Learning to Understand Visual Data with Minimal Human Supervision

Yong Jae Lee University of California, Davis

Success in modern visual recognition research

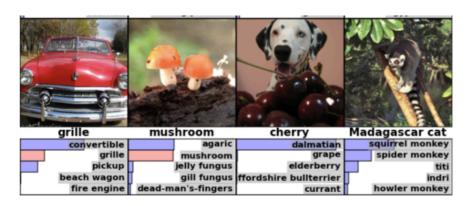
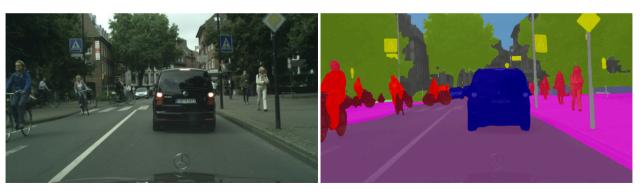
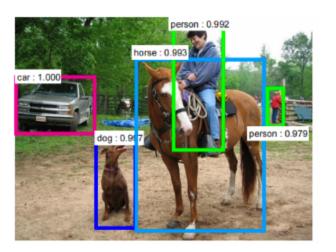


Image classification

Pose recognition



Semantic segmentation



Object detection

... and many more

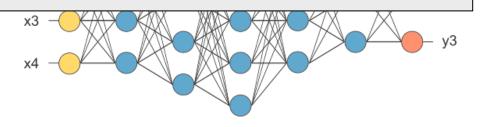
Ingredients for success today

1. Big compute (GPUs)

3. Big models (deep neural nets)

Which ingredient will be the *bottleneck* for tomorrow's success?

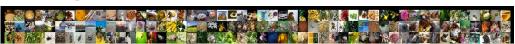
2. Big labeled data



Ingredients for success today

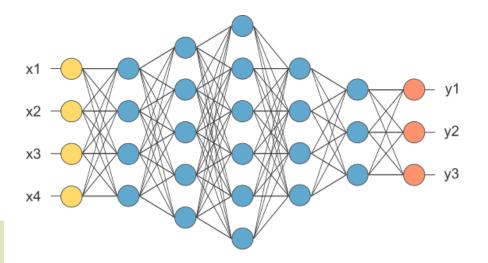
1. Big compute (GPUs)

2. Big labeled data



Requires expensive, direct human supervision

3. Big models (deep neural nets)

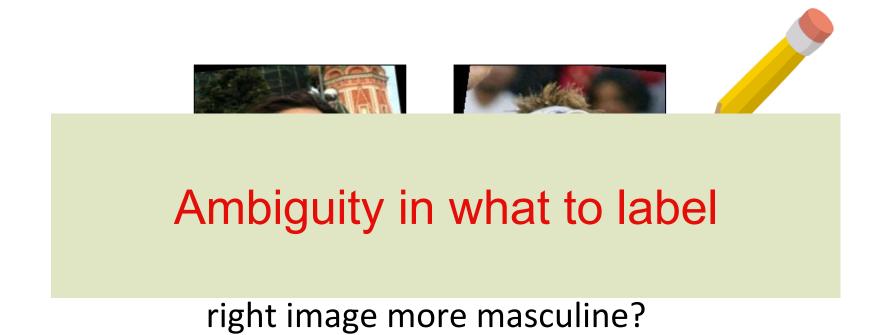


Direct supervision can be costly

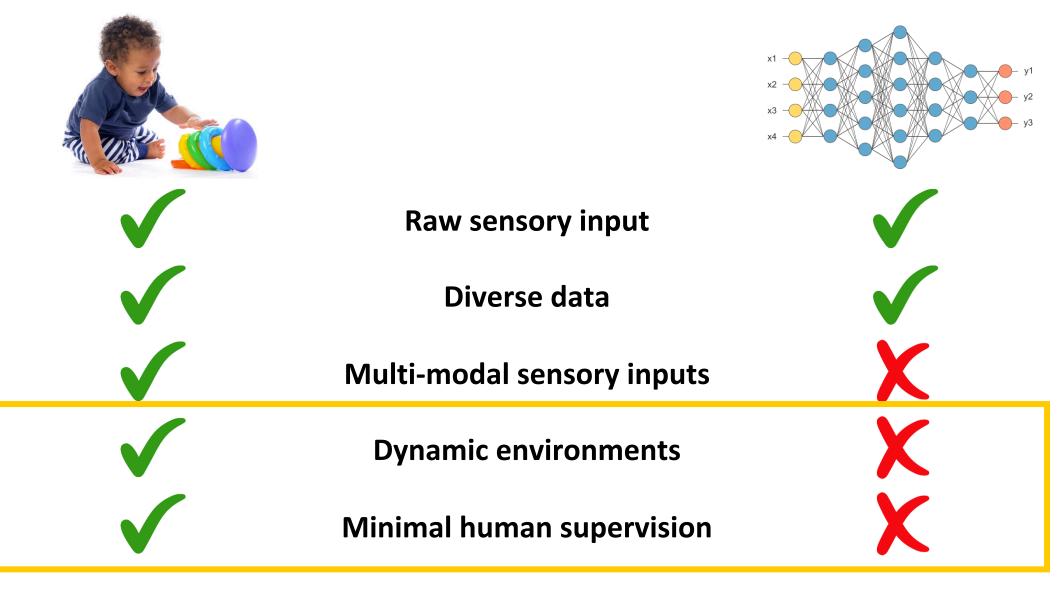
70,000+ annotation hours for 328K images but *only* 80 object categories (MS COCO)

Requires pixel-level semantic labels

Direct supervision can be challenging

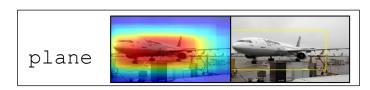


Learning to understand visual data

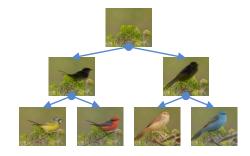


Outline

- Visual scene understanding with minimal human supervision
 - Localize objects with only image-level tag annotations?

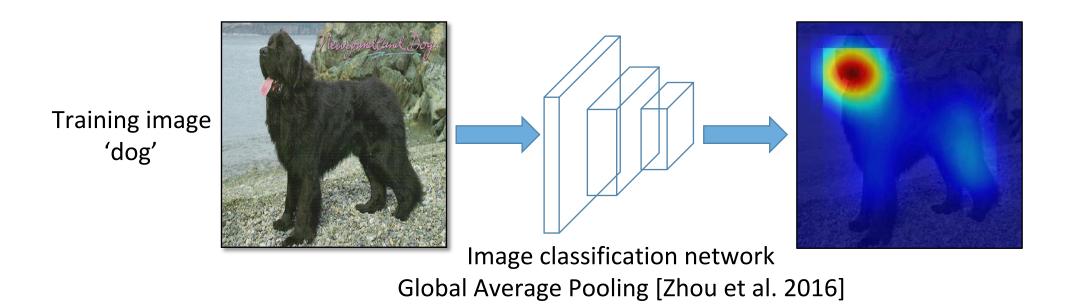


• Generate fine-grained object details without fine-grained annotations?



- Towards visual scene understanding in dynamic environments
 - Segment object instances in real-time?

Learning to localize objects with image-label supervision



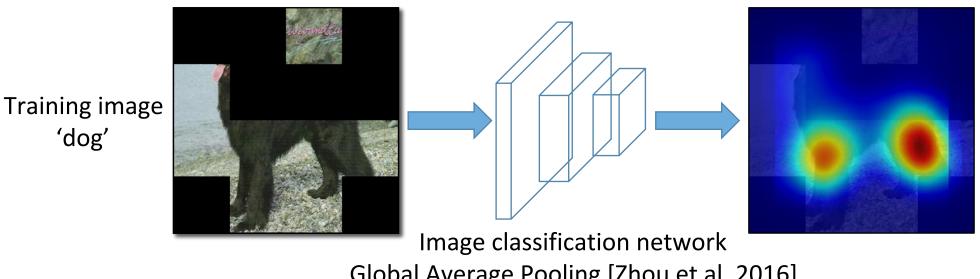
Model focuses only on the most discriminative part (i.e. dog's face) for image classification

[Weber et al. 2000, Pandey & Lazebnik 2011, Deselaers et al. 2012, Song et al. 2014, ...]

Our idea: Hide and Seek (HaS)

Training image 'dog'

Our idea: Hide and Seek (HaS)



Global Average Pooling [Zhou et al. 2016]

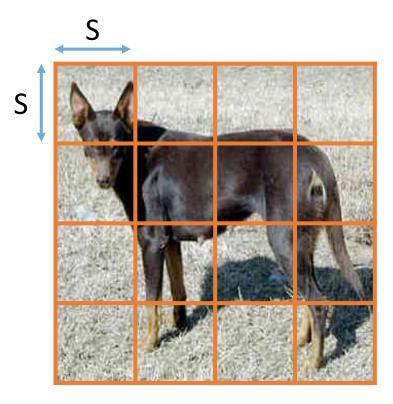
Hide patches to force the network to *seek* other relevant parts

[K. Singh and Y. J. Lee, "Hide-and-Seek", ICCV 2017]

Divide the training image into a grid of patch size S x S

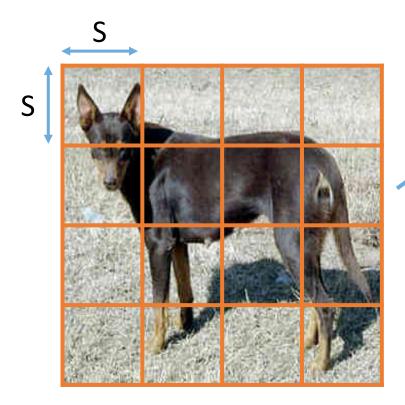
Training image with label 'dog'

Divide the training image into a grid of patch size S x S



Training image with label 'dog'

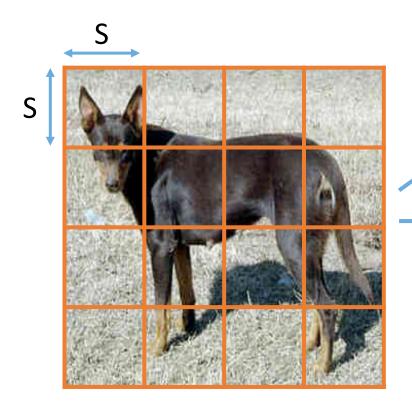
Randomly hide patches



Training image with label 'dog'

Epoch 1

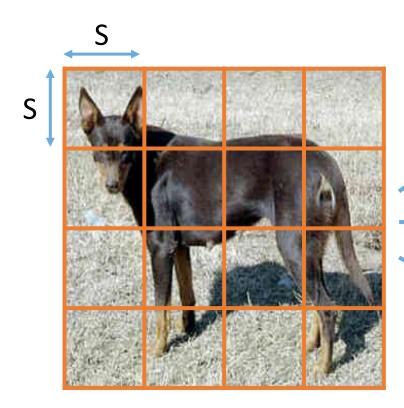
Randomly hide patches



Training image with label 'dog'

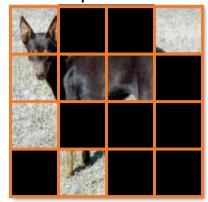
Epoch 2

Randomly hide patches



Training image with label 'dog'

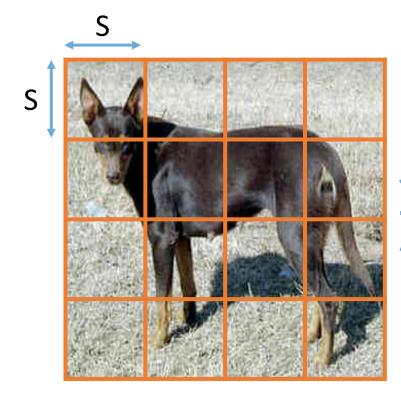
Epoch 1



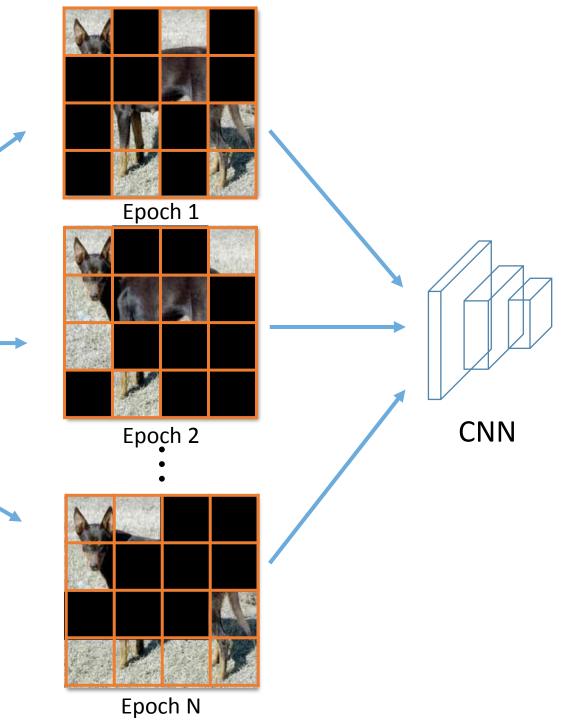
Epoch 2

Epoch N

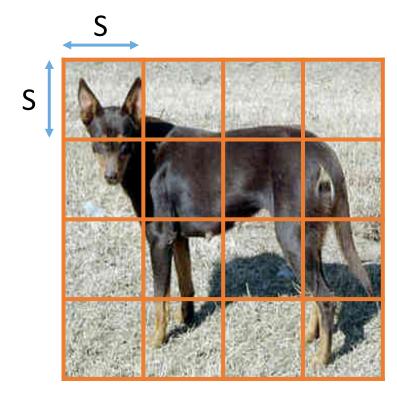
Feed each hidden image to image classification CNN



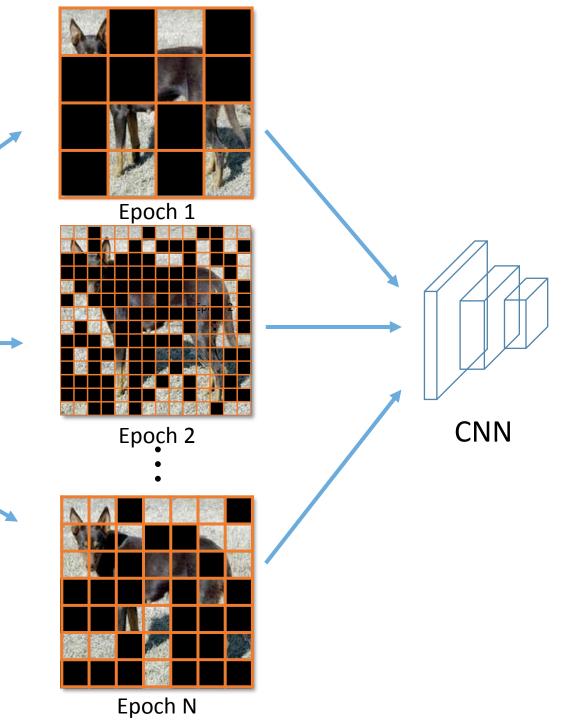
Training image with label 'dog'



