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The Electrical Grid Then and Now

Figure courtesy: FERC. “Final Report on the Aug. 14, 2003 Blackout in the US and Canada.”

“The most significant engineering achievement of the 20th century.” [NAE Report’10] 

l Customer engagement and environmental concerns.

l 99.97% reliable, but power outages cost $150 billion per year in the US.

q Several challenges ahead
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Features of Smart Grids

US Dept. of Energy, “The smart grid: An introduction.”

self-healing situational awareness

resilient

green/sustainable

efficientcontrollable
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Enabling Technology Advances

Optimization, signal 
processing, and machine 

learning toolbox
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communication 
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q Convex relaxations for power flow (PF) analysis (noiseless)

• Design of the objective function

• Exact recovery of the PF solution

q Convex relaxations for power system state estimation (noisy)

q Summary and future directions

• Penalized semidefinite relaxation 

• Theoretically guaranteed performance bound 

q System modeling and problem formulations

Outline

q Electricity Market Inference

• Low-rank multi-kernel learning approach
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Northeast Blackout of 2003

Time: August 14, 2003 starting at 16:05 EDT 

Location: Midwest/Northeast US and Ontario

Effects: 50 million people & 61,800 MWs 
of load lost. No power for 4 days in some 
parts of the US, and for more than a 
week in Ontario.

Costs: $4~10 billion in the US and 
Canada’s GDP was down 0.7% in Aug. In 
Ontario, net loss of 18.9 million work 
hours, and manufacturing shipments 
were down $2.3 billion.
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“Violation 3: FE’s state estimation 

/contingency analysis tools were not 

used to assess system conditions, 

violating NERC Operating Policy 5…”

“Key phase events: 12:15-16:04 EDT 

MISO’s state estimator software solution 

was compromised….” 

“The failure of its state estimator 

contributed to the lack of situational 

awareness”

Recommendations: “DOE should expand its 

research programs on reliability-related tools 

and technologies.”

“Evaluate and adopt better real-time tools for 

operators and reliability coordinators.”

Failure of State Estimator
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System Modeling

q Represent power grid by a connected graph

set of buses set of power lines
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System Modeling (cont’d)

• Complex voltage: 

• Nodal current injection: 

• Net injected complex power: 

Time domain Phasor domain

v(t) = Vmax cos(!t+ ✓v) v =
Vmaxp

2
ej✓v

Figure courtesy: www.electronics-tutorials.ws
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Nodal and Line Quantities

where

q Voltage magnitude and nodal power injections

q Branch active and reactive powers

q All quantities are quadratic functions of complex voltage

G

Bus Bus

L

v = state of the system
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Problem Statement
Power system state estimation (PSSE): 

Given noisy measurements
estimate the complex voltage 

q Functionality of PSSE:
• Provides real-time power system conditions

• Constitutes the core of online security analysis

• Provides diagnostics for modeling and maintenance

q Measurements: 
• From the supervisory control and data acquisition (SCADA) system and 

phasor measurement units  (PMUs)

• Corrupted by noise; missing or grossly inaccurate (outliers/bad data)
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Prior Work

l NP-hard for both T&D networks [Bienstock-Verma’15], [Lehmann et al’16]

l Newton-Raphson method and fast decoupled load flow (FDLF)

l Other techniques:  Holomorphic embedding LF and numerical polynomial 

homotopy continuation (NPHC) [Trias’12], [Li’03], [Mehta et al’15]

l Semidefinite relaxations (SDR) [Madani-Lavaei-Baldick’15]

l Modeling and implementation: [Schweppe et al’70]

l Gauss-Newton methods [Abur-Gomez’04] [Caro-Conejo-Minguez’09]

l SDR: [Zhu-Giannakis’11,14], [Weng-Ilic, et al’12,13,15]

q PF analysis

q PSSE

q Our Contributions:

l Conditions to guarantee an exact SDR for the PF problem

l Theoretically quantify the SDR optimal solution for the PSSE problem

Y. Zhang, R. Madani, and J. Lavaei, “Conic Relaxations for Power System State Estimation 
with Line Measurements,” IEEE Trans. on Control of Network Systems, Sept. 2018
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Power Flow (PF) Problem

q PF problem: PSSE with noiseless measurements 

• All measurements are nodal quantities

• Number of equations = number of unknowns 
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Motivating Example 
q Direct calculation of power flows

Find unique

• Convexity of the formulation? 

• Optimization framework to estimate the voltage     ?

