
	

Dynamic	environments	
	

Minimal	human	supervision	

[Smith	&	Gasser	2005,	The	Development	of	Embodied	Cognition:	Six	Lessons	from	Babies;	Lake	et	al.	2016,	Building	Machines	That	Learn	and	Think	Like	People]	



Outline	
• Visual	scene	understanding	with	minimal	human	supervision	

§ Localize	objects	with	only	image-level	tag						 																								 							
annotations?		

§ Generate	fine-grained	object	details	without																																								
fine-grained	annotations?	

• Towards	visual	scene	understanding	in	dynamic	environments	
§ Segment	object	instances	in	real-time?	

plane 



Learning to localize objects with image-label supervision 

Model	focuses	only	on	the	most	discriminative	
part	(i.e.	dog’s	face)	for	image	classification	
[Weber	et	al.	2000,	Pandey	&	Lazebnik	2011,	Deselaers	et	al.	2012,	Song	et	al.	2014,	…]	

		

Image	classification	network	
Global	Average	Pooling	[Zhou	et	al.	2016]	

Training	image	
‘dog’	



Our idea: Hide and Seek (HaS) 

[K.	Singh	and	Y.	J.	Lee,	“Hide-and-Seek”,	ICCV	2017]	

Training	image	
‘dog’	



Our idea: Hide and Seek (HaS) 

Image	classification	network	
Global	Average	Pooling	[Zhou	et	al.	2016]	

	
Hide	patches	to	force	the	network	to	seek		
other	relevant	parts	

Training	image	
‘dog’	

[K.	Singh	and	Y.	J.	Lee,	“Hide-and-Seek”,	ICCV	2017]	



Training	image	
with	label	‘dog’	

Divide the training image into a grid of patch size S x S 



S	

S	

Training	image	
with	label	‘dog’	

Divide the training image into a grid of patch size S x S 



Epoch	1	

Randomly hide patches 

S	

Training	image	
with	label	‘dog’	

S	



Epoch	2	

Epoch	1	

Randomly hide patches 
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with	label	‘dog’	
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Epoch	2	

Epoch	N	

Epoch	1	

Randomly hide patches 

S	

Training	image	
with	label	‘dog’	

S	



CNN	

Feed each hidden image to 
image classification CNN 

Epoch	2	

Epoch	N	

Epoch	1	

S	

Training	image	
with	label	‘dog’	

S	



CNN	

Feed each hidden image to 
image classification CNN 

Epoch	1	

S	

Training	image	
with	label	‘dog’	

S	

Epoch	2	

Epoch	N	



Trained	CNN	

During testing feed full image into trained network 

Test	image	 Class	Activation	Map	(CAM)	
[Zhou	et	al.	2016]	

Predicted	label:	‘dog’	



Setting the hidden pixel values 

	
Need	to	assign	mean	RGB	value	(µ)	
to	hidden	pixels	to	ensure	same	
filter	activations	in	expectation	
during	training	and	testing:	
	
	
	

Filter	weights	 RGB	pixel	value	
Training	 Testing	



Experiments 

•  ILSVRC	2016	for	object	localization	
•  1000	categories	
•  1.2	million	training	images,	50	thousand	validation	and	test	images	



Hide-and-Seek localizes objects more fully 

•  Improvement	of	27.66	to	30.04	
pixel	localization	average	
precision	(AP)	for	ResNet-50	

• Generalizes	across	networks	
(AlexNet,	GoogLeNet,	ResNet)	

AlexNet-GAP	
[Zhou	et	al.’16]	

Ours	



Original	Image	

Horizontal	Flip	 Color	Jitter	

Random	Rotation	 Random	Crop	

Hide-and-Seek	

Hide-and-Seek as data augmentation 



Hide-and-Seek as data augmentation 

Image	classification	(76.1à77.2)	+1.1%	
ResNet-50	[He	et	al.	2015],	ImageNet		

Semantic	segmentation	(48.0à49.3)	+1.3%	
AlexNet	FCN	[Long	et	al.	2015],	PASCAL	2011	

Person	reidentification	(78.3à79.9)	+1.6%	
IDE+CamStyle	[Zhong	et	al.	2018],	DukeMTMC-reID	

Emotion/Age	recognition	(93.6à94.8)	+1.2%	
Custom	network	of	[Khorrami	et	al.	2015],	Cohn-Kanade+	

Independent,	re-discoveries:	Zhong	et	al.	arXiv	2017,	Random	erasing;	Ghiasi	et	al.	NeurIPS	2018,	DropBlock;	…	



Limitations 

AlexNet-GAP	
[Zhou	et	al.’16]	 Ours	

Merging spatially-close 
instances together 

Localizing co-occurring 
context 



Our visual world is dynamic 

• Motion	facilitates	visual	categorization	and	segmentation	
• Video	provides	motion	and	temporal	cues	for	free!	