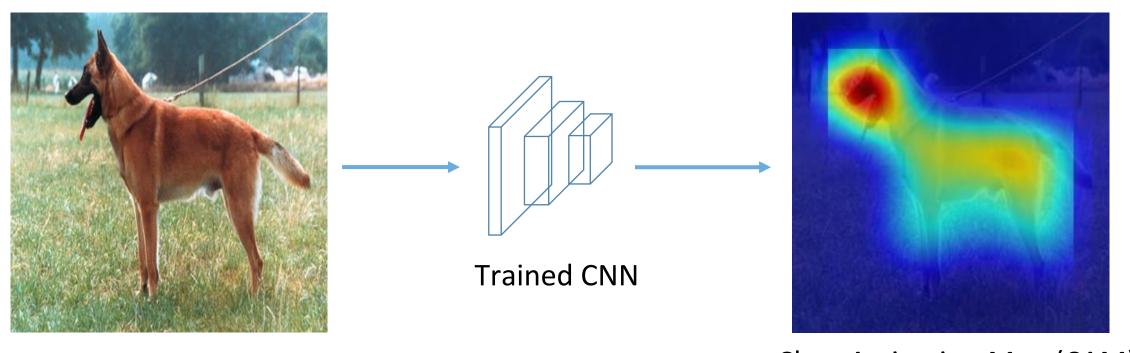
Feed each hidden image to image classification CNN



Training image with label 'dog'



During testing feed full image into trained network



Test image

Class Activation Map (CAM) [Zhou et al. 2016]

Predicted label: 'dog'

Setting the hidden pixel values

Training

Testing

Need to assign mean RGB value (μ) to hidden pixels to ensure same filter activations in expectation during training and testing:

$$\mathbb{E}\left[\sum_{i=1}^{k\times k}\mathbf{w}_{i}^{\top}\mathbf{x}_{i}\right] = \sum_{i=1}^{k\times k}\mathbf{w}_{i}^{\top}\mu$$

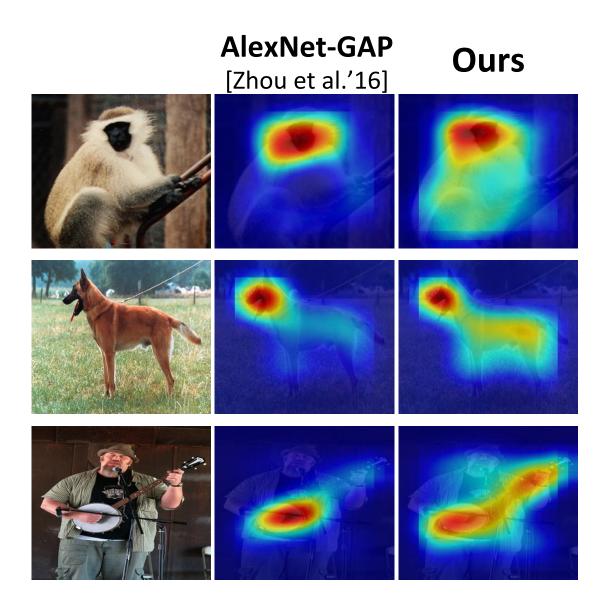
Filter weights

RGB pixel value

Experiments

- ILSVRC 2016 for object localization
- 1000 categories
- 1.2 million training images, 50 thousand validation and test images

Hide-and-Seek localizes objects more fully



• Improvement of **27.66 to 30.04** pixel localization average precision (AP) for ResNet-50

 Generalizes across networks (AlexNet, GoogLeNet, ResNet)

Hide-and-Seek as data augmentation

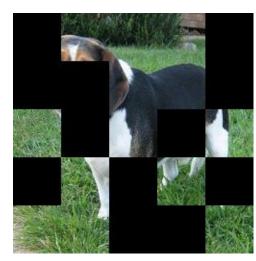
Original Image

Horizontal Flip

Random Rotation

Color Jitter

Random Crop



Hide-and-Seek

Hide-and-Seek as data augmentation

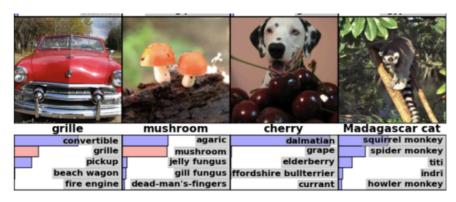
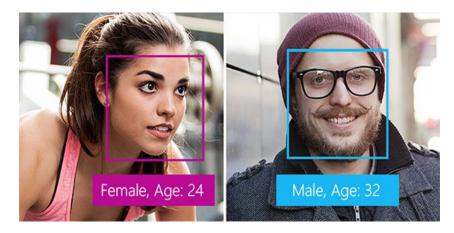
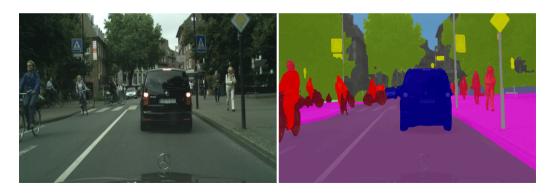


Image classification (76.1→77.2) +1.1%
ResNet-50 [He et al. 2015], ImageNet



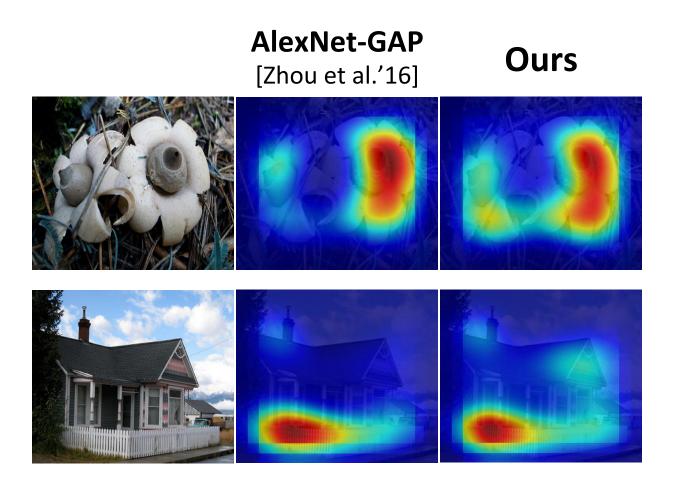
Emotion/Age recognition (93.6→94.8) +1.2% Custom network of [Khorrami et al. 2015], Cohn-Kanade+



Semantic segmentation (48.0→49.3) +1.3% AlexNet FCN [Long et al. 2015], PASCAL 2011

Person reidentification (78.3→79.9) +1.6% IDE+CamStyle [Zhong et al. 2018], DukeMTMC-reID

Limitations



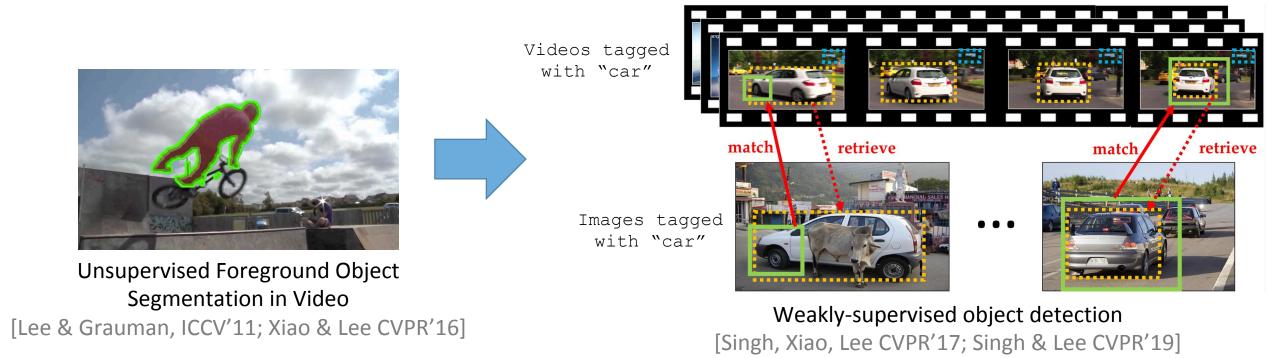
Merging spatially-close instances together

Localizing co-occurring context

Our visual world is dynamic

- Motion facilitates visual categorization and segmentation
- Video provides motion and temporal cues for free!

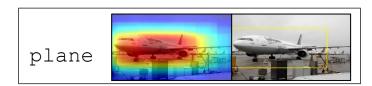
Our visual world is dynamic



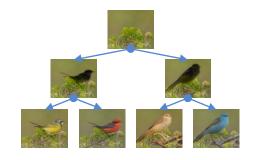
• Improvement of 5.0 AP on PASCAL '07 & '12 object detection for state-of-the-art weakly-supervised methods [Bilen '17, Tang '17]

Outline

- Visual scene understanding with minimal human supervision
 - Localize objects with only image-level tag annotations?

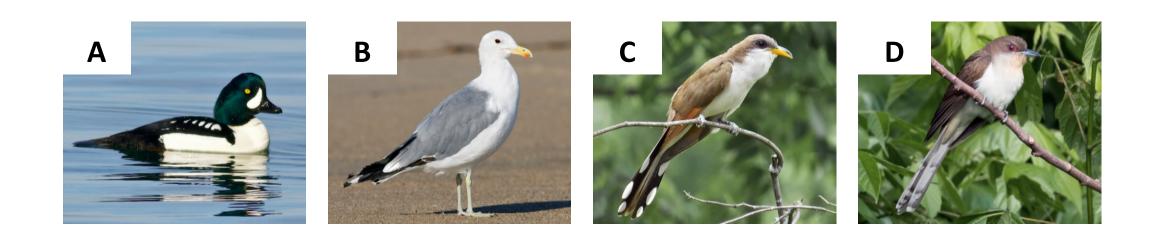


• Generate fine-grained object details without fine-grained annotations?



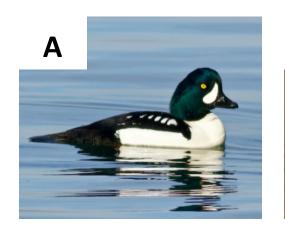
- Towards visual scene understanding in dynamic environments
 - Segment object instances in real-time?

Task: Which birds belong to the same species?

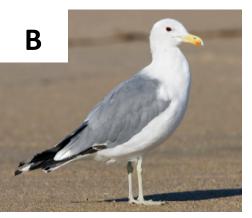


Easy to tell that **A** and **B** shouldn't be grouped with **C** and **D** ... but how about **C** and **D**?

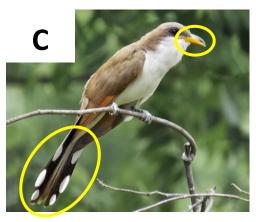
Task: Which birds belong to the same species?



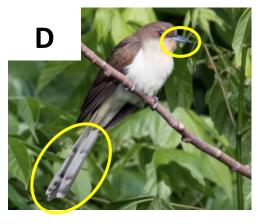
Barrow's Goldeneye



California Gull



Yellow-billed Cuckoo

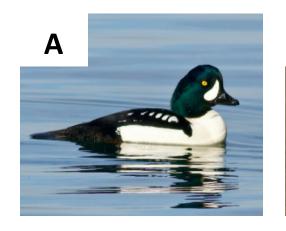


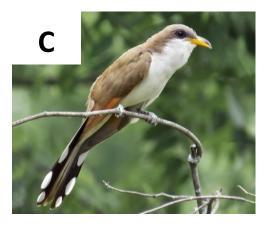
Black-billed Cuckoo

Easy to tell that **A** and **B** shouldn't be grouped with **C** and **D** ... but how about **C** and **D**?

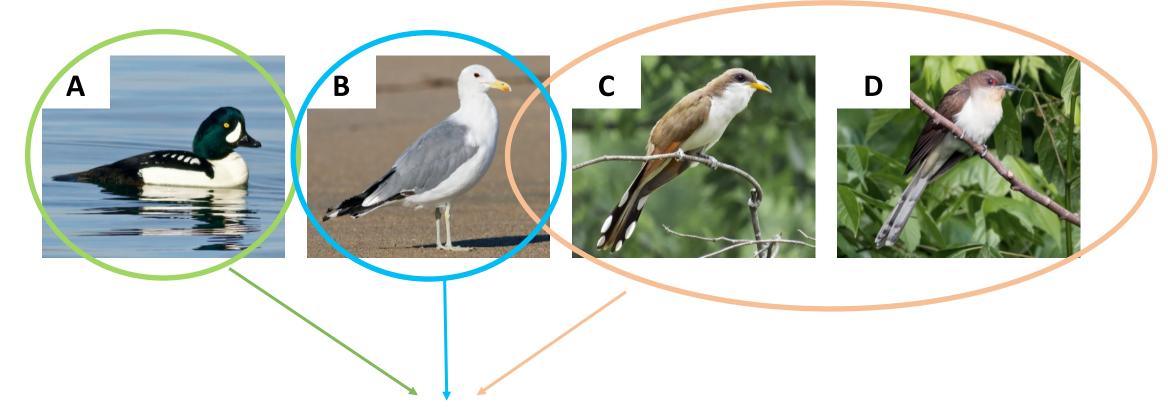
All birds belong to different fine-grained categories

What did we learn?



