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1. Exercise 1. We want to compute
∫ 1

0
xdx from the definition of the Riemann integral. First, we

define a sequence of partitions {P1/n}∞n=1 as follows: let P1/n contain the n+ 1 points xi = i/n,
where i = 0, 1, 2, . . . , n, so

0 = x0 < x1 < · · · < xn = 1,

and P1/n has the property that

||P1/n|| = max
1≤i≤n

{|xi − xi−1|} =
1

n
.

Next, we form our upper and lower Riemann sums associate to Pn :

Ln =
n−1∑
i=0

inf
zi∈[xi,xi+1]

f(zi)(xi+1 − xi) =
n−1∑
i=0

f(xi)(xi+1 − xi) =
n−1∑
i=0

i

n2
=
n(n− 1)

2n2

Un =
n−1∑
i=0

sup
zi∈[xi,xi+1]

f(zi)(xi+1 − xi) =
n−1∑
i=0

f(xi+1)(xi+1 − xi) =
n∑
i=1

i

n2
=
n(n+ 1)

2n2
,

where we used the fact that f(x) = x is an increasing function to easily find the infimums and
the supremums. Taking the limit gives us the result:∫ 1

0

xdx = lim
n→∞

Ln = lim
n→∞

Un = 1/2.

2. Exercise 2. Let f : [0, 1]→ R be defined by

f(x) =

{
1, x = 1, 1/2, 1/3, 1/4, . . .
0, otherwise.

We prove
∫ 1

0
f(x)dx = 0. By the first proposition of §3, it suffices to show that for any ε > 0

there exists a step function g(x) such that 0 ≤ f(x) ≤ g(x) and such that
∫ 1

0
g(x)dx < ε.

Fix ε > 0. Then there exists an N ∈ N such that for all n ≥ N we have 1/n + (n− 1)/2n < ε.
Let Ej = [1/j − 1/2N , 1/j + 1/2N ] ∩ [0, 1] for j = 1, 2, . . . , N − 1. Define the step function

g(x) =

{
1, x ∈ [0, 1/N ] ∪ E1 ∪ · · · ∪ EN−1,
0, otherwise.

1



Then 0 ≤ f(x) ≤ g(x) and ∫ 1

0

fN(x)dx <
1

N
+
N − 1

2N
< ε.

Taking ε→ 0 allows us to conclude the result.

3. Exercise 5. We must prove that a continuous real-valued function on a closed interval [a, b] ⊂ R
is integrable, using only uniform continuity and Lemma 1 from §3. By Lemma 1, we only need
to show that for any ε > 0 there exists a δ > 0 such that |S1

δ1
−S2

δ2
| < ε whenever S1

δ1
and S2

δ2
are

Riemann sums of f corresponding to partitions of [a, b] of width less than δ. That is, δ1, δ2 < δ.

Fix ε > 0. Since a continuous function on a compact interval is uniformly continuous we choose
δ > 0 sufficiently small such that |f(x)−f(y)| < ε/(b−a) when |x−y| < δ, x, y ∈ [a, b]. Let P 1

δ1

and P 2
δ2

be the partitions of [a, b] such that δ1, δ2 < δ and let S1
δ1

and S2
δ2

be Riemann sums asso-
ciated with P 1

δ1
and P 2

δ2
respectively. Write S1

δ1
=
∑

xi∈P 1
δ1

f(x′i)∆xi and S2
δ2

=
∑

yj∈P 2
δ2

f(y′j)∆yj

as usual. Recall that ||P 1
δ1
∪ P 2

δ2
|| ≤ min{δ1, δ2} < δ.

We can define the function g : [a, b] → R by g(z′r) = f(x′i) − f(y′j) whenever z′r ∈ [xi, xi+1)
and zr ∈ [yj, yj+1) for i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1 or when zr ∈ [xm−1, xm]
and zr ∈ [yn−1, yn] and where x′i and y′j are defined according to S1 and S2 respectively. By
construction, we see that |x′i − y′j| < δ, which, by uniform continuity, shows that |g(zr)| =
|f(x′i)− f(x′j)| < ε/(b− a).

Hence, it follows that

|S1
δ1
− S2

δ2
| =

∣∣∣∣∣∣∣
∑
xi∈P 1

δ1

f(x′i)∆xi −
∑
yj∈P 2

δ2

f(y′j)∆yj

∣∣∣∣∣∣∣ ,
≤

∑
zr∈P1∪P2

|g(z′r)||∆zr|

<
ε

b− a
∑

r∈P 1
δ1
∪P 2

δ2

∆zr

=
ε

b− a
· (b− a)

= ε.

