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1. Exercise 1. We want to compute fol xdx from the definition of the Riemann integral. First, we
define a sequence of partitions {Py,,};2; as follows: let P, ,, contain the n + 1 points z; = i/n,
where 2 =0,1,2,...,n, so

O=zxo<m1 < - <z, =1,
and P/, has the property that

1
1Pl = max {Jo; —wia|} = .

Next, we form our upper and lower Riemann sums associate to P, :

—1 n—1

Z inf )(@iss — Zf 2i) (@i — wi) = 2_37; :%
=0
(n

zi €[z, CCZ+1]

=0 1
2 "~ i nn+l)
Up=>_ sup  [f(z)(wip —zi) = Zf(xm)(xm —r)=) = o7
i—0 Zi€TiTit] i=0 i1 n

where we used the fact that f(z) = x is an increasing function to easily find the infimums and
the supremums. Taking the limit gives us the result:

1
/xdx—th —th =1/2.
0

n—o0

2. Exercise 2. Let f:[0,1] — R be defined by

(1, w=1,1/2,1/3,1/4,...
)= { 0, otherwise.

We prove fol f(z)dz = 0. By the first proposition of §3, it suffices to show that for any € > 0
there exists a step function g(x) such that 0 < f(z) < g(x) and such that fo z)dr < €.

Fix € > 0. Then there exists an N € N such that for all n > N we have 1/n+ (n —1)/2" < e.
Let E; =[1/7—1/2Y,1/5+1/2N]n[0,1] for j =1,2,..., N — 1. Define the step function

()_ 1, Z'G[O,l/N]UElU"'UEN,l,
A 0, otherwise.
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Then 0 < f(x) < g(x) and
1

! 1 N-—
/0 fN(x)da: < N + oN < €.

Taking € — 0 allows us to conclude the result.

3. Exercise 5. We must prove that a continuous real-valued function on a closed interval [a, b] C R
is integrable, using only uniform continuity and Lemma 1 from §3. By Lemma 1, we only need
to show that for any e > 0 there exists a § > 0 such that [S§ —S3 | < e whenever Sj and S; are
Riemann sums of f corresponding to partitions of [a, b] of width less than §. That is, 1, Jy < 0.

Fix € > 0. Since a continuous function on a compact interval is uniformly continuous we choose
¢ > 0 sufficiently small such that |f(z) — f(y)| < €/(b—a) when |z —y| <, 2,y € [a,b]. Let P},
and P522 be the partitions of [a, b] such that d;,d, < 0 and let S, gl and S§2 be Riemann sums asso-
ciated with Pj and Pj, respectively. Write S5 = inep&ll f(x})Az; and S5, = ZyjeP§2 f(y))Ay;
as usual. Recall that ||P} U P} || < min{dy,d} < 6.

We can define the function g : [a,b] — R by g(2]) = f(z}) — f(y;) whenever 2| € [z;, ;1)
and 2z, € [y;,yj41) for i = 0,1,...,m —1and j = 0,1,...,n — 1 or when 2, € [Ty_1, T
and 2, € [Yn_1,Ys) and where z; and y; are defined according to Sy and Sy respectively. By
construction, we see that |z} — y}| < 0, which, by uniform continuity, shows that |g(z.)| =

|f (i) = f(25)] < €e/(b—a)
Hence, it follows that

1S5, = S3l = | D fahAz — > fy) Ay,

xiEPéll ijP(?2

< D lenllaz

zr€EP1UPy

bja Z Az,

pl P2
rePj UP}

<

€
— (b —
7, (b—a)
€

4. Exercise 21.

(a) We want to find the limit

lim —— 2 T (1)

n—o00 nk+1

where k > 0. To find this limit we want to approximate the sum S, = > _ mF by an

integral, which will be easier to evaluate. Notice that S, is an upper Riemann sum and a
lower Riemann sum from the integrals

Un:/ hdx
0

n+1
L, = / 2Fdx.
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Notice that L, < S, < U, (Draw a picture of the graph x*, evenly partition the intervals
[0,n] and [1,n + 1] into subintervals of unit length, and draw the corresponding upper and
lower Riemann sums of the graph on these intervals.). So

n o nk+1
U, = kde = —
/0 o {kﬂrlh k+ 1

n+1 k41 qntl 1)1 — 1
Y P
1 kE+1], kE+1

Then because L, < .5, < U, we have by taking limits

1 . (n+1)k+1—1 I (L) L E L . nk+l 1
7 T m < lim < lim = '
E+1 n—0o0 (k’ + 1)71]’“‘1 n—0o0 nk+1 n—oo (k + 1)nk+l E+1

We conclude that the considered limit is therefore 1/(k + 1).
(b) We must determine the limit

1 1 —~ 1
lim S, = li o — = i :
J S = f S g gy ) g

Again, we will bound the sum S, from above and below by integrals of the function
1/(x 4+ n). Observe that

n 1 n k41 1
i = i d
DD E;OZ/ R
n k+1 1
> lim dx
= ILm Zlog(k +1+n)—log(k+n)
k=1

2 1
= limlog< nt )

= log 2.

Similarly,

1 n k+1 1
li < li —d
LD B D Y e
= lim E log(k +n) —log(k+n —1)
n—oo
k=1

= lim log(2n) — logn

n—oo

= log 2.

We conclude by the squeeze theorem that in the limit as n — oo we have S,, — log 2.



5. Exercise 22. We want to show that

1 1 1
Yn=1+=-+=-4+--+——logn
2 3 n

decreases as n increases and that the limit converges to a value between 0 and 1. Recall that

n+1 1

log(n+1) = / ;dm.

1

Notice that

n+1 1

—dzx
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k+1
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/ —dz
k xr

1
z

1

log(n + 1)
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n—1 k41
D
k

T
k=1

"1
:1+/ —dx
LT

=1+logn. (2)

See the Figure 1, to see an illustration of why the inequalities in (2) hold.

Subtracting logn from the terms in the above inequality shows

1
0<log(n+1)—logn§ZE—logn§1. (3)
k=1

Thus, the sequence {7, }, is bounded from below by 0 and from above by 1.

Furthermore, we also see that

1
n+1

n+1
< / —dx =log(n + 1) — logn.
n T

It follows that

Vgl — Y = —log(n + 1) +logn < 0.

n+1
Hence, the sequence {7,}, is decreasing. Since the sequence {~v,}, is decreasing an bounded
from below by 0 the sequence converges. That is, if 7 = lim,, o0 > 1, % —logn, then v € [0,1).
It remains to show that v # 0. Consider the sequence {7/}, with

n

1
Vo= Q3 ~log(n+1).

k=1



Figure 1: Bounding the sum 3, k= by the integral f11o xldx.

From (3) we deduce that {7/}, is bounded from below by 0 and from above by 1. Moreover,
notice that

1 n+2
> —dzr =1 2) —1 1
1> | e =toa(n+2) ~ log(n + 1),

SO

1
%’Hl—%:n—ﬂ—log(n+2)+log(n+1) > 0.

So the sequence {7, }, is increasing. Since {7/}, is increasing and bounded from above by 1,
the sequence converges to a number ' € (0, 1] with 7 = lim, o Y5, 1 — log(n + 1). Finally,
observe that

1
v—7"= lim 7, —~, = lim log(n+ ) =0.
n—00 n—00 n

Thus, the limits of the two sequences are identical. Therefore, v € (0,1), as advertised.



