1. (3 points)

(1). Input vectors \(u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) and \(v = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \), then calculate the vector \(w = 3 \cdot u + 2 \cdot v \).

(2). Calculate the vector \(w = 5 \cdot u - 7 \cdot v \).

(3). Use the MATLAB ‘==’ command to confirm that addition of \(u \) and \(v \) is commutative (remember, it is for all vectors!).

(4). Calculate the lengths of vectors \(u \) and \(v \).

(5). Calculate the inner product of \(u \) and \(v \).

(6). Calculate the angle between vectors \(u \) and \(v \). You only need to show the value of \(\cos(u, v) \).

2. (5 points)

You are given the system of linear equations below:

\[
\begin{align*}
 x + y + z &= 4 \\
 2x + y &= 3 \\
 y + z &= 3
\end{align*}
\]

(1). Find the associated matrix (denoted as \(A \)) and the right-hand side vector (denoted as \(b \)).

(2). Calculate the rank of \(A \).

(3). Calculate the inverse of \(A \).

(4). Calculate the transpose of \(A \).

(5). Calculate the solution of the system of linear equations.

(6). Input matrix \(B = \begin{bmatrix} 1 & 3 & 5 \\ 7 & 9 & 11 \\ 13 & 15 & 17 \end{bmatrix} \). Then calculate \(C = A + 2 \cdot B \), \(D = A \cdot B \).

(7). If the first equation \(x + y + z = 4 \) is replaced by \(x + y + 0.5z = 4 \), MATLAB cannot find a solution to the new system of equations. Try this for yourself in MATLAB, then use what you have learned to explain why.