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The Electrical Grid Then and Now

“The most significant engineering achievement of the 20t century.” [NAE Report’10]
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[ Several challenges ahead

e Customer engagement and environmental concerns.

e 99.97% reliable, but power outages cost S150 billion per year in the US.

Figure courtesy: FERC. “Final Report on the Aug. 14, 2003 Blackout in the US and Canada.” 3,39



Features of Smart Grids

green/sustainable self-healing situational awareness

US Dept. of Energy, “The smart grid: An introduction.” 4/39



Enabling Technology Advances

m power electronics

—

IS

renewables

|

energy storage

Optimization, signal
processing, and machine

metering learning toolbox

demand response
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Outline

d System modeling and problem formulations

(d Convex relaxations for power flow (PF) analysis (noiseless)

* Design of the objective function

* Exact recovery of the PF solution

d Convex relaxations for power system state estimation (noisy)
* Penalized semidefinite relaxation

* Theoretically guaranteed performance bound

 Electricity Market Inference

e Low-rank multi-kernel learning approach

J Summary and future directions

6/39



Northeast Blackout of 2003

Time: August 14, 2003 starting at 16:05 EDT

Location: Midwest/Northeast US and Ontario

Effects: 50 million people & 61,800 MWs
of load lost. No power for 4 days in some
parts of the US, and for more than a
week in Ontario.

Costs: S4~10 billion in the US and
Canada’s GDP was down 0.7% in Aug. In
Ontario, net loss of 18.9 million work
hours, and manufacturing shipments
were down $2.3 billion.
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Failure of State Estimator

6.9. Map of Zone 3 (and Zone 2s Operating Like Zone
6.10. Michigan and Ohio Power Plants Trip.........
6.11. Transmission and Generation Trips in Michigan
6.12. Flows on Keith-Waterman 230-kV Ontario-Mich

ada Power System Outage Task Force

Final Report on the

gust 14, 2003 Blackout
in the

‘ted States and Canada:

Recommendations: “DOE should expand its
research programs on reliability-related tools
and technologies.”

“Evaluate and adopt better real-time tools for Causes and

operators and reliability coordinators.” Recommendations
awareness”

“Violation 3: FE’s state estimation
/contingency analysis tools were not April 2004
used to assess system conditions,

violating NERC Operating Policy 5...”
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System Modeling

Generator 1 Generator 2

Bus 1 Bus 2

Bus 3

Generator 3 Load

(d Represent power grid by a connected graph

G=(WN,L)
/N

set of buses set of power lines
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System Modeling (cont’d)
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Figure courtesy: www.electronics-tutorials.ws 10/39



. . P f
Nodal and Line Quantities Bus k Bus &/

—0—
Pk v | %

"Uk|2 — r]:‘I’(]EkVV*)7 Pr — TI‘(Yk,pVV*), dr — TI’(Yk’qVV*)

O Voltage magnitude and nodal power injections

1
where Ej :=ee;,, Yy, = 5 (Y B + EpY), Yy g o= 2 (BpY — YEy)

]
2
O Branch active and reactive powers
Py =Te(Yip,vv?), pre=Tr(Yip,vv')
ql,f = TI‘(Yl,quV*), QZ,t = TI‘(Yl’thV*)

[ All quantities are quadratic functions of complex voltage V

v = state of the system
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Problem Statement

Power system state estimation (PSSE):

Given noisy measurements z; = Tr(M;vv*) +n;, j =1,2,...,m,
estimate the complex voltage V.

M Functionality of PSSE:
* Provides real-time power system conditions
e Constitutes the core of online security analysis

* Provides diagnostics for modeling and maintenance

 Measurements:
* From the supervisory control and data acquisition (SCADA) system and
phasor measurement units (PMUs)

* Corrupted by noise; missing or grossly inaccurate (outliers/bad data)

12/39



Prior Work

O PF analysis
e NP-hard for both T&D networks [Bienstock-Verma’15], [Lehmann et al’16]
e Newton-Raphson method and fast decoupled load flow (FDLF)
e Other techniques: Holomorphic embedding LF and numerical polynomial
homotopy continuation (NPHC) [Trias’12], [Li’03], [Mehta et al’15]
e Semidefinite relaxations (SDR) [Madani-Lavaei-Baldick’15]