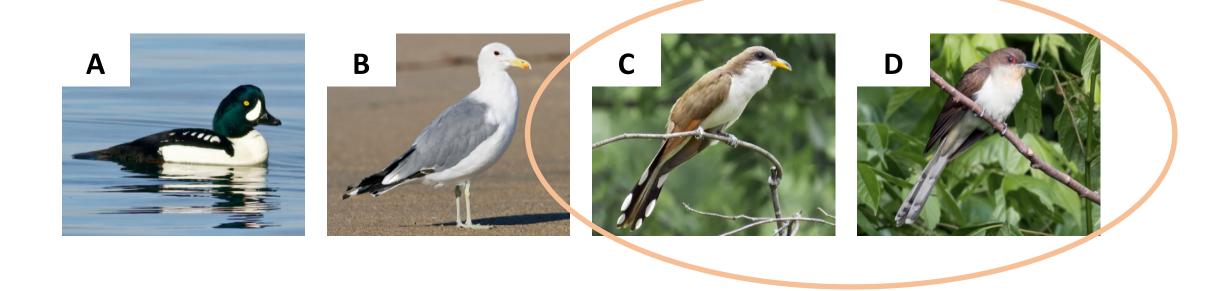


What did we learn? Multiple factors of variation

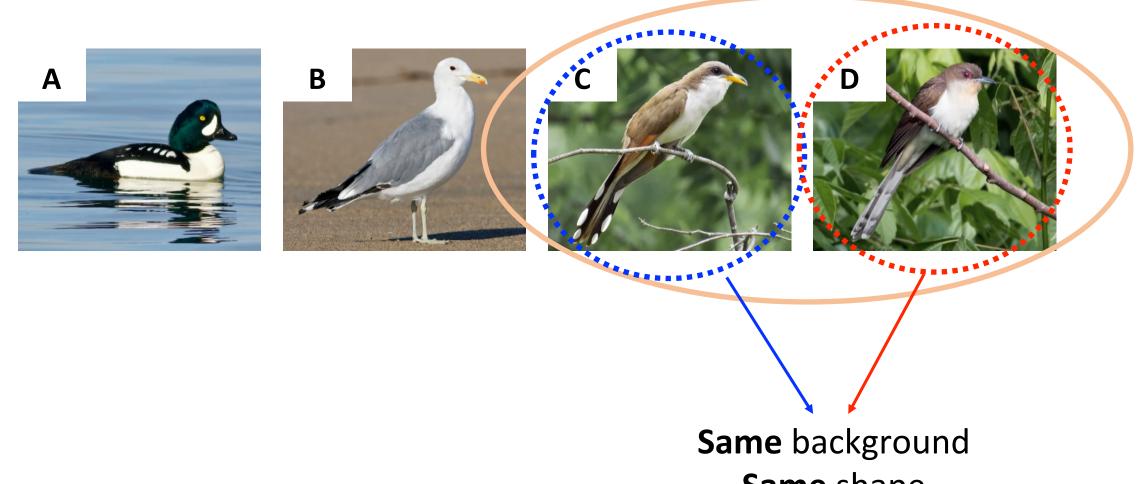


Different **background**Different **shape**

What did we learn? Existence of a natural hierarchy



What did we learn? Existence of a natural hierarchy



Same background
Same shape
Different color/texture

Goal: A generative model for fine-grained objects

• Generation requires a deep understanding of visual data

- Humans not only recognize patterns ...
- but can also *generate* new examples, *parse* an object into parts & relations, *combine* related concepts to generate new samples, etc.

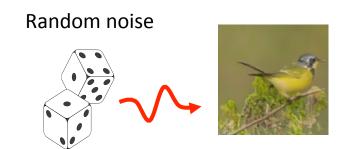
[e.g., Lake et al. 2016, Building Machines That Learn and Think Like People]

Goal: A generative model for fine-grained objects

- **Disentangle** factors of variation (background, shape, appearance) *hierarchically* without:
 - (1) fine grained category labels
 - (2) part annotations or segmentation masks
 - (3) ground-truth hierarchy
- Hypothesis: Discovered representation will be useful for unsupervised fine-grained clustering ("discovery") of real images

Unsupervised image generation

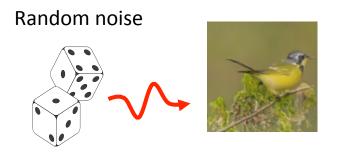
One-shot generation



[Goodfellow et al. '14, Radford et al. '16, Gulrajani et al. '17, ...]

Unsupervised image generation

One-shot generation



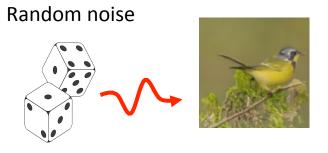
[Goodfellow et al. '14, Radford et al. '16, Gulrajani et al. '17, ...]

Stagewise generation

[Im et al. '16, Kwak and Zhang '16, Yang et al. '17, ...]

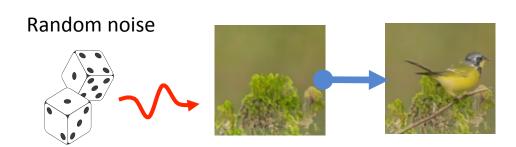
Unsupervised image generation

One-shot generation



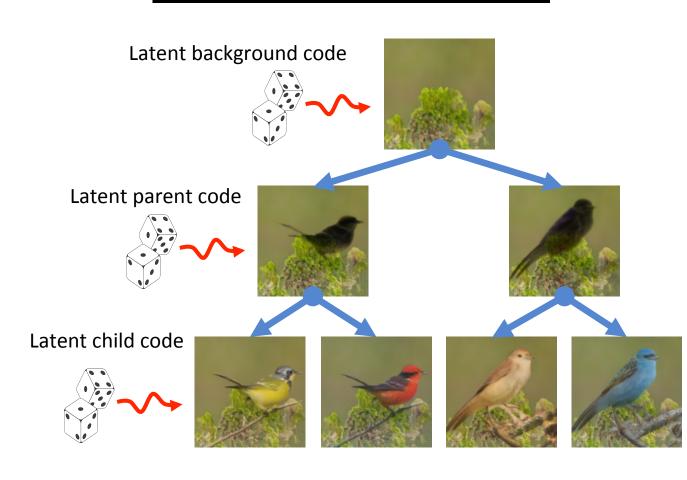
[Goodfellow et al. '14, Radford et al. '16, Gulrajani et al. '17, ...]

Stagewise generation

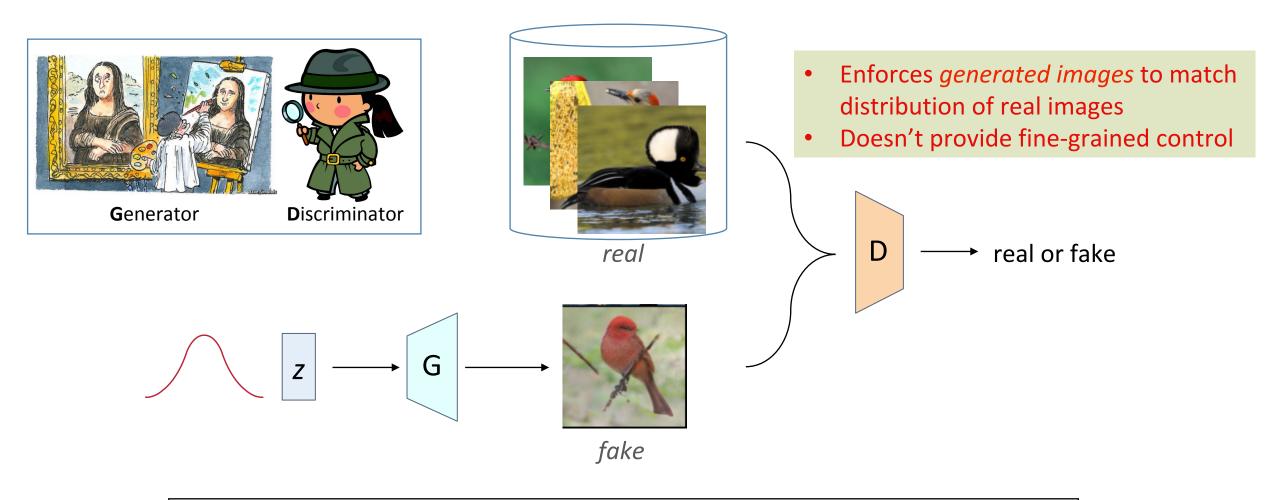


[Im et al. '16, Kwak and Zhang '16, Yang et al. '17, ...]

Our idea: Hierarchical generation

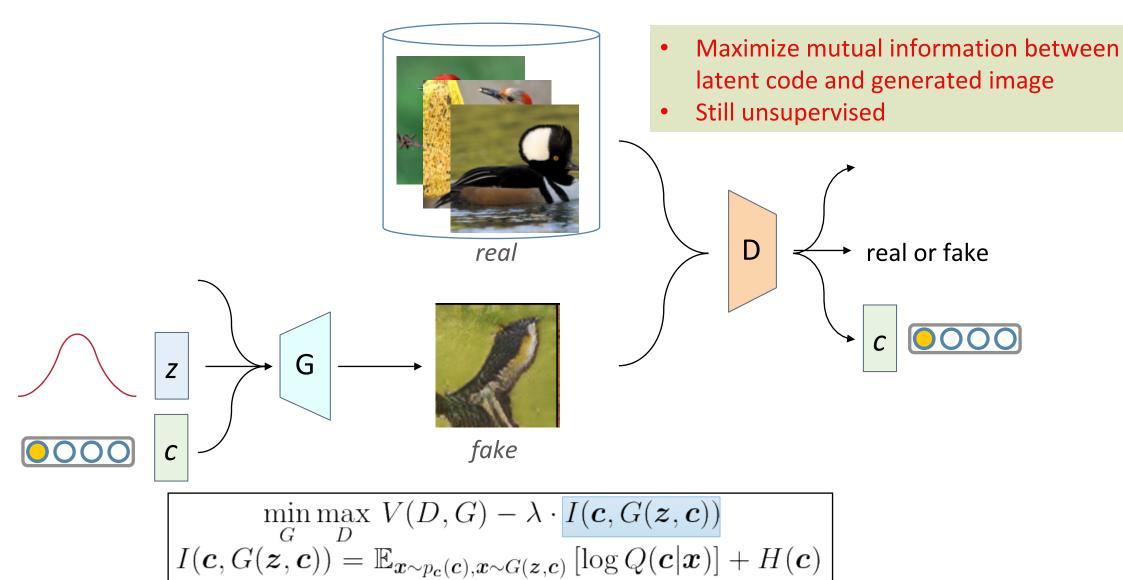


Generative Adversarial Networks (GANs)

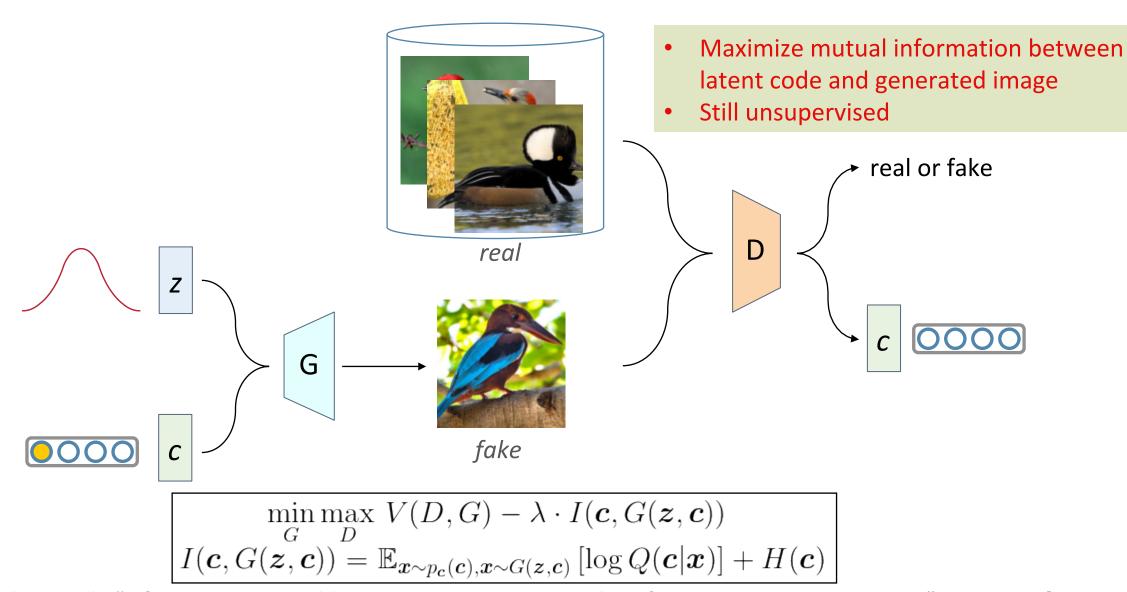


$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

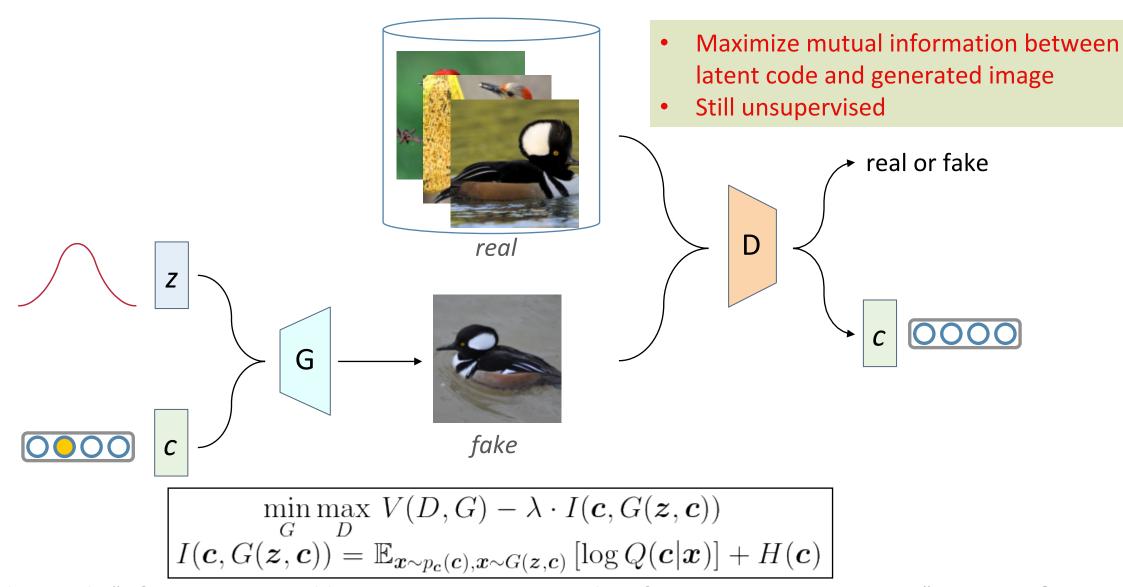
[I. Goodfellow et al., "Generative Adversarial Networks", NIPS 2014]



[X. Chen et al., "InfoGAN: Interpretable Representation Learning by Information Maximizing GANs", NIPS 2016]