• How good is the performance of the convexification?

q Direct calculation is NOT applicable for noisy measurements
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Semidefinite Relaxation

q Assumptions

q Our approach: Design a linear objective                      with       

A2) Angle conditions:

A1) Available measurements:

Question: When is the SDP relaxation exact to recover     ?

Rank-one
solution

Right 
directions
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Exact Recovery 

• Dual SDP

• To show the existence of a dual certificate      satisfying 

Theorem 1

Under assumptions A1-A2, the SDP relaxation 
recovers the voltage vector

q Proof sketch:
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Corollary 1

SOCP Relaxation

q Additional measurements

Theorem 2
Under assumptions A1-A2, the SOCP relaxation recovers the voltage

Under assumptions A1-A2, the SDP and SOCP relaxations with 
additional constraints of power injection and line measurements 
both recover the voltage
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Power System State Estimation 
q Penalized SDP:

Theorem 3

q For example:

If                                      then there exists a scalar              such that 

where     is the second smallest eigenvalue of



20/39

Estimation Error
q Define the root-mean-square error:

q Effect of more measurements

Theorem 4

Corollary 2
Under assumptions of Theorem 3, the tail probability of the 
estimation error      is upper bounded as 
for every               where 

Consider two choices of the graph        denoted as       and         such that 
is a subgraph of          Then, the relation                              holds.
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Rank-1 Approximation
q Given        of the penalized SDP , we can recover as follows:

S1) set the voltage magnitude  

S2) set the voltage angles by solving an LP:

q Complexity reduction: tree decomposition

1 2 3 4 5

1

2

3

4

5

Full-scale to decomposed SDP

R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained 
Optimal Power Flow Problem,” IEEE Trans. Power Systems, 2016.
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Penalized SDP vis-à-vis Newton’s Method

q Performance metric:

• Available measurements:  

• Bad data: 20% of the line measurements 

(a) IEEE 57-bus system (b) IEEE 118-bus system
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Comparison of Different Regularizers

q Performance measure:

• Various noise levels: 

q IEEE benchmark systems

• Bad data: 10% of the measurements 

• 50 Monte-Carlo simulations

• Proposed SDP approach has the best performance
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Error Bound and Scaling Factor

• The RMSEs      and           :  the same order of the noise level 

q Error bound

• The scaling factor             :  the optimal solution              is close to 
the true lifted state  
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Effect of Additional Active Power Injections
q PEGASE 1354-bus: SDP relaxation with tree decomposition 

q PEGASE 9241-bus: SOCP relaxation
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Simulation Time

Cases Solver time Total time

9-bus 0.89s 1.58s

14-bus 1.23s 2.54s

30-bus 1.33s 3.21s

39-bus 1.56s 3.28s

57-bus 1.97s 4.09s

118-bus 2.38s 5.63s

1354-bus 4.55s 9.48s

2869-bus 13.17s 24.44s

9241-bus 58.00s 109.14s

q Modeling tool and solver: CVX+SDPT3
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Market Inference Motivation

q Challenges
• uncertainty: load, renewables
• bidding and hedging
• outages and security

q Interest from
• market participants
• independent system operators (ISO)
• congestion corridors

Locational marginal prices (LMPs) 
vary spatiotemporally 
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Problem Statement

q Nodal features 
• location
• bus type: 

generator/load/interface

q Time features
• yesterday’s prices
• temperature
• day, hour, holiday

q Interpolation and extrapolation (forecasting)

Market inference: 
Assume that price             at node n and hour t, depends on 
nodal features        and time features       
Given historical feature-price pairs
infer prices                at given  

xn yt.
{(xn,yt), p(n, t)}n2N ,t2T ,

{(xn0 ,yt0)}n02N 0,t02T 0 .
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Prior Work

q Existing works: predictors trained per node, no spatial correlation

q Contribution: kernel-based network-wide forecasting

q Time-series modeling (ARIMA) [Contreras et al‘03], [Conejo’05]

q Artificial intelligence: fuzzy systems, neural networks

[Gonzalez et al’05], [Li et al’07], [Wu-Shahidehpour’10]

q Nearest-neighbor approach [Lora-Exposito’07]

q Quadratic program with outage combinations [Zhou-Tesfatsion-Liu’11]
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Kernel-based Learning
q Given data and kernel{(xn, zn)}Nn=1, K : X ⇥ X ! R

where

q Find f̂ := arg min
f2HK

NX

n=1

(zn � f(xn))
2 + µkfkK

q Representer theorem: f̂(x) =
NX

n=1

K(x, xn)ân

Gaussian kernel:â := arg min
a2RN

kz�Kak22 + µ
p
a>Ka

where Kij = K(xi,xj)



