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1. We give an example of a function f : [0, 1] → R such that f is not integrable, but |f | is. We
define such a function by

f(x) =

{
1, x ∈ Q ∩ [0, 1],
−1, otherwise.

Then f is discontinuous everywhere on [0, 1] so it is not Riemann integrable (That is, the same
reasoning as Example 1.14 shows f is not integrable.). However, |f | ≡ 1, which is integrable.

2. Let f : [a, b]→ R and suppose that |f(x)| ≤ A <∞ for all x ∈ [a, b].

(a) We prove that
Uδ(f

2)− Lδ(f 2) ≤ 2A(Uδ(f)− Lδ(f)), ∀Pδ. (1)

Without loss of generality, suppose that A is the least such upper bound. Take any partition
Pδ and let a = x0 < x1 < · · · < xn = b be the ordered points in Pδ. In the notation of the
notes let supx∈[xi−1,xi]

f(x) = Mi and infx∈[xi−1,xi] f(x) = mi then

Uδ(f
2)− Lδ(f 2) =

n∑
i=1

( sup
ui∈[xi−1,xi]

(f(ui))
2 − inf

vi∈[xi−1,xi]
(f(vi))

2)(xi − xi−1)

=
n∑
i=1

sup
ui∈[xi−1,xi]

inf
vi∈[xi−1,xi]

(f(ui) + f(vi))(f(ui)− f(vi))(xi − xi−1)

≤
n∑
i=1

sup
ui∈[xi−1,xi]

inf
v∈[xi−1,xi]

2A(f(ui)− f(vi))(xi − xi−1)

=
n∑
i=1

2A(Mi −mi)(xi − xi−1)

= 2A(Uδ(f)− Lδ(f)),

where we have used the fact that Mi,mi ≤ A for all i = 1, 2, . . . , n and the fact that
f(ui)− f(vi) can be no greater than Mi −mi.

(b) We show that if f ∈ R([a, b]) then f 2 ∈ R([a, b]). Take ε > 0 arbitrary. Since f ∈ R([a, b])
choose δ′ > 0 such that for any δ < δ′ we have Uδ(f) − Lδ(f) < ε/(2A). Then by (1) we
have

Uδ(f
2)− Lδ(f 2) < 2A · ε

2A
= ε.
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Ergo, f 2 ∈ R([a, b]).

3. Let f, g ∈ R([a, b]). By the previous exercise, squares of Riemann integrable functions are
Riemann integrable. Since the finite sum of Riemann integrable functions is Riemann integrable,
it follows that f + g, f − g ∈ R([a, b]), (f + g)2,−(f − g)2 ∈ R([a, b]) and so

4fg = (f + g)2 − (f − g)2 ∈ R([a, b]).

Since the scalar multiple of an integrable function is integrable, by multiplying the above function
by 1/4, we conclude fg ∈ R([a, b]).

4. Suppose that f : [a, b] → R is continuous, f(x) ≥ 0 for x ∈ [a, b], and f(ξ) > 0 for some

ξ ∈ [a, b]. We show that
∫ b
a
f(x)dx > 0.

Suppose to the contrary that
∫ b
a
f(x)dx ≤ 0. Because f is nonnegative, we must have that∫ b

a
f(x)dx = 0 since no terms in any Riemann sums can be negative. However,

∫ b
a
f(x)dx = 0 is

a contradiction as continuity of f and f(ξ) > 0 guarantees the existence of an interval on which
f is positive—hence an integral of f over this interval must be positive.

To be more explicit, because f(ξ) > 0 and if ξ ∈ (a, b) continuity of f implies there exists an
ε > 0 sufficiently small such that f(x) > 0 for x ∈ [ξ − ε, ξ + ε]; if ξ = a or ξ = b, then we
consider instead [a, a+ ε] or [b− ε, b] respectively (We need only change the considered interval
appropriately in the remainder of the argument.). Since [ξ− ε, ξ+ ε] is compact, there exists an
m > 0 such that f(x) > 0 for all x ∈ [ξ− ε, ξ+ ε]. Then because f is nonnegative it follows that∫ b

a

f(x)dx ≥
∫ ξ+ε

ξ−ε
f(x)dx ≥ 2mε > 0.

5. Define the function f : [0, 1]→ R by

f(x) =

{
sin(1/x), x 6= 0,
0, x = 0.

We prove f ∈ R([0, 1]). Take ε > 0 arbitrary. Write E1 = [0, ε/3] and E2 = [ε/3, 1], so
[0, 1] = E1 ∪ E2. Since f is continuous on E2 choose δ1 > 0 such that Uδ,E2(f)− Lδ,E2(f) < ε/3
for any partition Pδ of E2 with δ < δ1. Since maxx∈E1 sin(1/x) = 1 and minx∈E1 sin(1/x) = −1,
we have Uε/3,E1(f) − Lε/3,E1(f) ≤ 2ε/3. Therefore, it follows that for any δ2 < min{ε/3, δ1} we
have

Uδ2(f)− Lδ2(f) ≤ (Uε/3,E1(f)− Lε/3,E1(f)) + (Uδ,E2(f)− Lδ,E2(f)) < ε.
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