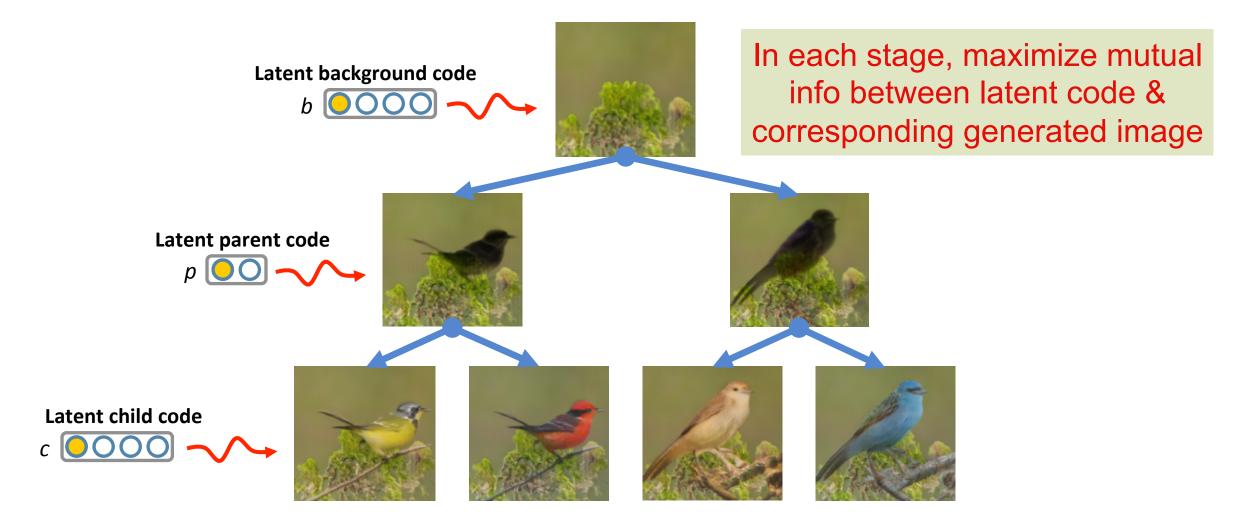
[X. Chen et al., "InfoGAN: Interpretable Representation Learning by Information Maximizing GANs", NIPS 2016]



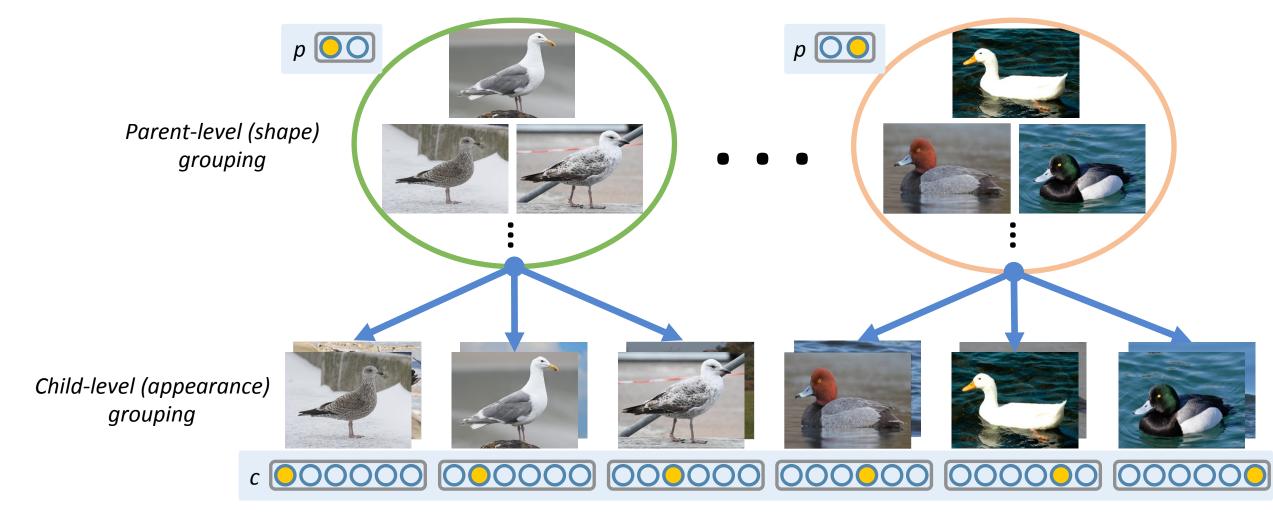
[X. Chen et al., "InfoGAN: Interpretable Representation Learning by Information Maximizing GANs", NIPS 2016]

No fine-grained disentanglement of background, shape, appearance

Our Idea: Hierarchical, stagewise generation

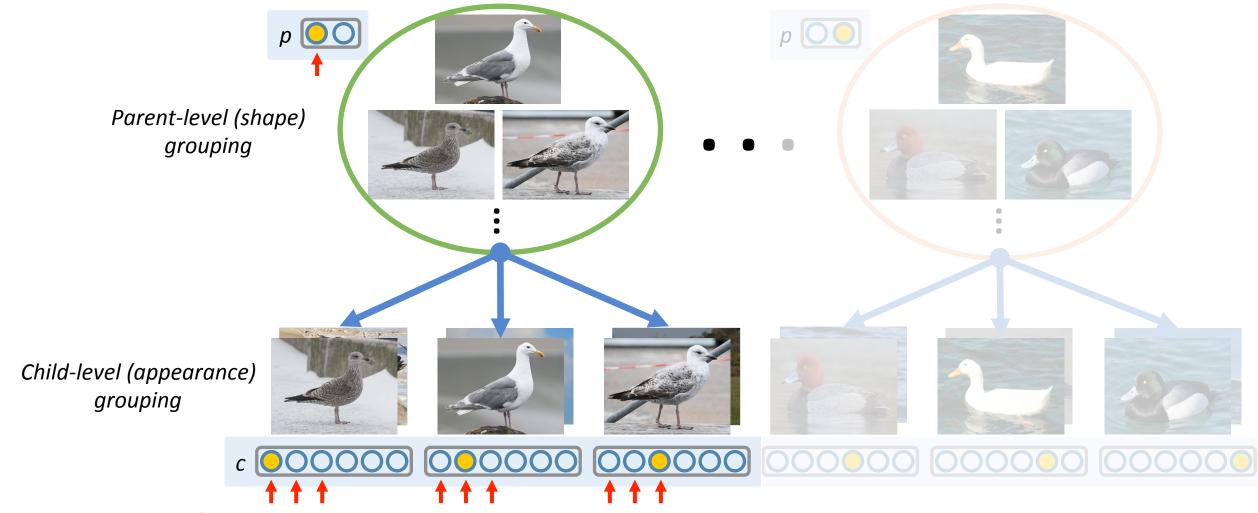


Fine-grained categories can be organized hierarchically



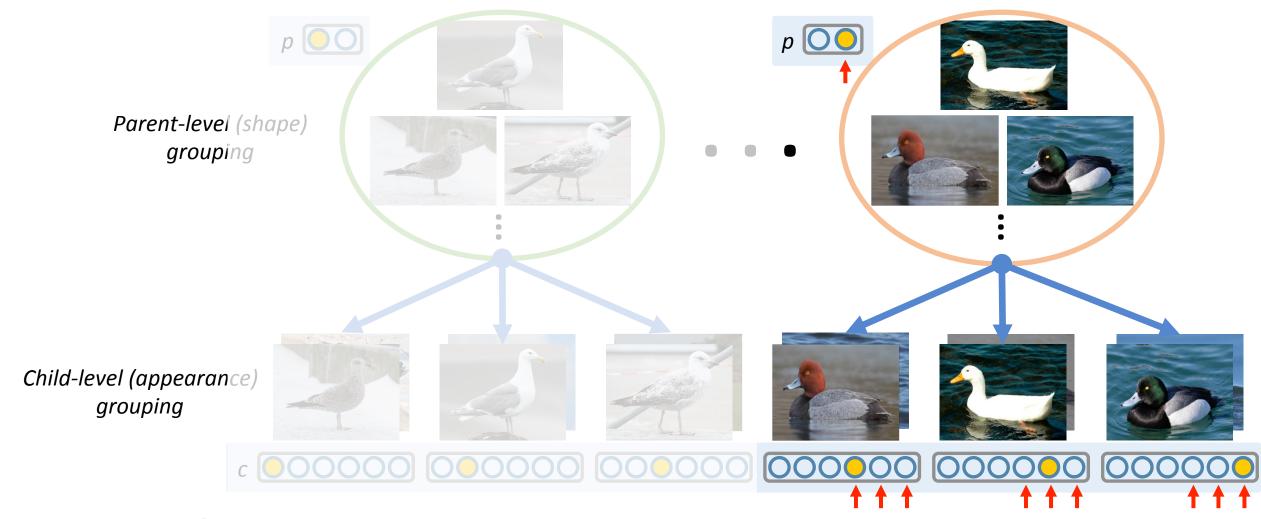
- → # of parent (shape) codes << # of child (appearance) codes
- → a fixed group of children share same parent code

Fine-grained categories can be organized hierarchically

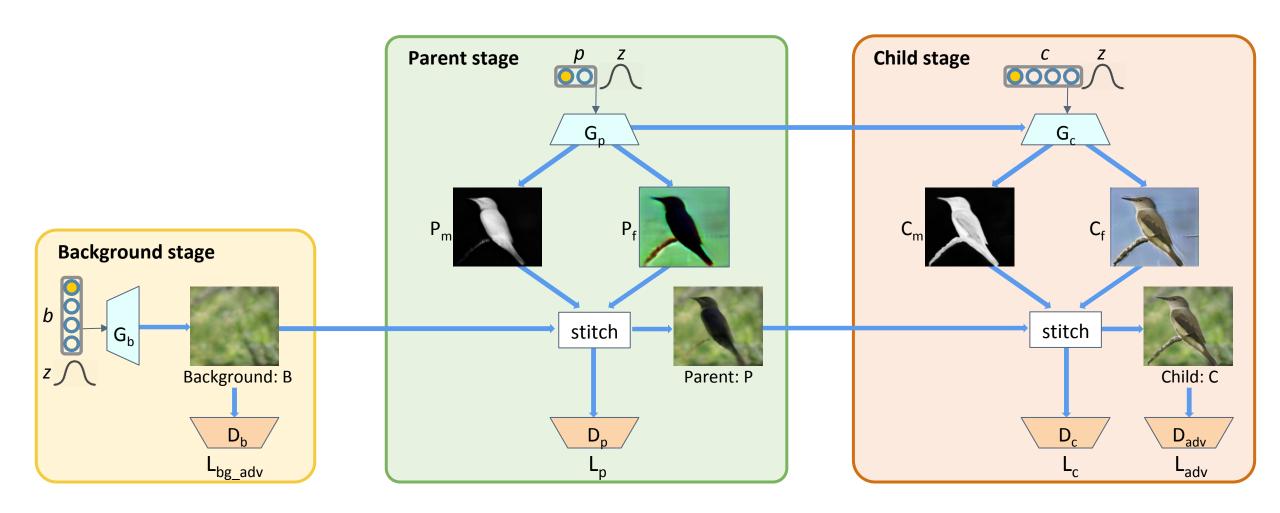


- → # of parent (shape) codes << # of child (appearance) codes
- → a fixed group of children share same parent code

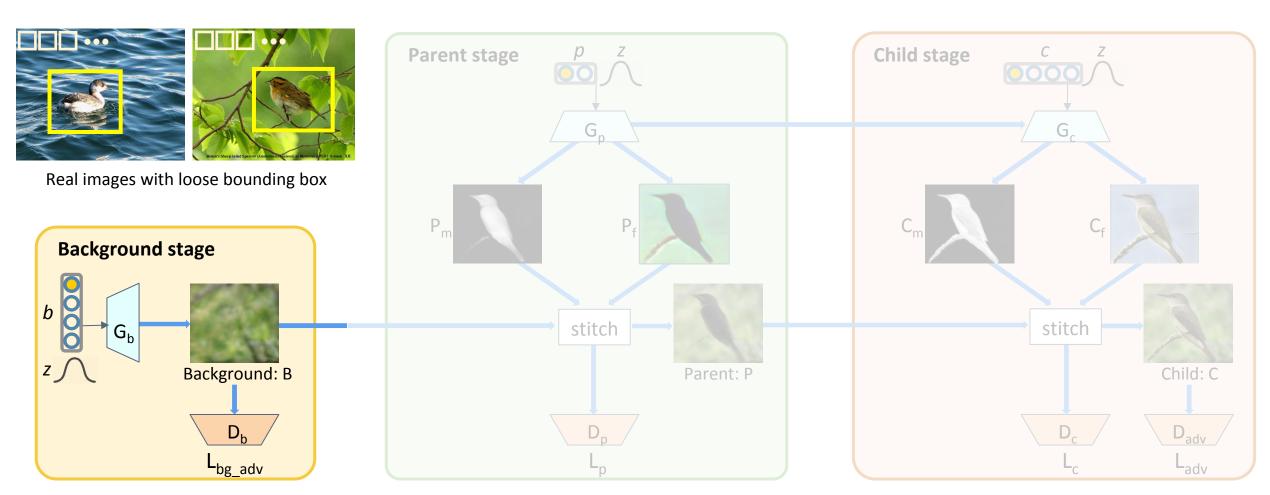
Fine-grained categories can be organized hierarchically



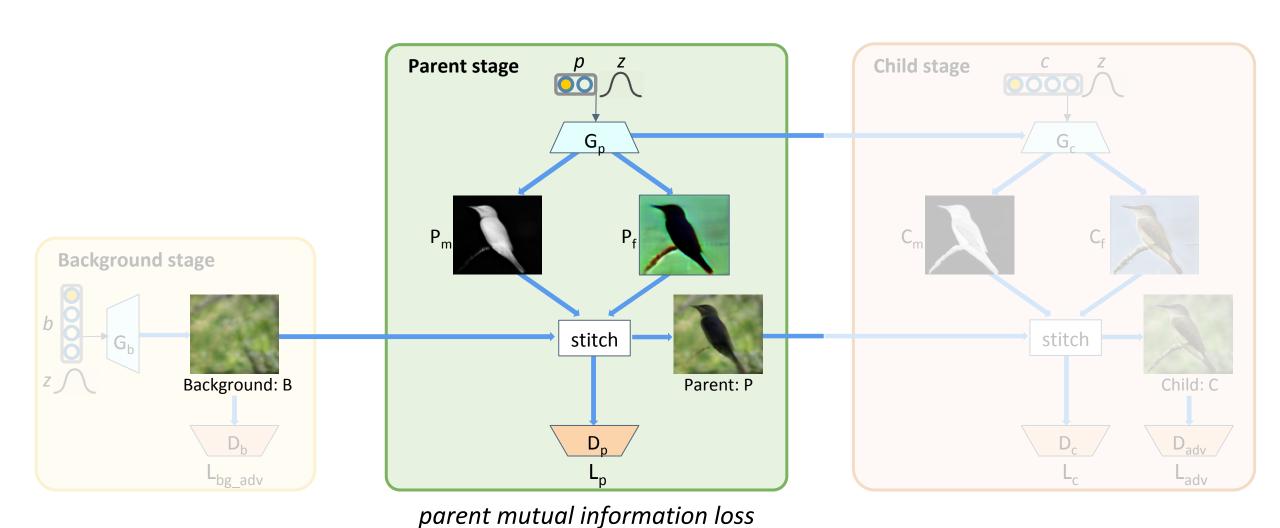
- → # of parent (shape) codes << # of child (appearance) codes
- → a fixed group of children share same parent code