Our visual world is dynamic 

Unsupervised	Foreground	Object	
Segmentation	in	Video		

[Lee	&	Grauman,	ICCV’11;	Xiao	&	Lee	CVPR’16]	 Weakly-supervised	object	detection	
[Singh,	Xiao,	Lee	CVPR’17;	Singh	&	Lee	CVPR’19]	

Videos tagged 
with “car” 

Images tagged 
with “car” 

•  Improvement	of	5.0	AP	on	PASCAL	’07	&	’12	object	detection	for	
state-of-the-art	weakly-supervised	methods	[Bilen	’17,	Tang	‘17]	



Outline	
• Visual	scene	understanding	with	minimal	human	supervision	

§ Localize	objects	with	only	image-level	tag						 																								 							
annotations?		

§ Generate	fine-grained	object	details	without																																								
fine-grained	annotations?	

• Towards	visual	scene	understanding	in	dynamic	environments	
§ Segment	object	instances	in	real-time?	

plane 



A	 D	B	 C	

Easy	to	tell	that	A	and	B	shouldn't	be	grouped	with	C	and	D	
…	but	how	about	C	and	D?		

Task: Which birds belong to the same species? 



A	 D	B	 C	

Easy	to	tell	that	A	and	B	shouldn't	be	grouped	with	C	and	D	
…	but	how	about	C	and	D?	

All	birds	belong	to	different	fine-grained	categories	

Barrow’s	Goldeneye	 Black-billed	Cuckoo	Yellow-billed	Cuckoo	California	Gull	

Task: Which birds belong to the same species? 



What did we learn? 

A	 D	B	 C	



What did we learn? Multiple factors of variation 

A	 D	B	 C	

Different	background	
Different	shape	

	



A	 D	B	 C	

What did we learn? Existence of a natural hierarchy  



A	 D	B	 C	

Same	background	
Same	shape	

Different	color/texture	

What did we learn? Existence of a natural hierarchy  



Goal: A generative model for fine-grained objects 

• Generation	requires	a	deep	understanding	of	visual	data	

• Humans	not	only	recognize	patterns	…	
• but	can	also	generate	new	examples,	parse	an	object	into	parts	&	
relations,	combine	related	concepts	to	generate	new	samples,	etc.		

	

[e.g.,	Lake	et	al.	2016,	Building	Machines	That	Learn	and	Think	Like	People]	



Goal: A generative model for fine-grained objects 

• Disentangle	factors	of	variation	(background,	shape,	appearance)	
hierarchically	without:	
(1)	fine	grained	category	labels	
(2)	part	annotations	or	segmentation	masks		
(3)	ground-truth	hierarchy	

• Hypothesis:	Discovered	representation	will	be	useful	for	
unsupervised	fine-grained	clustering	(“discovery”)	of	real	images	

Disentangled	representation	learning:	[Bengio	et	al.	‘14,	Chen	et	al.	‘16,	Yang	et	al.	‘17,	Higgins	et	al.	‘17,	Hu	et	al.	‘18	…]	
Unsupervised	object	category	discovery:	[Sivic	et	al.	‘05,		Lee	and	Grauman	‘10,	Xie	et	al.	‘16,	Yang	et	al.	‘16,	…]	
	



Unsupervised image generation 

Random	noise	

One-shot generation          

[Goodfellow	et	al.	‘14,	Radford	et	al.	‘16,		
Gulrajani	et	al.	‘17,	…]	



Unsupervised image generation 

Random	noise	

Random	noise	

One-shot generation          

Stagewise generation  

[Goodfellow	et	al.	‘14,	Radford	et	al.	‘16,		
Gulrajani	et	al.	‘17,	…]	

[Im	et	al.	‘16,	Kwak	and	Zhang	‘16,	Yang	et	al.	‘17,	…]	



Random	noise	

Latent	background	code	

Latent	parent	code	

Latent	child	code	
Random	noise	

Our idea:  
Hierarchical generation  

One-shot generation          

Stagewise generation  

[Goodfellow	et	al.	‘14,	Radford	et	al.	‘16,		
Gulrajani	et	al.	‘17,	…]	

[Im	et	al.	‘16,	Kwak	and	Zhang	‘16,	Yang	et	al.	‘17,	…]	

Unsupervised image generation 



Generative Adversarial Networks (GANs) 

G	

		 	