O PSSE

e Modeling and implementation: [Schweppe et al’70]
e Gauss-Newton methods [Abur-Gomez’04] [Caro-Conejo-Minguez’09]
e SDR: [Zhu-Giannakis’11,14], [Weng-llic, et al’12,13,15]

L Our Contributions:

e Conditions to guarantee an exact SDR for the PF problem

e Theoretically quantify the SDR optimal solution for the PSSE problem

Y. Zhang, R. Madani, and J. Lavaei, “Conic Relaxations for Power System State Estimation 13/39
with Line Measurements,” IEEE Trans. on Control of Network Systems, Sept. 2018



Power Flow (PF) Problem

1 PF problem: PSSE with noiseless measurements (n; = 0, V)

find veC”
s.t. Tr(M;vv") =z;, Vj e M

_--*_
BEEEm O O

? ?
?

* All measurements are nodal quantities

* Number of equations = number of unknowns (2n — 1)
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Motivating Example oN = i

L Direct calculation of power flows oo

Pst = Re(US(Us - Ut)*y;kt) |:>

2
— R
Lvy — Lve = arccos (p12 | ||T1| I e(f12)> + Ly12
V1]|V2]]Y12
_ 2R —
Lvy — Lv3 = arccos (ng [v2] e(y23)> + £LYo3
[v2|vs|[y23]

Find unique (v, vy, Lus [O < (Lvs — Lvy) — Lyse < 180° and Lvper = O}

 Direct calculation is NOT applicable for noisy measurements

* Optimization framework to estimate the voltage vV ?

e Convexity of the formulation?

« How good is the performance of the convexification?

15/39



Semidefinite Relaxation

O Our approach: Design a linear objective Tr(MpX) with X := vv*

4 A At
minimize Tr(MyX) directions
X eHn
subject to Tr(M,X) = z;, j € M
- o Rank-one
X >0, ra_n,k(X%:. 1 solution =
- /

Question: When is the SDP relaxation exact to recover v?

d Assumptions

|?}k‘2,Vk e N
A1) Available measurements:

pi¢ (p1t), ¥Vl € LgT

1 +Im

A2) Angle conditions:

e —————————————————————

—180" - AMQa.ot — LYt < U, V(s,U) € LgT £ Mo;st

i 0 < (Lvs — Lvg) — Ly < 180°,  V(s,t) € Ls,
| (Lvs — Lvy) — Mo, # 0 or 180°, V(s,t) € Lst

\\——————————/

16/39



Exact Recovery

Theorem 1 A
Under assumptions A1-A2, the SDP relaxation
recovers the voltage vector V.
\ %
d Proof sketch:
4 o . )
° Dual SDP maxiinize —Z U
pLER™
subject to H(p) := My + Z,ujl\/lj >~ 0
- ! /

* To show the existence of a dual certificate M satisfying

L H(p) =0, H(p)v=0, rank(H(p))=n-—1 }
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SOCP Relaxation

/ minimize Tr(MyX) \
XeHN
subject to Xj 1 = ]vk]2, Vk e N
TI’(YLpr) = DL, f, VI € Lgr

Xs S Xs t
) 9 >_ 07
[Xt,s Xt,t] -

\_

V(s,t) € Lgt

/

Theorem 2

Under assumptions A1-A2, the SOCP relaxation recovers the voltage V.

J Additional measurements

4 Corollary 1

both recover the voltage

Under assumptions A1-A2, the SDP and SOCP relaxations with
additional constraints of power injection and line measurements

V.

~

)
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Power System State Estimation

(] Penalized SDP:

o Sy A
Jripimie, o) + TH(MoX)
subject to Tr(M,;X) +v; =z2;, VjeM
X>0
N — J

d For example: fwrav(v

Z!Vy\/% fwrs(v

ZV2/U

/T heorem 3

[XP vyl _

¢ =

v/n x Tr(Xopt)

o

kwhere \is the second smallest eigenvalue of H(f1).

pX fwrav(n)

n

Y

~

If p > maxjenr |0jfij], then there exists a scalar 3 > 0 such that

!
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Estimation Error

1 Define the root-mean-square error:

w(G')
!_‘_\
_ IXPEBvvT e _P_
C . \/nXTr(Xopt) — 2\/71,)\ \/fWLAV(TD
4 Corollary 2 A
Under assumptions of Theorem 3, the tail probability of the
estimation error ( is upper bounded as P({ >t) < e 7™
forevery t > 0, where ~ = ?)i—é; — In 2. P
O Effect of more measurements
~