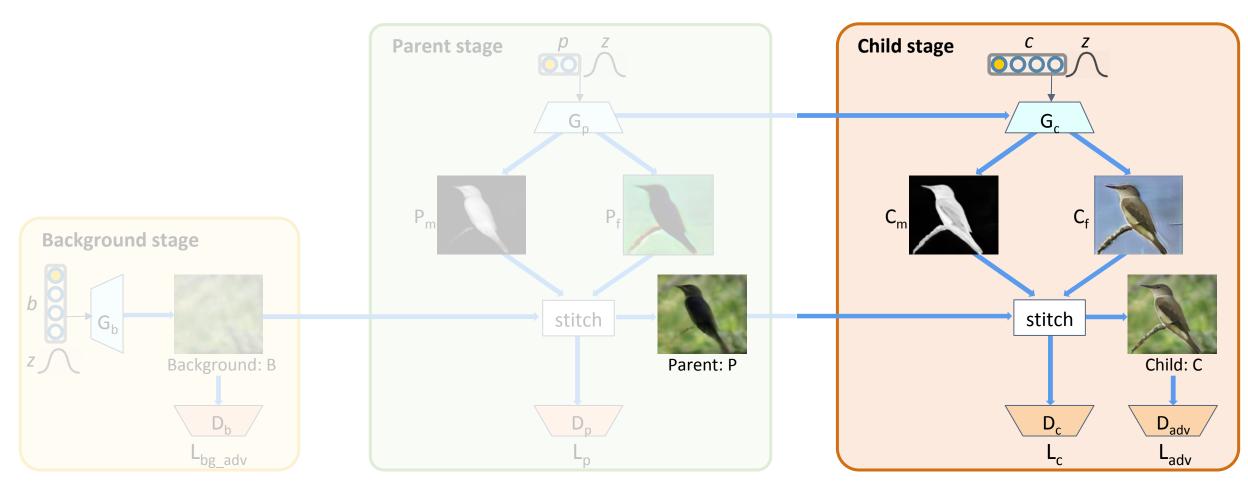


All stages trained end-to-end without mask, fine-grained labels



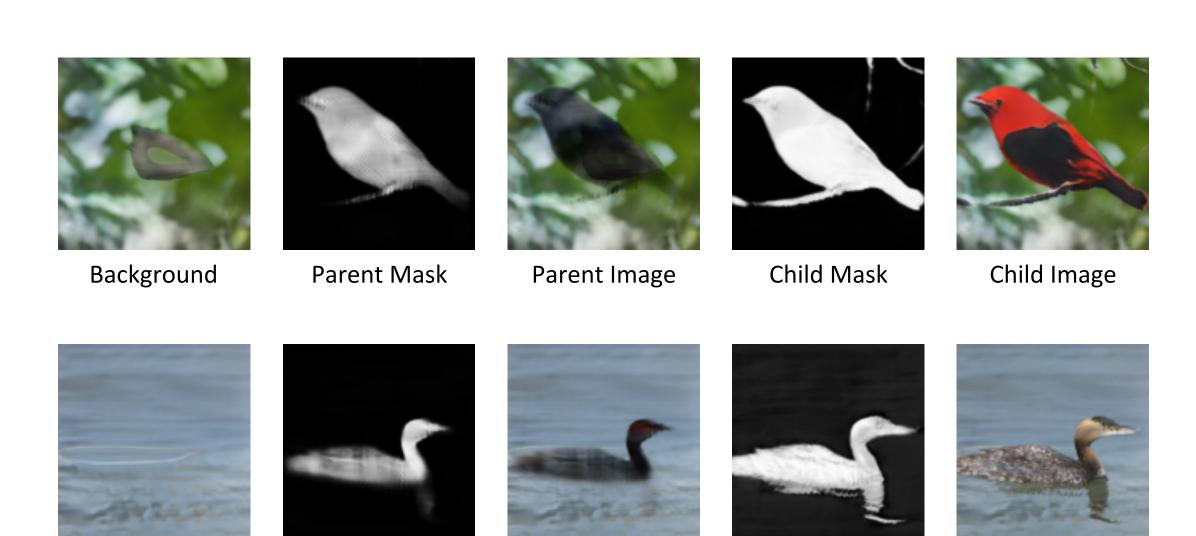
background adversarial loss





child mutual information loss final image adversarial loss

FineGAN's stagewise image generation



Parent Image

Child Image

Child Mask

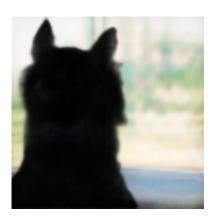
Background

Parent Mask

FineGAN's stagewise image generation

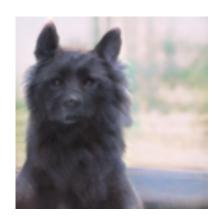
Background

Parent Mask



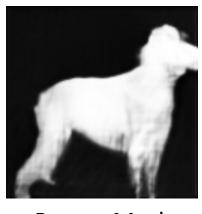
Parent Image

Child Mask

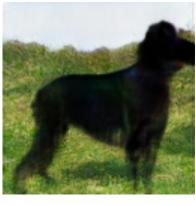


Child Image

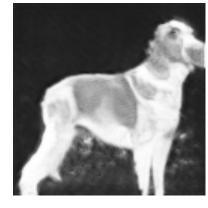
Background



Parent Mask



Parent Image



Child Mask

Child Image

FineGAN's stagewise image generation

Background

Parent Mask

Parent Image

Child Mask

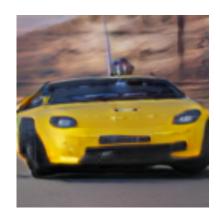
Child Image

Background

Parent Mask

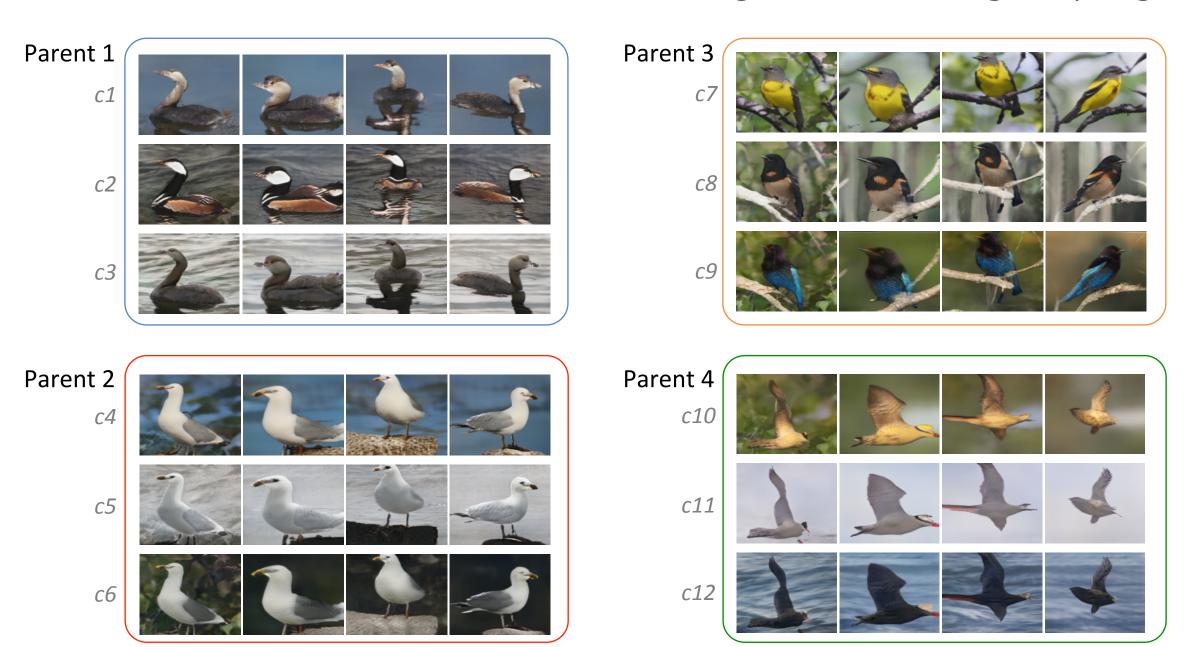
Parent Image

Child Mask

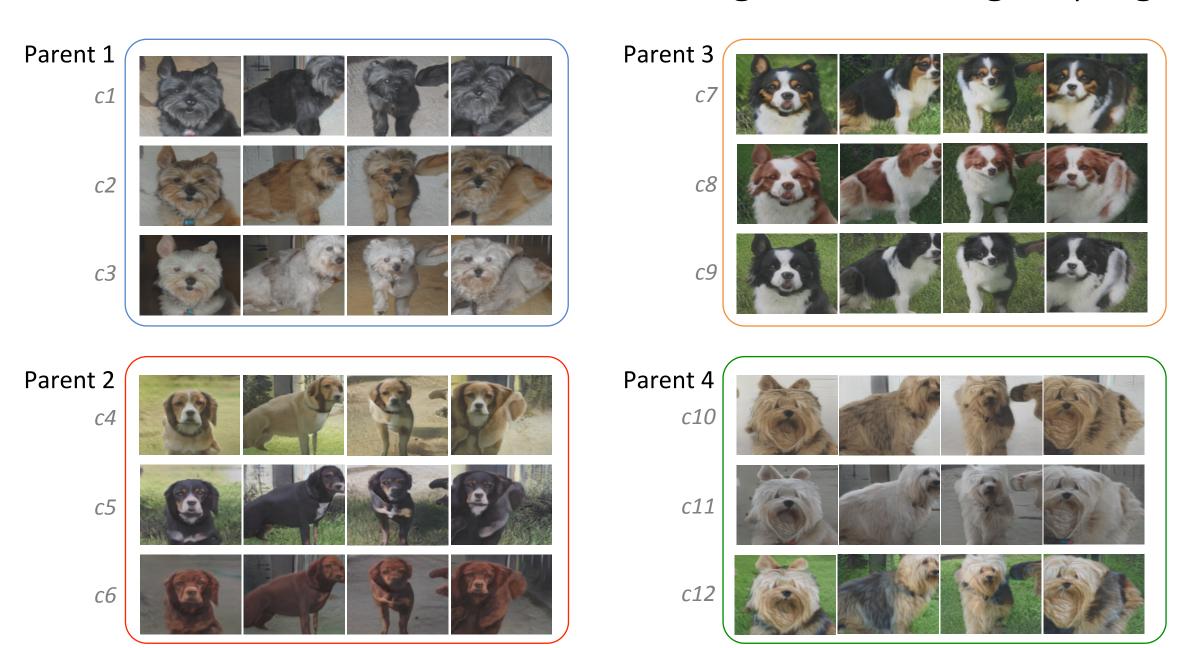


Child Image

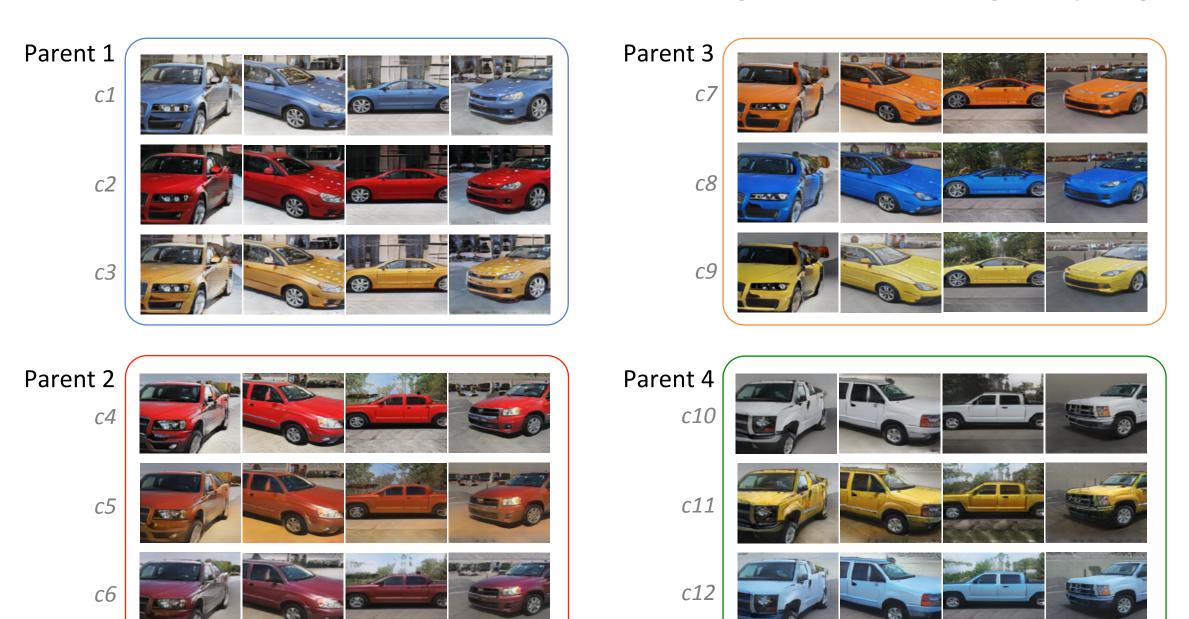
FineGAN's hierarchical disentanglement and grouping



FineGAN's hierarchical disentanglement and grouping



FineGAN's hierarchical disentanglement and grouping



Disentanglement of shape and appearance

same child code, varying parent code same parent code, varying child code

FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery

Krishna Kumar Singh*, Utkarsh Ojha*, and Yong Jae Lee

UC Davis

* equal contribution

How well does FineGAN model the distribution of fine-grained categories?