D	 real	or	fake	

z	

real	

fake	

[I.	Goodfellow	et	al.,	“Generative	Adversarial	Networks”,	NIPS	2014]	

•  Enforces	generated	images	to	match	
distribution	of	real	images			

•  Doesn’t	provide	fine-grained	control	

Generator	 Discriminator	



G	

		 	

D	real	

fake	

Maximize Mutual Information (InfoGAN) 

z	

real	or	fake	

c	

c	

[X.	Chen	et	al.,	“InfoGAN:	Interpretable	Representation	Learning	by	Information	Maximizing	GANs	”,	NIPS	2016]	

•  Maximize	mutual	information	between	
latent	code	and	generated	image	

•  Still	unsupervised	



G	

		 	

D	real	

fake	

Maximize Mutual Information (InfoGAN) 

c	

real	or	fake	

c	

[X.	Chen	et	al.,	“InfoGAN:	Interpretable	Representation	Learning	by	Information	Maximizing	GANs	”,	NIPS	2016]	

z	

•  Maximize	mutual	information	between	
latent	code	and	generated	image	

•  Still	unsupervised	



G	

		 	

D	real	

fake	

Maximize Mutual Information (InfoGAN) 

c	

c	

[X.	Chen	et	al.,	“InfoGAN:	Interpretable	Representation	Learning	by	Information	Maximizing	GANs	”,	NIPS	2016]	

z	

•  Maximize	mutual	information	between	
latent	code	and	generated	image	

•  Still	unsupervised	

real	or	fake	



Code	1	

Code	2	

No	fine-grained	disentanglement	of	background,	shape,	appearance	

Maximize Mutual Information (InfoGAN) 



Latent	background	code	

Latent	parent	code	

Latent	child	code	

Our Idea: Hierarchical, stagewise generation  

In each stage, maximize mutual 
info between latent code & 

corresponding generated image 

[K.	Singh*,	U.	Ojha*,	Y.	J.	Lee	“FineGAN:	Unsupervised	hierarchical	disentanglement	for	fine-grained	object	generation	and	discovery”	CVPR	2019]	

p	

b	

c	



  

à	#	of	parent	(shape)	codes		<<		#	of	child	(appearance)	codes	
à	a	fixed	group	of	children	share	same	parent	code	

Fine-grained categories can be organized hierarchically 

Parent-level	(shape)	
grouping	

Child-level	(appearance)	
grouping	
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à	#	of	parent	(shape)	codes		<<		#	of	child	(appearance)	codes	
à	a	fixed	group	of	children	share	same	parent	code	
	

Fine-grained categories can be organized hierarchically 
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Fine-grained categories can be organized hierarchically 

Parent-level	(shape)	
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z	

b	

z	p	

	Background:	B	 						Parent:	P	 				Child:	C	

Child	stage	

Cm	 Cf	Pm	 Pf	

Parent	stage	

Lp	 Lc	 Ladv	Lbg_adv	

c	

Gb	

		Dp			Db	 		Dc	 Dadv	

Background	stage	

FineGAN: Hierarchical, stagewise generation 

stitch	 stitch	

Gp	

z	

Gc	

All	stages	trained	end-to-end	without	mask,	fine-grained	labels	
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FineGAN: Hierarchical, stagewise generation 
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Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	

FineGAN’s stagewise image generation 

Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	



Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	

FineGAN’s stagewise image generation 

Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	



Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	

FineGAN’s stagewise image generation 

Background	 Parent	Mask	 Parent	Image	 Child	Mask	 Child	Image	



FineGAN’s hierarchical disentanglement and grouping 

Parent	1	

Parent	4	

Parent	3	

Parent	2	

c1	

c2	

c3	

c4	

c5	

c6	

c7	

c8	

c9	

c10	

c11	

c12	
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FineGAN’s hierarchical disentanglement and grouping 

Parent	1	

Parent	4	
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Parent	2	

c1	
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same	child	code,	varying	parent	code	
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Disentanglement of shape and appearance 





How well does FineGAN model the distribution 
of fine-grained categories? 