Theorem 4
Consider two choices of the graph G',denoted as Giand Y3ssuch that
G} is a subgraph of G}. Then, the relation w(G5) < w(G1)holds.

o

)
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Rank-1 Approximation

O Given X°P' of the penalized SDP , we can recover v € C" as follows:

S2) set the voltage angles by solving an LP:

/

AV =

arg min Z [AX — Lvg + Luy|

AVE[—T(',T(']N (S,t)eﬁ

S. t. ALVpet = 0

Full-scale to decomposed SDP

v A W N R

1 2 3 4 5

R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of Conic Relaxation for Contingency-Constrained
Optimal Power Flow Problem,” IEEE Trans. Power Systems, 2016.
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Penalized SDP vis-a-vis Newton’s Method

:—;\

RMSE &(

1 Performance metric:

0.06
0.05
0.04

0.03 1

0.02
0.01

RMSE =

v = vol[/v/n

{lvk|*}ken and {pr. ¢, D1t }ier

—B—pfwraviv) + Tr(MpX)
== W LS estimator using Newton's method

'
‘uL“ TR -l

Available measurements:
Bad data: 20% of the line measurements
T T - T 0
n |
i n "u‘ oY ' {
n DR ® P |
Y ' r 0 2l n ‘ QD "‘ 1) m)
"' ‘:‘ L ’“ " ‘ ’“‘ it & ‘ l." u“l o h 0‘ ':1',‘ o, !‘ "““f‘
0 0 “ 0 1) Ay | :’ ':; L) (1)
u O @ z
| o —E—I(J_f\\'L_.\\'I:.r.—‘.] -+ J.ll:h‘IUXI
- 1 e =8=WLS estimator using Newton's method
i";‘.. ;' : 1 y n IF_'_- .l :._ J : ‘- r:l. :‘l rn'l: ‘.Il_ -\ :-'n iu“-' ot H:'F"- '.ﬂJ:l‘l‘,r:l‘ eri
20 40 60 80 100

Randomly generated noise values

(a) IEEE 57-bus system

0 20 40 60

Randomly generated noise values

(b) IEEE 118-bus system
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Comparison of Different Regularizers

J IEEE benchmark systems

* Various noise levels:

* Bad data: 10% of the measurements

_ (2 _ _
0; = cx|0g|%, 1.5cXPr, or 2¢Xpy ¢

e 50 Monte-Carlo simulations

§V) = IV =vol/vn

d Performance measure:

Methods pf(v) 4+ Tr(MoX Pf(V) + HXH* pf(l/)
WLAV WLS WLAV WLS WLAV WLS
9-bus 0.0648 0.1293 1.2744  1.1483 | 1.1619  1.1633
14-bus 0.1307 0.1784 1.1320  1.3871 1.4233  1.4215
30-bus 0.2055 0.2543 1.4236  1.4306 | 1.4269  1.4268
39-bus 0.1324 0.1239 1.1317  1.3135 | 1.2764  1.2757
57-bus 0.2343 0.2809 1.2981 1.3004 | 1.3235  1.3098
118-bus 0.1136 0.1641 1.3620  1.3272 | 1.3445  1.3577

* Proposed SDP approach has the best performance

23/39



Error Bound and Scaling Factor

_ IXPtBvv*||F __. rmax

2 rorbouna ¢ o= BV <o/ R o
Cases 5 (-.e ) C Clllax 8 A f“;]__“%\; pllllll

9-bus 001111 0.0145] 0.1535} 0.9972) 1.3417] 14.768 | 0.0048

14-bus 0.00571 0.00781 0.2859] 1.0005) 0.3812] 20.509 [ 0.0053

30-bus 0.0060] 0.0084] 0.3728} 0.9997] 0.1094| 51.479 | 0.0022

39-bus 0.00771 0.0083] 0.8397}| 1.0009] 0.7438 | 62.558 | 0.0817

57-bus 0.00921 0.0102] 0.8364} 1.0013] 0.0912| 88.434 | 0.0103

118-buslf 0.0057F 0.0079| 1.2585| 0.99921 0.0878 ] 179.509] 0.0228

The RMSEs ¢ and £(V): the same order of the noise level ¢ = 0.01

The scaling factor 8 =~ 1: the optimal solution X°P? is close to
the true lifted state vv*
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Effect of Additional Active Power Injections