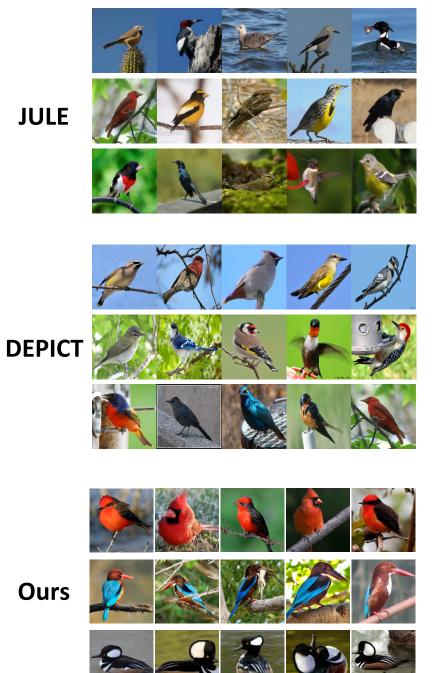
 Favorable Inception scores, Fréchet Inception Distance compared to state-of-the-art unconditional image generators

	Fréchet Inception Distance		
	Birds	Dogs	Cars
InfoGAN [Chen '16]	13.20	29.34	17.63
LR-GAN [Yang '17]	34.91	54.91	88.80
StackGANv2 [Zhang '18]	13.60	31.39	16.28
Ours	11.25	25.66	16.03

How useful is the learned representation?

• Fine-grained real image clustering: Significant improvement over state-of-theart deep clustering methods

Clustering Accuracy (NMI)				
	Birds	Dogs	Cars	
JULE [Yang '16]	0.203	0.148	0.237	
DEPICT [Xie '16]	0.297	0.183	0.329	
Ours	0.403	0.233	0.354	



Discussion

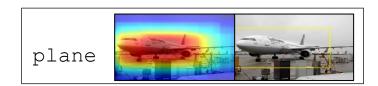
Limitations

- # of parents, children are hyperparameters
- Discovered latent modes of variation may not correspond to those annotated by a human
- Still far behind fully-supervised fine-grained recognition accuracy

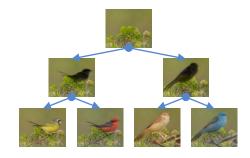
 Important initial step in tackling challenging problem of unsupervised fine-grained object modeling

Outline

- Visual scene understanding with minimal human supervision
 - Localize objects with only image-level tag annotations?

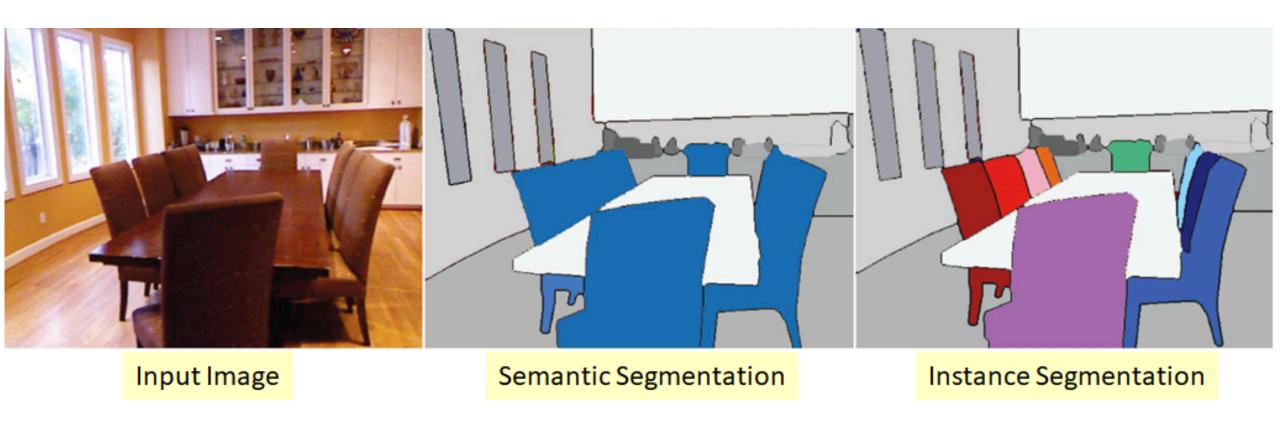


• Generate fine-grained object details without fine-grained annotations?



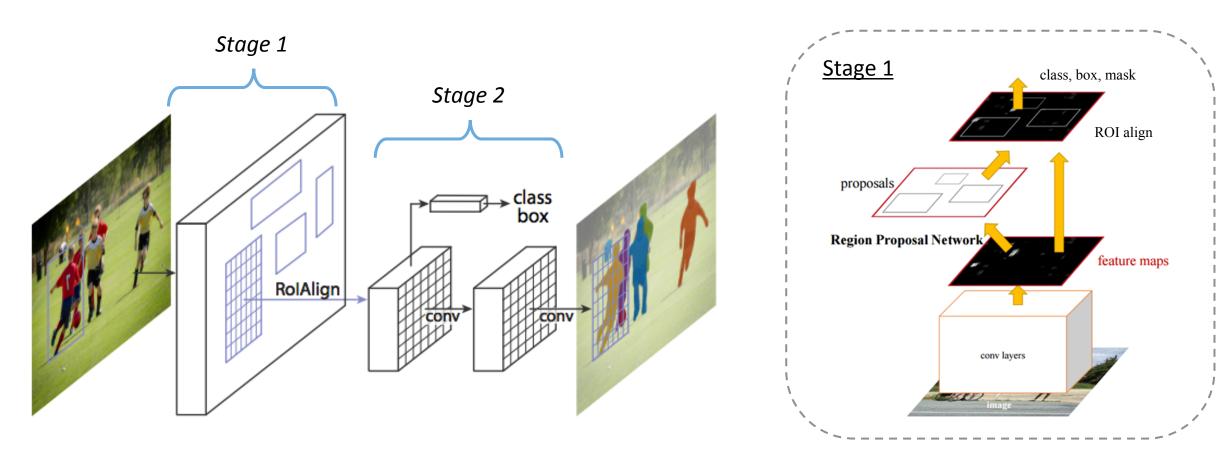
- Towards visual scene understanding in *dynamic environments*
 - Segment object instances in real-time?

Real-time Instance Segmentation



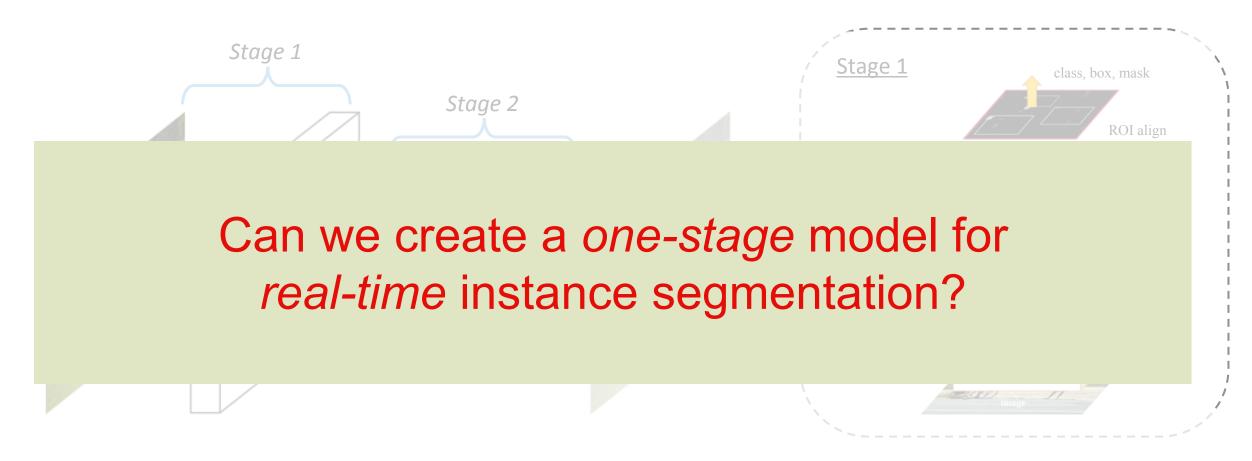
- So far, no robust real-time (>30 fps) algorithm exists
- You Only Look At CoefficienTs [Bolya, Zhou, Xiao, Lee, ICCV 2019]

Mask R-CNN: Accurate but not fast enough (<10 fps)



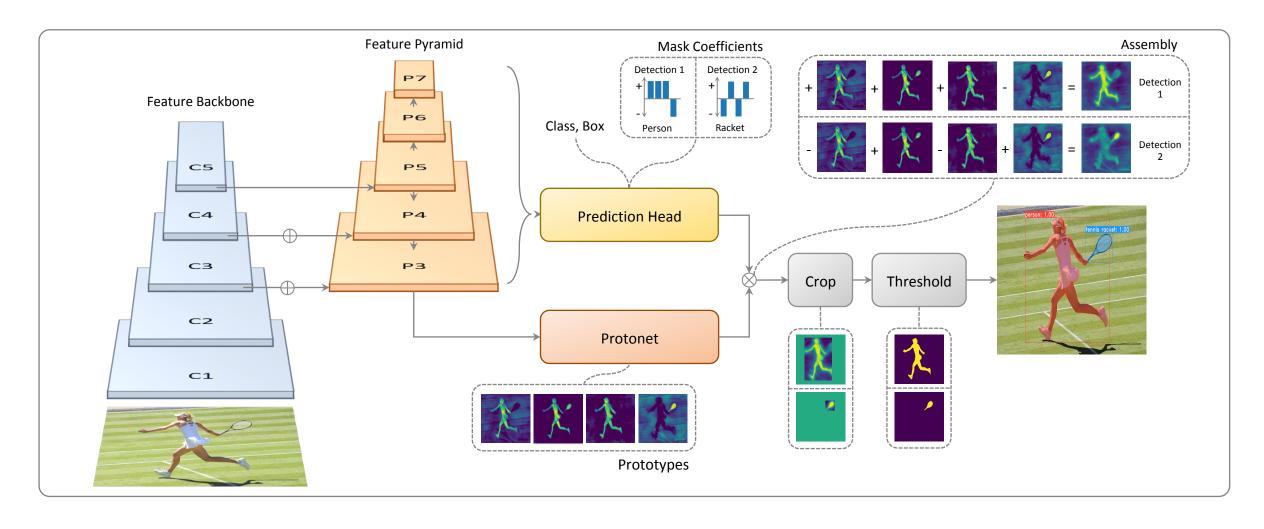
- Stage 1: use Region Proposal Network to generate region proposals
- Stage 2: pool features for each proposal (via ROI-align) and classify

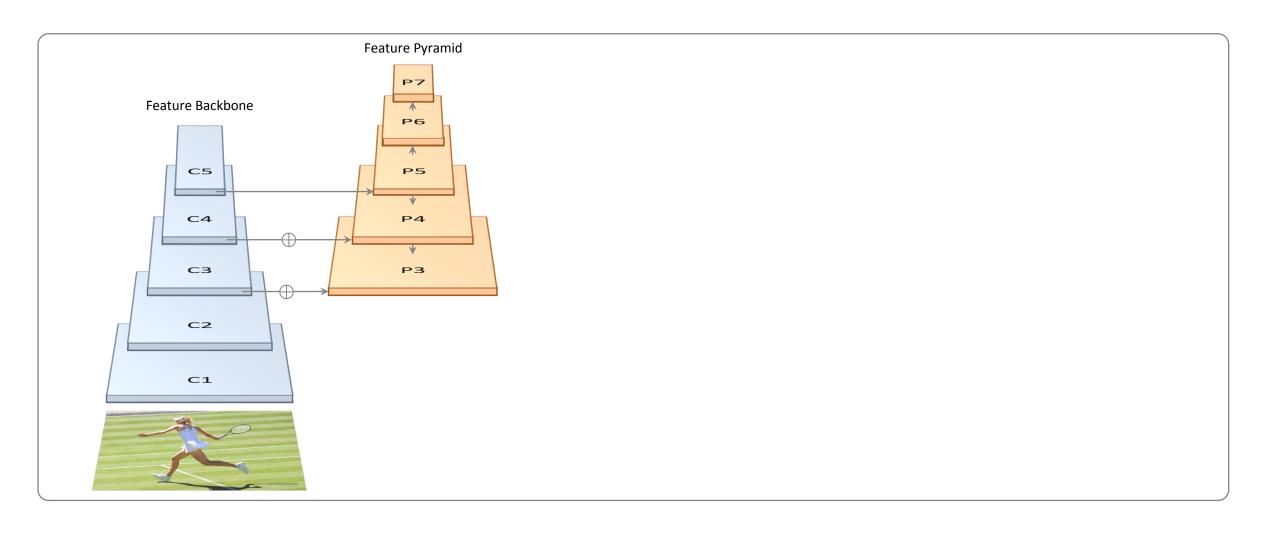
Mask R-CNN: Accurate but not fast enough (<10 fps)

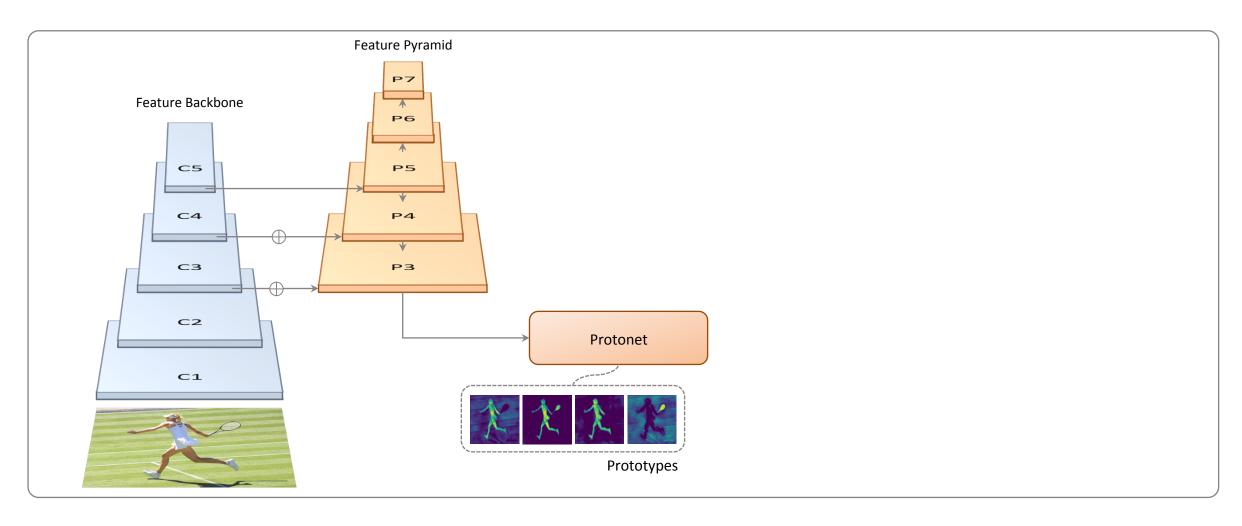


- Stage 1: use Region Proposal Network to generate region proposals
- Stage 2: pool features for each proposal (via ROI-align) and classify