4. Exercise 21.

(a) We want to find the limit

lim
n→∞

1k + 2k + · · ·+ nk

nk+1
, (1)

where k > 0. To find this limit we want to approximate the sum Sn =
∑n

m=1m
k by an

integral, which will be easier to evaluate. Notice that Sn is an upper Riemann sum and a
lower Riemann sum from the integrals

Un =

∫ n

0

xkdx

Ln =

∫ n+1

1

xkdx.
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Notice that Ln ≤ Sn ≤ Un (Draw a picture of the graph xk, evenly partition the intervals
[0, n] and [1, n+ 1] into subintervals of unit length, and draw the corresponding upper and
lower Riemann sums of the graph on these intervals.). So

Un =

∫ n

0

xkdx =

[
xk+1

k + 1

]n
0

=
nk+1

k + 1

Ln =

∫ n+1

1

xkdx =

[
xk+1

k + 1

]n+1

1

=
(n+ 1)k+1 − 1

k + 1
.

Then because Ln ≤ Sn ≤ Un we have by taking limits

1

k + 1
= lim

n→∞

(n+ 1)k+1 − 1

(k + 1)nk+1
≤ lim

n→∞

1k + 2k + · · ·+ nk

nk+1
≤ lim

n→∞

nk+1

(k + 1)nk+1
=

1

k + 1
.

We conclude that the considered limit is therefore 1/(k + 1).

(b) We must determine the limit

lim
n→∞

Sn = lim
n→∞

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
= lim

n→∞

n∑
k=1

1

n+ k
.

Again, we will bound the sum Sn from above and below by integrals of the function
1/(x+ n). Observe that

lim
n→∞

n∑
k=1

1

n+ k
= lim

n→∞

n∑
k=1

∫ k+1

k

1

n+ k
dx

≥ lim
n→∞

n∑
k=1

∫ k+1

k

1

x+ n
dx

= lim
n→∞

n∑
k=1

log(k + 1 + n)− log(k + n)

= lim
n→∞

log

(
2n+ 1

n+ 1

)
= log 2.

Similarly,

lim
n→∞

n∑
k=1

1

n+ k
≤ lim

n→∞

n∑
k=1

∫ k+1

k

1

x+ n− 1
dx

= lim
n→∞

n∑
k=1

log(k + n)− log(k + n− 1)

= lim
n→∞

log(2n)− log n

= log 2.

We conclude by the squeeze theorem that in the limit as n→∞ we have Sn → log 2.
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5. Exercise 22. We want to show that

γn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n

decreases as n increases and that the limit converges to a value between 0 and 1. Recall that

log(n+ 1) =

∫ n+1

1

1

x
dx.

Notice that

log(n+ 1) =

∫ n+1

1

1

x
dx

=
n∑
k=1

∫ k+1

k

1

x
dx

<
n∑
k=1

1

k

< 1 +
n−1∑
k=1

∫ k+1

k

1

x
dx

= 1 +

∫ n

1

1

x
dx

= 1 + log n. (2)

See the Figure 1, to see an illustration of why the inequalities in (2) hold.

Subtracting log n from the terms in the above inequality shows

0 < log(n+ 1)− log n ≤
n∑
k=1

1

k
− log n ≤ 1. (3)

Thus, the sequence {γn}n is bounded from below by 0 and from above by 1.

Furthermore, we also see that

1

n+ 1
<

∫ n+1

n

1

x
dx = log(n+ 1)− log n.

It follows that

γn+1 − γn =
1

n+ 1
− log(n+ 1) + log n < 0.

Hence, the sequence {γn}n is decreasing. Since the sequence {γn}n is decreasing an bounded
from below by 0 the sequence converges. That is, if γ = limn→∞

∑n
k=1

1
k
− log n, then γ ∈ [0, 1).

It remains to show that γ 6= 0. Consider the sequence {γ′n}n with

γ′n =
n∑
k=1

1

k
− log(n+ 1).
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Figure 1: Bounding the sum
∑10

k=1 k
−1 by the integral

∫ 10

1
x−1dx.

From (3) we deduce that {γ′n}n is bounded from below by 0 and from above by 1. Moreover,
notice that

1

n+ 1
>

∫ n+2

n+1

1

x
dx = log(n+ 2)− log(n+ 1),

so

γ′n+1 − γ′n =
1

n+ 1
− log(n+ 2) + log(n+ 1) > 0.

So the sequence {γ′n}n is increasing. Since {γ′n}n is increasing and bounded from above by 1,
the sequence converges to a number γ′ ∈ (0, 1] with γ′ = limn→∞

∑n
k=1

1
k
− log(n + 1). Finally,

observe that

γ − γ′ = lim
n→∞

γn − γ′n = lim
n→∞

log

(
n+ 1

n

)
= 0.

Thus, the limits of the two sequences are identical. Therefore, γ ∈ (0, 1), as advertised.

5