•  Favorable	Inception	scores,	Fréchet	Inception	Distance	compared	
to	state-of-the-art	unconditional	image	generators	

Fréchet	Inception	Distance	
Birds	 Dogs	 Cars	

InfoGAN	[Chen	’16]	 13.20	 29.34	 17.63	
LR-GAN	[Yang	‘17]	 34.91	 54.91	 88.80	

StackGANv2	[Zhang	‘18]	 13.60	 31.39	 16.28	
Ours	 11.25	 25.66	 16.03	



•  Fine-grained	real	image	clustering:	
Significant	improvement	over	state-of-the-
art	deep	clustering	methods	

How useful is the learned 
representation? JULE	

DEPICT	

Ours	

Clustering	Accuracy	(NMI)	
Birds	 Dogs	 Cars	

JULE	[Yang	‘16]	 0.203	 0.148	 0.237	
DEPICT	[Xie	’16]	 0.297	 0.183	 0.329	

Ours	 0.403	 0.233	 0.354	



Discussion 

•  Limitations	
•  #	of	parents,	children	are	hyperparameters	
•  Discovered	latent	modes	of	variation	may	not	correspond	to	those	annotated	
by	a	human	

•  Still	far	behind	fully-supervised	fine-grained	recognition	accuracy	

•  Important	initial	step	in	tackling	challenging	problem	of	unsupervised	
fine-grained	object	modeling	



Outline	
• Visual	scene	understanding	with	minimal	human	supervision	

§ Localize	objects	with	only	image-level	tag						 																								 							
annotations?		

§ Generate	fine-grained	object	details	without																																								
fine-grained	annotations?	

• Towards	visual	scene	understanding	in	dynamic	environments	
§ Segment	object	instances	in	real-time?	

plane 



Real-time Instance Segmentation 

•  So	far,	no	robust	real-time	(>30	fps)	algorithm	exists	
• You	Only	Look	At	CoefficienTs	[Bolya,	Zhou,	Xiao,	Lee,	ICCV	2019]	
	
	
	
	
	



Mask R-CNN: Accurate but not fast enough (<10 fps) 

[K.	He	et	al.,	“Mask	R-CNN”,	ICCV	2017]	

•  Stage	1:	use	Region	Proposal	Network	to	generate	region	proposals	
•  Stage	2:	pool	features	for	each	proposal	(via	ROI-align)	and	classify	

Stage	1	

Stage	2	
ROI align 

class, box, mask Stage	1	



Mask R-CNN: Accurate but not fast enough (<10 fps) 

[K.	He	et	al.,	“Mask	R-CNN”,	ICCV	2017]	

•  Stage	1:	use	Region	Proposal	Network	to	generate	region	proposals	
•  Stage	2:	pool	features	for	each	proposal	(via	ROI-align)	and	classify	

Stage	1	

Stage	2	
ROI align 

class, box, mask Stage	1	

 
Can we create a one-stage model for 

real-time instance segmentation? 
 



YOLACT architecture 
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1	

Protonet	

Prediction	Head	
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YOLACT architecture 

Feature	Backbone	

Feature	Pyramid	



YOLACT architecture 

Protonet	

Prototypes	

Feature	Backbone	

Feature	Pyramid	

• Attach	an	FCN	(“ProtoNet”)	to	the	largest	feature	layer	(P3)	to	
produce	k	image-resolution	prototype	masks	



YOLACT architecture 

Protonet	

Prototypes	

Mask	Coefficients	

-	

+

Person	

Detection	1	

-	

+

Racket	

Detection	2	

Feature	Backbone	

Feature	Pyramid	

Prediction	Head	

•  In	parallel,	predict	k	mask	coefficients	for	each	anchor	box	(in	addition	
to	class	confidences	and	box	coefficients)	

Class,	Box	



YOLACT architecture 

Protonet	

Prototypes	

Mask	Coefficients	

-	

+

Person	

Detection	1	

-	

+

Racket	

Detection	2	

Feature	Backbone	

Feature	Pyramid	

Prediction	Head	
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Prototype behavior 

•  Spatially	partition	the	image	
•  Segment	background	
• Detect	instance	contours	
•  Encode	position-sensitive	
directional	maps	

• Most	do	a	combination	

1	

2	

3	

4	

5	
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Zero-padding in ResNets 

• Needed	to	keep	input	and	output	spatial	
resolution	same		

5x5	Input	 5x5	Output	3x3	Filter	

=	*	

ResNet50	
zero	padding	

17	times	



•  First	real-time	(>	30	fps)	
instance	segmentation	
algorithm	with	
competitive	results	on	
the	challenging	MS	
COCO	dataset	

Results 







Conclusions 

• Tremendous	success	stories	in	computer	vision,	but	mostly	
limited	to	specific	domains	with	lots	of	labeled	data	!	

• Learn	to	understand	visual	data	with	minimal	human	supervision		
-  Challenging	since	there’s	no	direct	supervision	
-  But	with	the	right	constraints,	can	push	the	algorithm	to	behave	in	desirable	ways	
with	little	to	no	supervision	

-  Handling	dynamic	environments	requires	fast	learning	and	inference	

• Code,	additional	results	available:	http://web.cs.ucdavis.edu/~yjlee/	
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