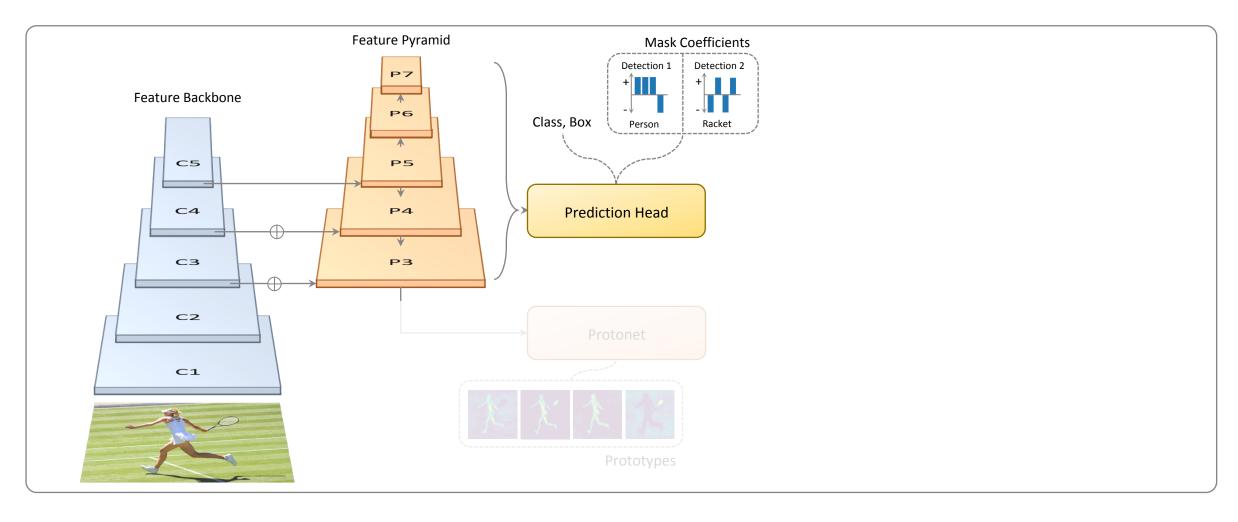
[K. He et al., "Mask R-CNN", ICCV 2017]



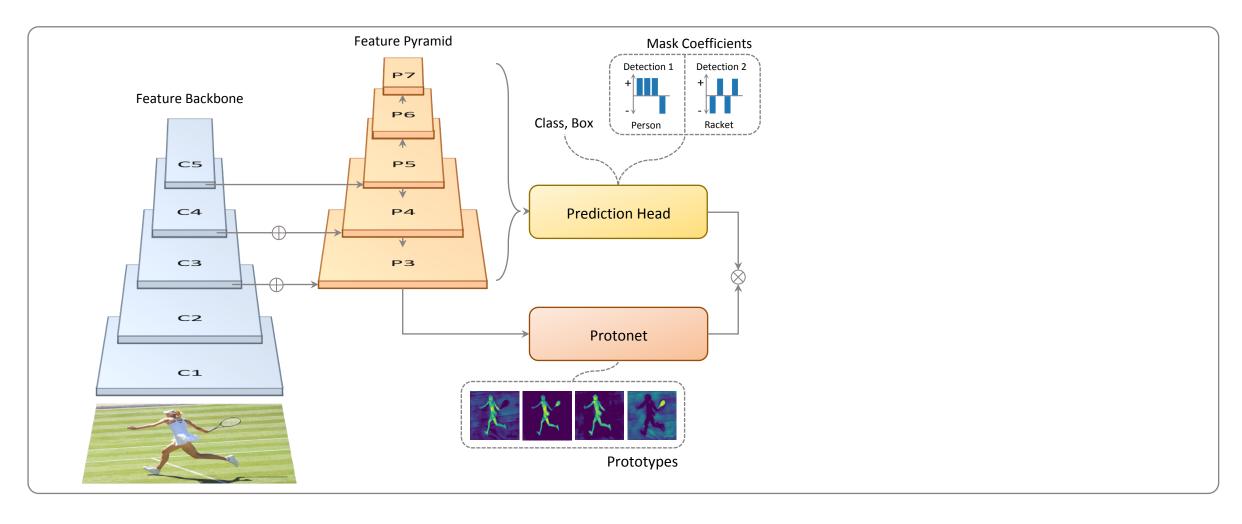




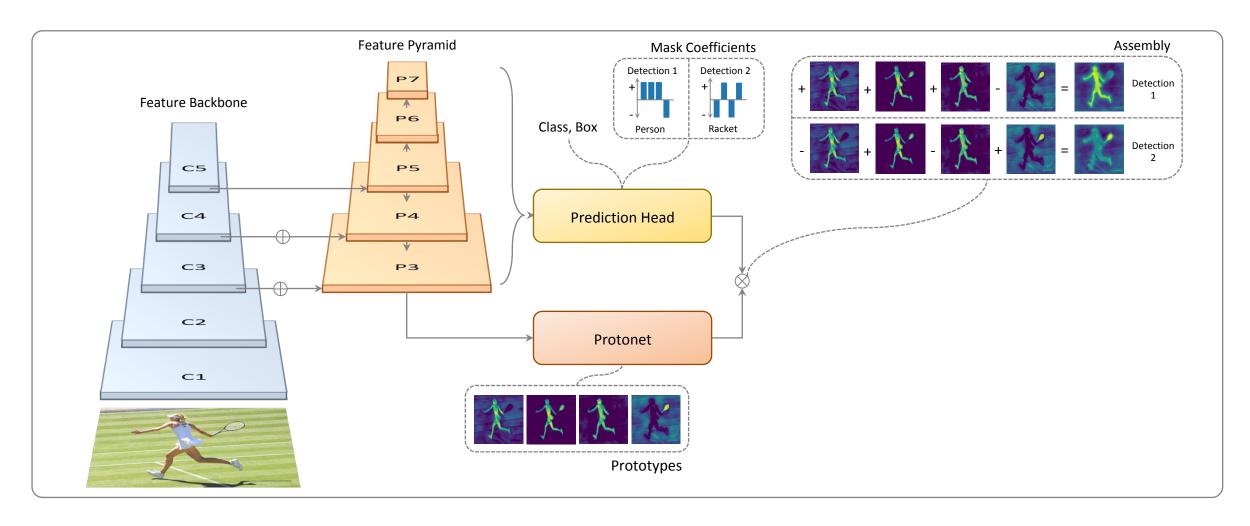
 Attach an FCN ("ProtoNet") to the largest feature layer (P3) to produce k image-resolution prototype masks



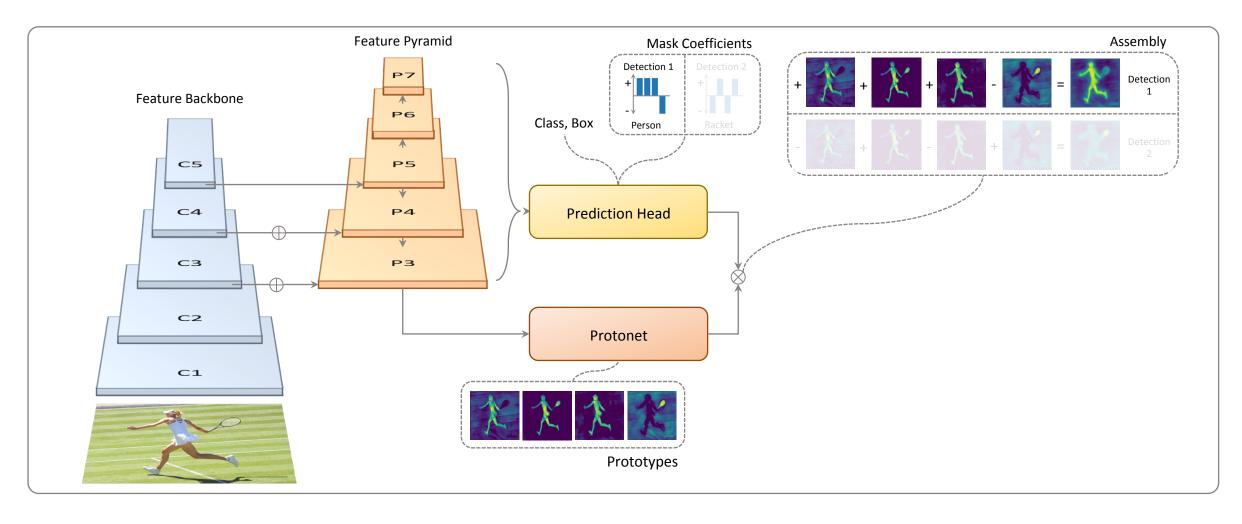
• In parallel, predict *k* mask coefficients for each anchor box (in addition to class confidences and box coefficients)



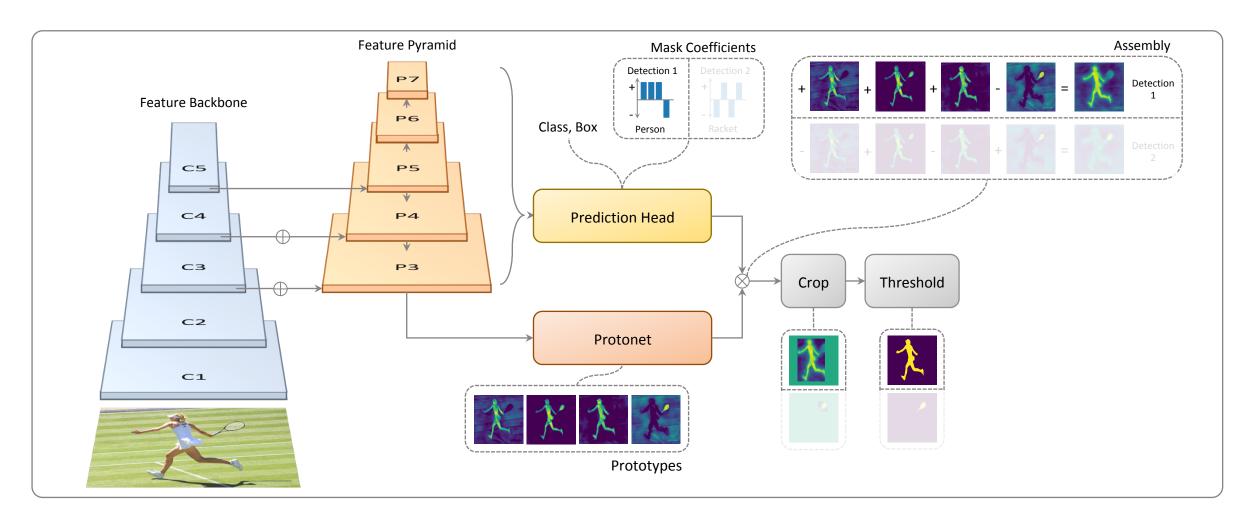
 For each instance, linearly combine prototypes using corresponding predicted coefficients



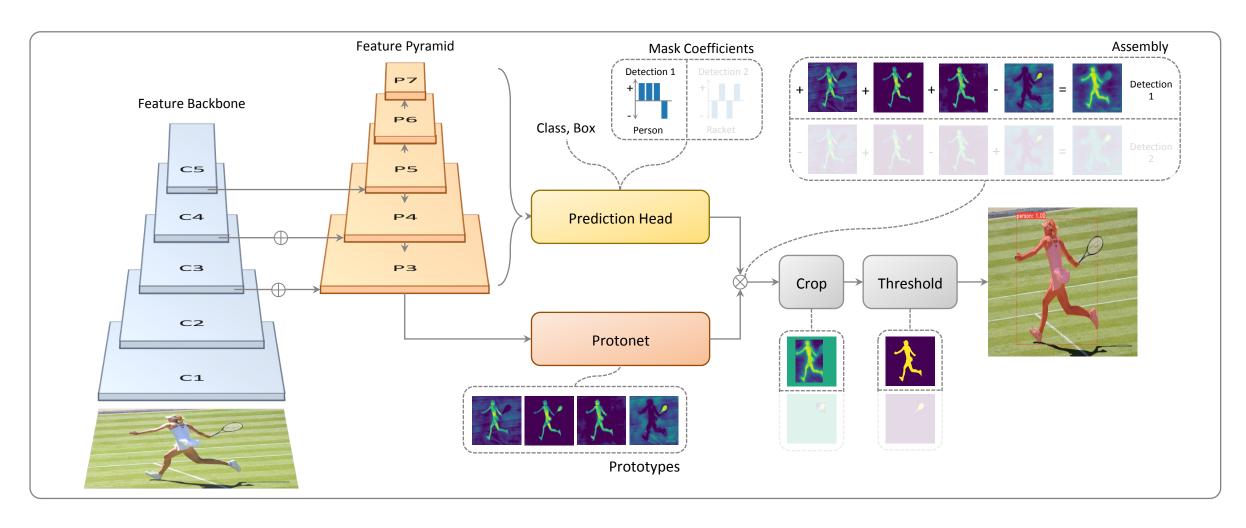
• For each instance, linearly combine prototypes using corresponding predicted coefficients



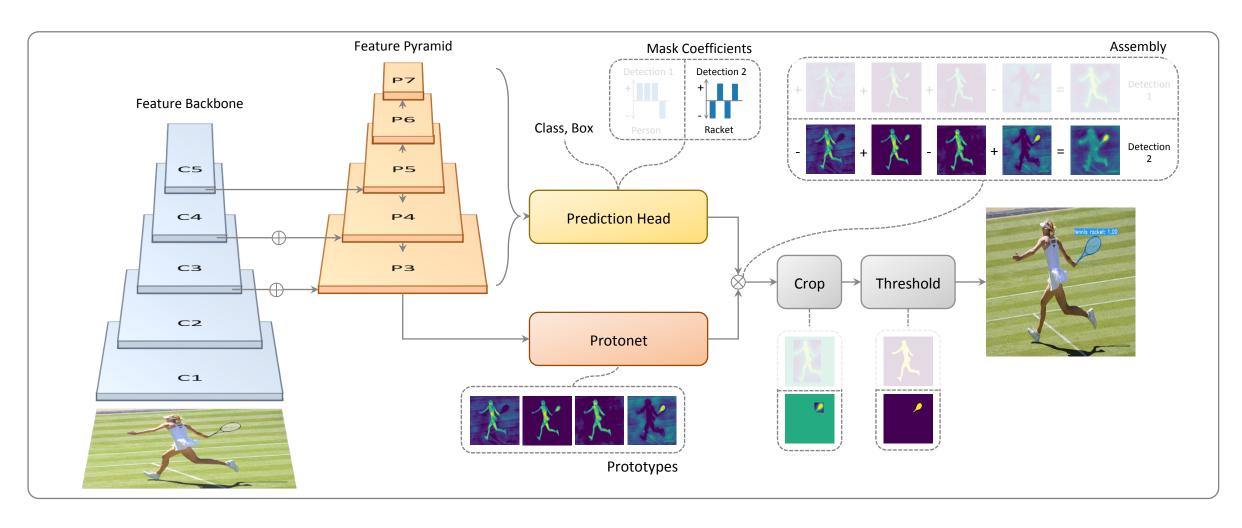
 For each instance, linearly combine prototypes using corresponding predicted coefficients