J PEGASE 1354-bus: SDP relaxation with tree decomposition

0.45 . | |
=87 fwLav(v) + Tr(MoX)
0-361 —&—pfwrs(v) + Tr(MpX)
% 027k == fwrav(v)
2 = fwis(v)

Percentage of measured active power injections (%)

J PEGASE 9241-bus: SOCP relaxation

0.3 :
—B—p fwrav () + Tr(MpX)
— —6—p fwis(v) + Tr(MpX)
% 0.2 =& furav(v) .
= —7— fwLs(¥)
%
-

0 20 40 60 80 100
Percentage of measured active power injections (%)
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Simulation Time

U Modeling tool and solver: CVX+SDPT3

9-bus 0.89s 1.58s
14-bus 1.23s 2.54s
30-bus 1.33s 3.21s
39-bus 1.56s 3.28s
57-bus 1.97s 4.09s
118-bus 2.38s 5.63s
1354-bus 4.55s 9.48s
2869-bus 13.17s 24.44s

9241-bus 58.00s 109.14s

26/39



Market Inference Motivation

O Interest from
* market participants

* independent system operators (ISO)

e congestion corridors

MINN HUB: $30 77 |-South 03
MICHIGAN HUB: $464 |—

[ILLINGIS HUE" $48.86 |

ththth
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Bl 500 .. 1000
Bl 500 .. 800
Bl 500 ..500
Bl 400 ..500
Bl 300 ..400
Bl 250 .. 300

] 90..100
] 22..%0
] 76..82
] 68..76
] 62..68
] s56..62
] s50..56
] 46..50
] 42 ..46
] =28..42
] 34..38
= =20..34
= 26..20
B 20..26
B 14..20
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V] + GEN
V] % Hue
V] & InT

| (o}
Manitoba
b North Dakota \ o
oﬁb < - ?’ o{f
R o R Ragil
s ol 0y ,‘\\
(VAN A0S §7647 SouthOsam  —— M—— | Py q
[(VICHIGANHUE 33050+ - -~ _ i
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CINERGY HUS $2888 -

NDANAHUBS2723 ~ e

Nebrasks

llllll

LMP (USD)

= 82. %0
76 .. 82
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1 so. seé
E 46 ., 50
42 ., 46
= 38. 42
34 ., 38
30 .. 34
B 26.. 30
20.. 26
14 .. 20
B 5. 14
0.6
-10.. 0
B 959 . -10
(V] + GEn
(V] * Hue
S A v

Locational marginal prices (LMPs)

vary spatiotemporally

O Challenges

uncertainty: load, renewables

bidding and hedging
outages and security
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Problem Statement

Market inference:

Assume that price p(n,t)at node n and hour t, depends on

nodal features Xy and time features Yt-

Given historical feature-price pairs {(Xn,¥t), P(1: )} en seT

infer prices p(n/,t') at given {(Xn/,Yt')}rens per - y

 Interpolation and extrapolation (forecasting)

3 Nodal features O Time features
* |ocation e yesterday’s prices
* bus type: * temperature

generator/load/interface * day, hour, holiday
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Prior Work

O Time-series modeling (ARIMA) [Contreras et al‘03], [Conejo’05]

O Artificial intelligence: fuzzy systems, neural networks
[Gonzalez et al’05], [Li et al’07], [Wu-Shahidehpour’10]

1 Nearest-neighbor approach [Lora-Exposito’07]

O Quadratic program with outage combinations [Zhou-Tesfatsion-Liu’11]

 Existing works: predictors trained per node, no spatial correlation

O Contribution: kernel-based network-wide forecasting
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Kernel-based Learning

Q Givendata {(Zn,2,)}Y_1, andkernel K : X x X = R

Q Find | f:=arg min > (20 — f(20)2 + ul|fllic

where Hy := {f(z) =Y 0| K(z,2,)an},

N
(d Representer theorem: f(x) = Z K(x,x,)an,

n=1

a:=arg min ||z — Kal|5 + pva Ka
acRN

where Kij — K<X7L7Xj)

Gaussian kernel:

¢ —_— . 2
K(x;,%x;) = exp (_”’ZGQXJH )
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Low-rank Inference @

Q Inferring p(n,t) posed as learning function D : N xT—->R

R
O Functional space P := {p(n, )= fr(n)ge(t), fr €Mi, gr € Hg}

r=1

 tensor product kernel Ky ((n,t),(n/,t)) := K(n,n') - G(t,t')

O Presumption: R is small

* few congested lines yield low-dimensional price differentiation

: 2
O Low-rank model via trace-norm penalty [ ;%171;1 |Z — Pl|% + pllpll« J

* collaborative filtering [Abernethy-Bach-Evgeniou-Vert’09]

* nuclear-norm optimization [Recht-Fazel-Parrilo’07]

Jacob Abernethy et al, “Low-rank matrix factorization with attributes,” 31/39
Ecole des Mines de Paris, Tech. Rep. 2006.