31/39

Low-rank Inference

• tensor product kernel K⌦ ((n, t), (n0, t0)) := K(n, n0) ·G(t, t0)

q Presumption: R is small

• few congested lines yield low-dimensional price differentiation

q Inferring             posed as learning function         p(n, t) p : N ⇥ T ! R

q Low-rank model via trace-norm penalty

• collaborative filtering [Abernethy-Bach-Evgeniou-Vert’09]  

• nuclear-norm optimization [Recht-Fazel-Parrilo’07]

min
p2P

kZ�Pk2F + µkpk⇤

q Functional space P :=

(
p(n, t) =

RX

r=1

fr(n)gr(t), fr 2 HK, gr 2 HG

)

Jacob Abernethy et al, “Low-rank matrix factorization with attributes,” 
Ecole des Mines de Paris, Tech. Rep. 2006.
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Multi-Kernel Electricity Price Forecasting

min
K,G

min
p2P

kZ�Pk2F + µ
p
kpk⇤

min
P,{Bl},{�m}

kZ�Pk2F + µ
LX

l=1

kBlkKl + µ
MX

m=1

k�mkGm

s.to P =
LX

l=1

MX

m=1

KlBl�
>
mGm.

• over kernel pools K := conv
�
{Kl}Ll=1

�
G := conv

�
{Gm}Mm=1

�

q Functional to matrix optimization

q Joint kernel selection and 
functional regularization

q Block coordinate descent (BCD) solver: Guaranteed convergence

Vassilis Kekatos, Yu Zhang, and Georgios Giannakis, “Electricity Market Forecasting 
via Low-Rank Multi-Kernel Learning,” IEEE J. Selected Topics on Signal Proc., 2014.
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ü If

ü else, solve Sylvester equation

Block Coordinate Descent (BCD)

min
{Bl},{�m}

kZ�
LX

l=1

MX

m=1

KlBl�
>
mGmk2F + µ

LX

l=1

kBlkKl + µ
MX

m=1

k�mkGm

• Unique minimizer found efficiently as

X̂ := argminX kA�BXC>k2F + µkXkB

kB1/2ACkF  µ/2, X̂ = 0;

BX̂C>C+
µ2

4ŵ
X̂ = AC

q Canonical problem

• Guaranteed convergence [Tseng’01]

q Once found, forecasting by
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Connectivity graph
of the local balancing 

authority (LBA)

MISO Market Prediction

q MISO summer 2012
• nodes
• kernels
• Predict next 24 hrs using last week’s data

q Nodal kernel
• regularized Laplacian
• diffusion Laplacian
• Gaussian
• identity
• covariance

q Time kernel 
• Gaussian
• linear
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Day-ahead Prediction

q Average forecast error 
of the MISO market:

Novel Ridge Persistence ARIMA

RMSE 6.40 7.55 7.20 7.06

MAE 3.51 4.40 3.81 3.80
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Kernel Selection

spatial
kernels

temporal
kernels

Identity!

Gaussian 
with small  
bandwidth
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l Joint PSSE and topology identification: transmission switching 

l Robust PSSE: uncertain system parameters; e.g., admittance values

l Dynamic and online PSSE 

l Deep neural networks for market inference and energy disaggregation 

q Ongoing and future works

q Takeaways

l Framework of conic relaxations for PSSE

l Conditions of exact recovery of the PF solution via SDP/SOCP relaxations

l Estimation error bound of the SDR optimal solution for PSSE

l Low-rank multi-kernel learning to capture spatio-temporal correlations

Summary
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More Opportunities

• State estimation
• Sensor placement
• Topology identification 

• Energy disaggregation
• Anomaly detection
• Cascading failure analysis

• Optimal power flow, unit commitment
• Voltage/frequency regulation
• Transmission switching
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Q & A

Thank You!
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Proof of Theorem 1 

• Explore the special structure of matrix 

rank-1
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• Line measurements over the connected subgraph        
repeat the argument for all the buses.

Proof of Theorem 1 (cont’d) 
• To prove

• Angle conditions:
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Proof of Theorem 2

q Penalized SDP:
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Roundtable Discussion: NSF-TRIPODS Grant

Data
Analytics

Energy

Climate
change

Transportation

Biology

Data science and machine learning activities at UCSC (just a sample):
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Energy Data Analytics
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Climate Change
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Climate Change (cont’d)



47/39

Biology
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Ethical AI