• Finally, crop with the predicted bounding box and threshold

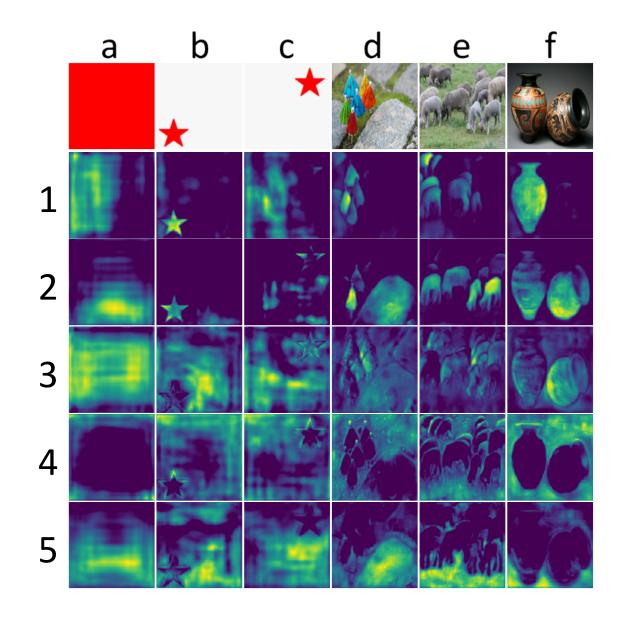


• Finally, crop with the predicted bounding box and threshold

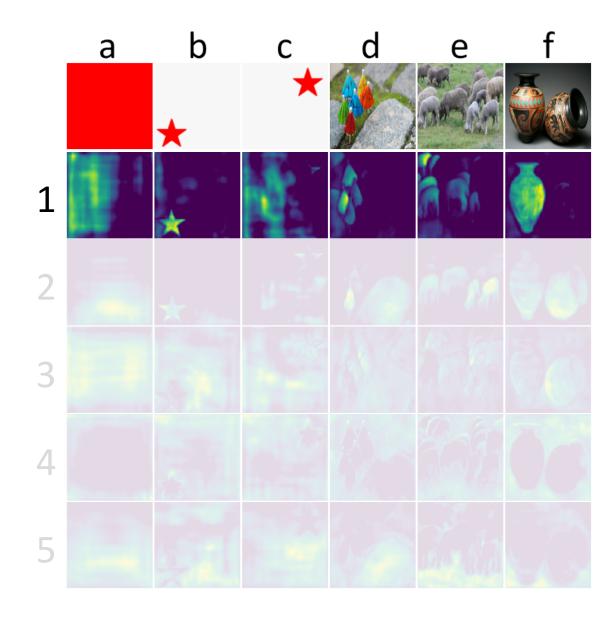


• Finally, crop with the predicted bounding box and threshold

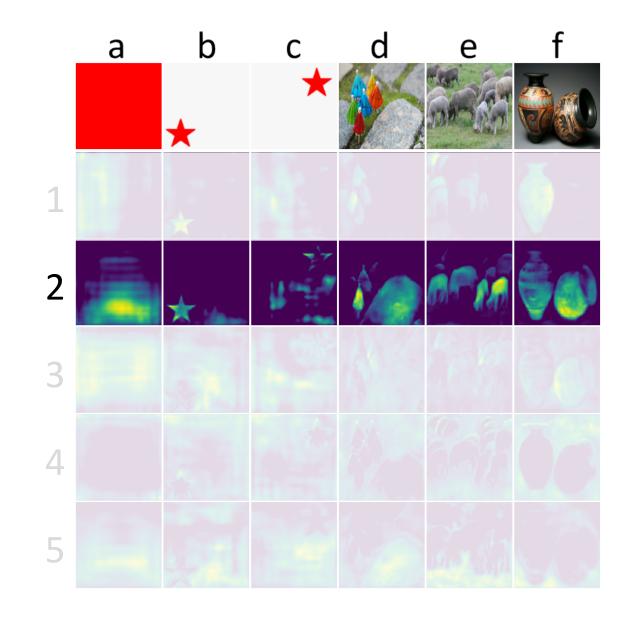
- Spatially partition the image
- Segment background
- Detect instance contours
- Encode position-sensitive directional maps
- Most do a combination



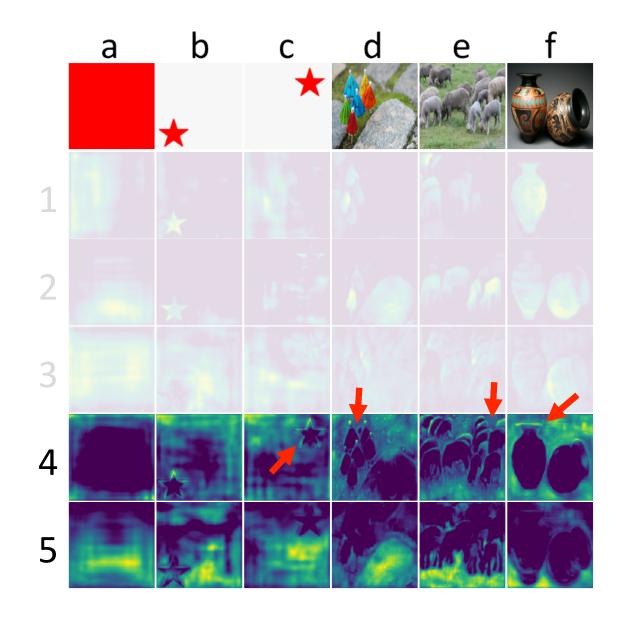
- Spatially partition the image
- Segment background
- Detect instance contours
- Encode position-sensitive directional maps
- Most do a combination



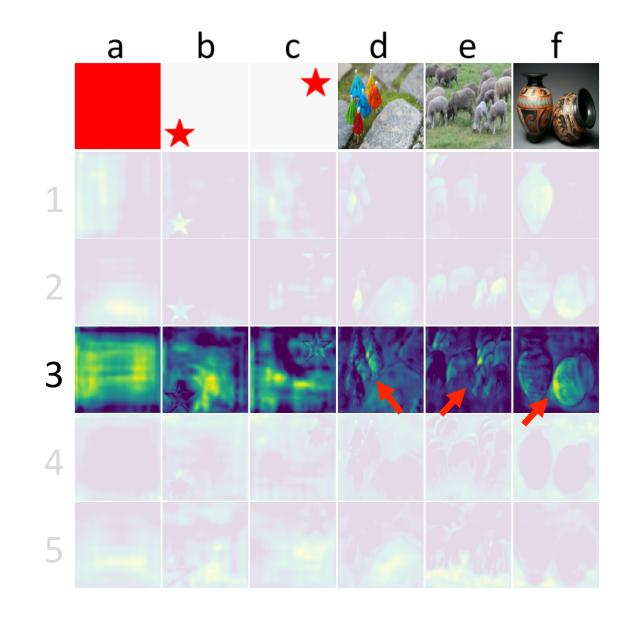
- Spatially partition the image
- Segment background
- Detect instance contours
- Encode position-sensitive directional maps
- Most do a combination



- Spatially partition the image
- Segment background
- Detect instance contours
- Encode position-sensitive directional maps
- Most do a combination

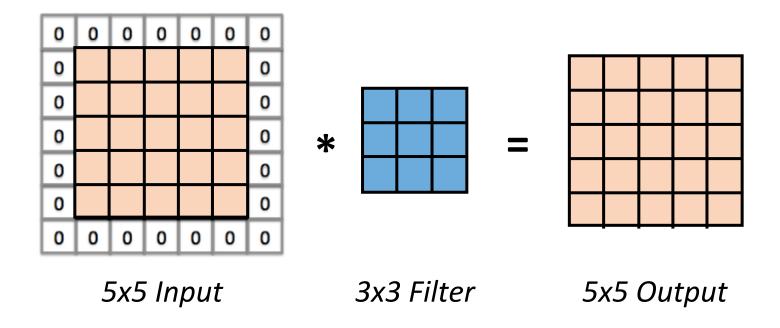


- Spatially partition the image
- Segment background
- Detect instance contours
- Encode position-sensitive directional maps
- Most do a combination

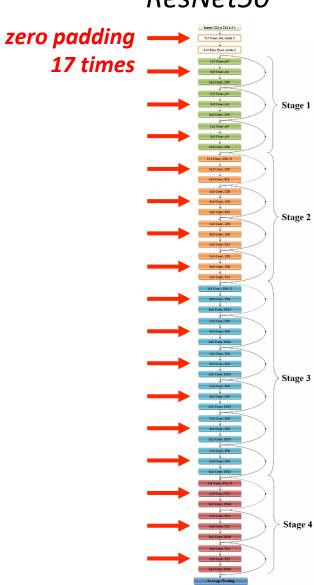


Zero-padding in ResNets

Needed to keep input and output spatial resolution same



ResNet50



Results

First real-time (> 30 fps)
 instance segmentation
 algorithm with
 competitive results on
 the challenging MS
 COCO dataset

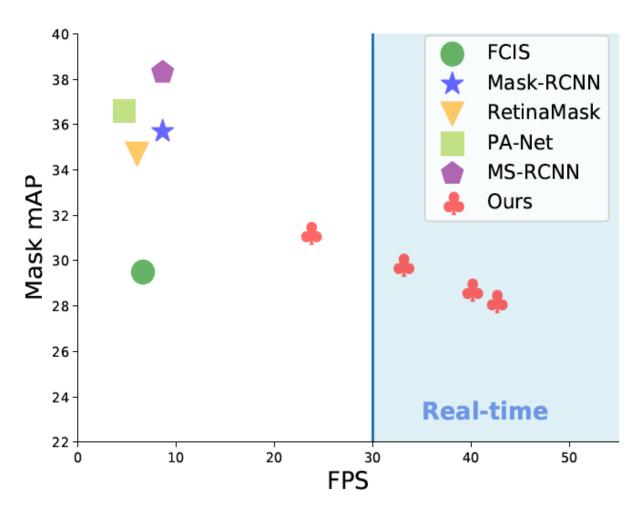


Figure 1: Speed-performance trade-off for various instance segmentation methods on COCO.

Conclusions

 Tremendous success stories in computer vision, but mostly limited to specific domains with lots of labeled data 8

- Learn to understand visual data with minimal human supervision
 - Challenging since there's no direct supervision
 - But with the right constraints, can push the algorithm to behave in desirable ways with little to no supervision
 - Handling dynamic environments requires fast learning and inference

Code, additional results available: http://web.cs.ucdavis.edu/~yjlee/

Acknowledgements

Funding agencies: National Science Foundation, Army Research Office, Hellman Foundation, UC Davis, Intel, Adobe, Nvidia, Google, Amazon

Method	Backbone	FPS	Time	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
PA-Net [29]	R-50-FPN	4.7	212.8	36.6	58.0	39.3	16.3	38.1	53.1
RetinaMask [14] FCIS [24]	R-101-FPN R-101-C5	6.0 6.6	166.7 151.5	34.7 29.5	55.4 51.5	36.9 30.2	14.3 8.0	36.7 31.0	50.5 49.7
Mask R-CNN [18]	R-101-FPN R-101-FPN	8.6 8.6	116.3 116.3	35.7 38.3	58.0 58.8	37.8 41.5	15.5 17.8	38.1 40.4	52.4 54.4
MS R-CNN [20] YOLACT-550	R-101-FPN	33.5	29.8	29.8	48.5	31.2	9.9	31.3	47.7
YOLACT-400	R-101-FPN	45.3	22.1	24.9	42.0	25.4	5.0	25.3	45.0
YOLACT-550 YOLACT-550	R-50-FPN D-53-FPN	45.0 40.7	22.2 24.6	28.2 28.7	46.6 46.8	29.2 30.0	9.2 9.5	29.3 29.6	44.8 45.5
YOLACT-700	R-101-FPN	23.4	42.7	31.2	50.6	32.8	9.3 12.1	33.3	47.1

Table 1: MS COCO [28] Results We compare to state-of-the-art methods for mask mAP and speed on COCO test-dev and include several ablations of our base model, varying backbone network and image size. We denote the backbone architecture with network-depth-features, where R and D refer to ResNet [19] and DarkNet [36], respectively. Our base model, YOLACT-550 with ResNet-101, is 3.9x faster than the previous fastest approach with competitive mask mAP.

Method	NMS	AP	FPS	Time
YOLACT	Standard Fast	30.0 29.9	24.0 33.5	41.6 29.8
Mask R-CNN	Standard Fast	36.1 35.8	8.6 9.9	116.0 101.0

(a) Fast NMS Fast NMS performs only slightly worse than standard NMS, while being around 12 ms faster. We also observe a similar trade-off implementing Fast NMS in Mask R-CNN.

k	AP	FPS	Time
8	26.8	33.0	30.4
16	27.1	32.8	30.5
*32	27.7	32.4	30.9
64	27.8	31.7	31.5
128	27.6	31.5	31.8
256	27.7	29.8	33.6

(b) **Prototypes** Choices for *k*. We choose 32 for its mix of performance and speed.

Method	AP	FPS	Time
FCIS w/o Mask Voting Mask R-CNN (550 × 550)	27.8 32.2	9.5 13.5	105.3 73.9
fc-mask YOLACT-550 (Ours)	29.9	25.7 33.0	38.9

(c) Accelerated Baselines We compare to other baseline methods by tuning their speed-accuracy trade-offs. fc-mask is our model but with 16×16 masks produced from an fc layer.

Table 2: **Ablations** All models evaluated on COCO val2017 using our servers. Models in Table 2b were trained for 400k iterations instead of 800k. Time in milliseconds reported for convenience.