Multi-Kernel Electricity Price Forecasting

Q Joint kernel selection and minmin ||Z — P||% + uy/||p||+
functional regularization G peP

« over kernel pools K := conv ({’Cl}zL:1> G := conv ({gm}%:l)

O Functional to matrix optimization

4 L M I
min 7 — P||% + Bk, + 1 I'nllc.,
ot 12 =PI+ 3 [Bilhe + 13 T
L M
sto P=Y "> KBTI, Gpn.
k I=1 m=1 /

[ Block coordinate descent (BCD) solver: Guaranteed convergence

Vassilis Kekatos, Yu Zhang, and Georgios Giannakis, “Electricity Market Forecasting

via Low-Rank Multi-Kernel Learning,” IEEE J. Selected Topics on Signal Proc., 2014. 32139



Block Coordinate Descent (BCD) hy

L M L i
el (1230 ST KB Gl + ) [Bill, + 1Y [Pl
e [=1 m=1 =1 m—1

* Guaranteed convergence [Tseng’01]

O Canonical problem [ X := argminx |[A —BXCT |2 + ,uHXHB]

* Unique minimizer found efficiently as

v If |BY2AC|F < p/2, X =0;

2
v else, solve Sylvester equation BXC'C + ZA X = AC
W

A A - L M A A
O Once {B,;}, {I';,}found, forecastingby P’ =3 Y K/B,I'| G/,
[=1m=1
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MISO Market Prediction

d MISO summer 2012
e N =1,732 nodes
e L =5,M =5 kernels

* Predict next 24 hrs using last week’s data

J Nodal kernel O Time kernel
* regularized Laplacian e @Gaussian
e diffusion Laplacian * linear
e Gaussian Connectivity graph
. identity of the local balancing

, authority (LBA)
* covariance

34/39



Day-ahead Prediction

]| AU SO SRS S S
20

16

RMSE

12

28_ ..... , ..... ..... ..... ........................................

—#— Novel method
—+— Independent ridge |
—<— Persistence method|:

—e— ARIMA

0 5 10

d Average forecast error

of the MISO market:

15 20 25 30 35 40 45 50 55 60 65 70 75 80
Days
Novel | Ridge | Persistence | ARIMA
RMSE 6.40 | 7.55 7.20 7.06
MAE 3.51 | 4.40 3.81 3.80
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Kernel Selection

. X
spatial
(0]
kernels €
[O)]
X
10 20 30 40 50 60 70
Days

Gaussian

= with small

temporal ¢ bandwidth
kernels £
4

10 20 30 40 50 60 70
Days
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Summary

J Takeaways

e Framework of conic relaxations for PSSE
e Conditions of exact recovery of the PF solution via SDP/SOCP relaxations
e Estimation error bound of the SDR optimal solution for PSSE

e Low-rank multi-kernel learning to capture spatio-temporal correlations

[ Ongoing and future works

e Joint PSSE and topology identification: transmission switching
e Robust PSSE: uncertain system parameters; e.g., admittance values
e Dynamic and online PSSE

e Deep neural networks for market inference and energy disaggregation

37/39



More Opport

unities

\

* Optimal power flow, unit commitment
* Voltage/frequency regulation
* Transmission switching

~

e State estimation
e Sensor placement

* Energy disaggregation
* Anomaly detection

~

* Topology identification \- Cascading failure analysisj

JUIIvJ
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Proof of Theorem 1 .

