1 125B: Final Exam Solutions

Problem 1. (25 pts) Prove that the function

$$f(x,y) = \begin{cases} \frac{\sin(x)}{y}, & y \neq 0\\ 0, & y = 0 \end{cases}$$

is not differentiable at (0,0).

Proof. This problem was very similar to Problem 6 on the list of practice problems, and the proof is the same. Namely, f is not continuous at the origin (0,0), and hence it is not differentiable at (0,0). To see that f is not continuous at the origin, we note that f(0,0) = 0, and hence the limit of f(x,y) as $(x,y) \to (0,0)$ should also vanish. Along the line x = y, however, L'Hospital's rule shows that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \cos(x) = 1 \neq 0.$$

One may also consider the limit of f(x, y) along the path $y = \sin x$, which also produces a limiting value of 1. Yet another alternative is to use the fact that if f is differentiable then all the partial derivatives *exist*, which is equivalent to the fact that if partial derivatives do *not exist*, meaning that the limit of the difference quotient does not exist, then f is not differentiable. Note, however, that it is not correct to argue that if the partial derivatives are not continuous, then f is not differentiable!!

Problem 2. (25 pts) Using the <u>definition</u> of the derivative of a function $f : \mathbb{R}^2 \to \mathbb{R}^2$, prove that

$$Df(x,y) = \left[\begin{array}{rrr} 1 & -1\\ 2x & 2y \end{array}\right]$$

is the derivative of $f(x, y) = (x - y, x^2 + y^2)$ at a point (x, y).

Proof. This problem is very similar to Problem 7 on the practice problems. The definition of the derivative states that Df(x, y) is the derivative of f at (x, y) if

$$\lim_{(h_1,h_2)\to(0,0)}\frac{||f(x+h_1,y+h_2) - f(x,y) - Df(x,y) \cdot (h_1,h_2)||}{||(h_1,h_2)||} = 0$$

Hence, we must show that the linear map $Df(x,y) = \begin{bmatrix} 1 & -1 \\ 2x & 2y \end{bmatrix}$ satisfies this definition.

We substitute this matrix into the definition:

$$\begin{split} &\lim_{(h_1,h_2)\to(0,0)} \frac{||f(x+h_1,y+h_2) - f(x,y) - Df(x,y) \cdot (h_1,h_2)||}{||(h_1,h_2)||} \\ &= \lim_{(h_1,h_2)\to(0,0)} \frac{||(x+h_1 - y - h_2, (x+h_1)^2 + (y+h_2)^2) - (x-y,x^2+y^2) - (h_1 - h_2, 2xh_1 + 2yh_2)|}{||(h_1,h_2)||} \\ &= \lim_{(h_1,h_2)\to(0,0)} \frac{||(0,h_1^2 + h_2^2)||}{||(h_1,h_2)||} \\ &= \lim_{(h_1,h_2)\to(0,0)} \sqrt{h_1^2 + h_2^2} = 0 \,. \end{split}$$

Problem 3. (25 pts) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$f(x_1, x_2) = (x_1 x_2, \ x_1^2 + x_2)$$

and let \vec{x}_0 denote the 2-vector (x_{01}, x_{02}) . Find $\vec{x}_0 \in \mathbb{R}^2$ such that $f(\vec{x}_0) = \vec{y}_0 \in \mathbb{R}^2$ with $\vec{y}_0 = (0, -1)$. Prove that $f^{-1} : W \to U$ exists and is differentiable in some nonempty open set W containing \vec{y}_0 and some nonempty open set U containing \vec{x}_0 , and compute $D(f^{-1})(\vec{y}_0)$.

Proof. This problem is similar to Problem 4 on the practice list.

We first find the point $\vec{x}_0 \in \mathbb{R}^2$ such that $f(\vec{x}_0) = \vec{y}_0 = (0, -1)$. We have two equations and two unknowns:

$$x_1x_2 = 0$$
 and $x_1^2 + x_2 = -1$.

Thus, either $x_1 = 0$ or $x_2 = 0$. If $x_2 = 0$, then $x_1 = \pm \sqrt{-1}$ which we cannot allow, and if $x_1 = 0$, then $x_2 = -1$. Hence,

$$\vec{x}_0 = (0, -1)$$
.

Given $f(x_1, x_2) = (f_1(x_1, x_2), f_2(x_1, x_2) = (x_1x_2, x_1^2 + x_2)$, we see that both f_1 and f_2 are polynomials and hence smooth or C^{∞} functions. In particular $f \in C^1(\mathbb{R}^2; \mathbb{R}^2)$. As f is continuously differentiable on all of \mathbb{R}^2 , we compute the derivative:

$$Df(x_1, x_2) = \left[\begin{array}{cc} x_2 & x_1 \\ 2x_1 & 1 \end{array}\right],$$

from which it follows that

det
$$Df(x_{01}, x_{02})$$
 = det $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ = $-1 \neq 0$.

Thus, by the inverse function theorem, there exists neighborhoods U of \vec{x}_0 and W of \vec{y}_0 , respectively, such that $f: U \to W$ has a C^1 inverse $f^{-1}: W \to U$. Furthermore, the inverse function theorem gives us a formula for computing the derivative of f^{-1} on W: for all $y \in W$,

$$D(f^{-1})(y) = [Df(f^{-1})(y)]^{-1}$$
.

Since we have found $\vec{x}_0 = f^{-1}(\vec{y}_0)$, we see that

$$D(f^{-1})(\vec{y}_0) = [Df(\vec{x}_0)]^{-1} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}.$$

Problem 4. (25 pts) Which of the following are true and which are false (you do <u>not</u> have to give a proof) for a function $f : \mathbb{R}^n \to \mathbb{R}^m$:

- (a) If f is differentiable then f is continuous. (TRUE)
- (b) If f is not differentiable at some $x \in \mathbb{R}^n$, then some partial derivatives $\frac{\partial f^i}{\partial x_j}$ do not exist. (FALSE)
- (c) If for some i, j, the partial derivative $\frac{\partial f^i}{\partial x_j}$ exists but is not continuous, then f is not differentiable. (FALSE)
- (d) If $f : \mathbb{R} \to \mathbb{R}$ is a C^{∞} function, then in a small enough open set U containing $x_0 \in \mathbb{R}$,

$$f(x) = f(x_0) + \sum_{l=1}^{\infty} \frac{d^l f}{dx^l} (x_0) (x - x_0)^l$$
 for all $x \in U$.

(FALSE)

(e) If $A \subset \mathbb{R}^n$ is open, $f : A \to \mathbb{R}$ is C^2 and $x_0 \in A$ is a critical point of f such that the Hessian $D^2 f(x_0)$ is negative definite, then f has a local maximum at x_0 . (TRUE)