H =M+ " My =300 (Mo,j + o pe e Er Mij)

* Explore the special structure of matrix Y,y

* Ys
Yl,Pf(Svt) — Yl,pf(tv 8) === Yl,pf(sv 3) — Re(yst)

2 Y
Define fis := ——pus + psRe(yst), fit := — iz
r ~5 Mgt — ﬂys
H] = [ sk /i H_j * t,J ~ 2 !
Mgt j 5 Yst M
Hiv=0=Hv=0=
d . . [tV A
mst,j 9 st - v B v |? vy
i = H; = iy | Ivs]? v rank-1
~ _ vy o
,u‘S — t| ’2 N
\_ o
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Proof of Theorem 1 (cont’d)

e Toprove rank(H)=n—-1 < dim(null(H)) =1 < x=rv, Vx € null(H

Hx=0= 2= = > for j-th measurement over line (s, t) }

Hix=0= "t = :jt for j’-th measurement over line (¢, a)

Tq a

* Line measurements over the connected subgraph G,
repeat the argument for all the buses.

* Mg %

« Angle conditions: fir = —(mg; — Fys) s >0 LMo

/ —1800 < AMO;st T Kyst < 07 V(S,t) € £T7 \

D | 0< (Lve— 4vy) — Lyar < 180°, ¥(s,t) € L7, ,\
\(ifvs — Lvg) — £Mo.s¢ # 0 or 180°, V(s,t) € ET/ LY
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Proof of Theorem 2

X>0

3 Penalized SDP: { min Tr(MoX) +PZU T (M (X—vv™)) =75 }

—

Tr (Mo (XP" — vv*)) + pz o7 | Tr (M (X°P' — vv*))| < 2pfwrav(n)

My = H(f) — Zg y ;M H(p)v =0

'::> Tr(H(2)XP") < 2p fwrav(n), if p > max;jenm |0l
X = E{i ﬂ = U*XP'U = 2pfwrav(n) > Tr(AX) > \Tr(X)

~

X —a'xx* = 0 = ||x? < oTr(X) = Tr(X°PH)Tr(X) — Tr?(X)

~ ~ ~

X — [0 ¥] F( X] [S] UXU* 4+ vx*U* 4 URV* + avv*

oy S ~ 4
— Xt — v vt (|2, = || X2 4 2||% 12 < defwiav(m) . xopt)
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Roundtable Discussion: NSF-TRIPODS Grant

Data science and machine learning activities at UCSC (just a sample):

43/39



Energy Data Analytics

o™ | AN oo
- & Simulation A ¢qey Inventory 888

Weather Social

; Media

\ I/ SCADA
Smart e BI

Appliances/

sensors DATA UQCI/ Operators

\ Input
E
%rnart Meters f - PMUs/

d uPMUs/

Field Sample Value

GIS
Measurement

Units/RTUs

Traffic Network '
(Power/Communication)

Figure source: B. P. Bhattarai et al., “Big data analytics in smart grids: state-of-the-art, challenges,

opportunities, and future directions,” in IET Smart Grid, 2019.
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Climate Change

Elliott Campbell, Dept. Environmental Studies, UCSC
Climate-carbon feedbacks using atmospheric

computer simulations
* Biosphere feedback on
climate (Campbell et
al., Nature, 2017)

* High performance
computing at
DOE/NERSC &
NASA/IPL

\-
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Climate Change (cont’d)

Landscape vegetation dynamics
in a changing world

46/39



UNIVERSITY OF CALIFORNIA

Biology A ST Oz

Welcome to the next generation UCSC Cancer Browser: UCSC Xena!

Genomics
Institute

UCSC Xena has all the same functionality of the UCSC Cancer Browser plus new tools, such as the ability
to see multiple types/modes of genomic data side-by-side, and plenty of new data, such as the latest from
the GDC, GTEx and more.
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Ethical Al

Fair Algorithms — Yang Liu at CSE of UCSC

= Ethical Al
o How do fairness definition fare [AIES'19]

= Fairness in Machine Learning
o Fairness definition [FATML 17, AAAI'19]
o Actionable Recourse [FAT*'19]
o Preference in ML [ICML'19]

* Fairness in sequential decision making

o Fair stopping rule [UAI'17]

o Fairness in bandit [FATML'17, Delayed Impact of
Actions in MAB]

ssssssssssss

Amazon scraps secret Al recruiting tool that
showed bias against women

What should the self-driving car do?

Own an"Android
Phone? You Might
Not Get That Loan

Algorithms could determine our creditworthiness
based on data we didn't know was available or
relevant.

May 4, 2018, 6:00 AM EDT
Correct :30

Machine Bias

Papers available here: http://www.yliuu.com/




