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1. Problem 1.6. We evaluate the integral ∫ 1

0

x arctanxdx.

(a) Integration by parts shows∫ 1
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(b) Similarly, ∫ 1

0

x arctanxdx =

[
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]1
0

− 1

2

∫ 1
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2. Problem 1.7. Let {fn}∞n=1 be a sequence of bounded Riemann integrable functions on [a, b].
Suppose fn → f uniformly. We prove that f is Riemann integrable on [a, b].

First, we prove that f is bounded. For any ε > 0 choose a positive integer N sufficiently large
so that for all n ≥ N we have supx∈[a,b] |f(x)− fn(x)| < ε. It follows that

sup
x∈[a,b]

|f(x)| ≤ sup
x∈[a,b]

|fN(x)|+ ε <∞.

Next, let In =
∫ b
a
fn(x)dx. Consider the sequence of real numbers {In}n. We claim that the

sequence is Cauchy. Take ε > 0 arbitrary. Let N be a positive integer such that for all
m,n ≥ N we have supx∈[a,b] |fm(x)− fn(x)| < ε/(b− a). Then

|Im − In| ≤
∫ b

a

|fm(x)− fn(x)|dx < ε.
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Thus, the sequence is Cauchy and converges to some I = limn→∞ In.

Finally, we use the previous results to prove that f is integrable with integral I. By uniform
convergence of fn to f choose N sufficiently large so that sup[a,b] |f(x) − fn(x)| < ε/(3(b − a))
for all n ≥ N. Furthermore, let δ > 0 be sufficiently small so that for all 0 < δ′ < δ we have
|Sδ′(f)− In| < ε/3. The triangle inequality implies

|Sδ′(f)− I| ≤ |Sδ′(f)− Sδ′(fn)|+ |Sδ′(fn)− In|+ |In − I| <
ε

3
+
ε

3
+
ε

3
= ε.

3. Problem 1.8. We prove the six propositions in Example 1.48. The first of these is completed
in the text and shows by the comparison test that

∫∞
1
xpdx converges for p < −1 and diverges

otherwise. We begin by proving the second one, that
∫ 1

0
xpdx converges for p > −1 and diverges

otherwise. To demonstrate the convergence observe that for any ε > 0 the integral is

lim
b→0+

∫ 1

b

1

x1−ε
dx = lim

b→0+

1

ε
[xε]1b =

1

ε
.

Next, observe that

lim
b→0+

∫ 1

b

1

x
dx = lim

b→0+
− log b =∞.

Since xp > x−1 for p < −1 and x ∈ (0, 1) it follows by the comparison test that
∫ 1

0
xpdx diverges

for p ≤ −1.

Now suppose that the third part, that
∫∞
1
e−xxpdx converges for all p. If we take p < −1, then∫ ∞

1

e−xxpdx ≤
∫ ∞
1

xpdx <∞.

So the integral converges by the comparison test. Now for any p ∈ R there exists a minimal
nonnegative integer n such that p−n < −1. To prove that the integral converges for all possible
p we prove the result by induction on n. Notice that we have already verified the initial case
when n = 0. So suppose that the integral

∫∞
1
e−xxpdx converges for all p ∈ R with the property

that p − (n − 1) < −1. We must show that
∫∞
1
e−xxpdx converges if p has the property that

p− n < −1. Integration by parts implies that∫ ∞
1

e−xxpdx = [−e−xxp]∞1 +

∫ ∞
1

pe−xxp−1dx = e−1 +

∫ ∞
1

pe−xxp−1dx

The last integral is found to be finite by the induction hypothesis because p−1 has the property
that p − 1 − (n − 1) = p − n < −1. Therefore, we conclude that the integral converges for all
p ∈ R.
Next, we prove 4 : that

∫ a
0
e1/xxpdx with a > 0 diverges for all p. For simplicity, we prove the

result when a = 1. Taking the change of variables u = 1/x shows that∫ 1

0

e1/xxpdx =

∫ ∞
1

euu−p−2du.

By L’Hôpital’s rule we see that limu→∞ e
uu−p−2 = ∞, for any given p so the above integral

diverges for any p.
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To prove 5. for a > 0 observe that the change of variables u = log x gives∫ a

0

log xdx =

∫ log a

−∞
ueudu

=

∫ ∞
− log a

ye−ydy, y = −u,

=

∫ 0

− log a

ye−ydy +

∫ 1

0

ye−ydy +

∫ ∞
1

ye−ydy.

The first two integrals are clearly finite and the last integral exists by part 3 of this exercise.

Finally, we prove 6. Consider the function f(x) = x − log x. Then f ′(x) = 1 − x−1 > 0 for
x ∈ (1,∞). So f is increasing on (1,∞). Because f(1) = 1 we know that x − log x > 0 for all
x ∈ (1,∞), whence 1

log x
> 1

x
. Hence,∫ ∞

1

1

log x
dx ≥

∫ ∞
1

1

x
dx =∞.

Thus, the integral
∫∞
1

1
log x

dx diverges.

4. Problem 1.9. Calculus and Theorem 1.46 imply∫ ∞
0

1

(1 + x)2
dx = lim

b→+∞

[
− 1

(1 + x)

]b
0

= 1.

5. Problem 1.10. The integral
∫∞
0
xpdx is not convergent for any p. Write∫ ∞
0

xpdx =

∫ 1

0

xpdx+

∫ ∞
1

xpdx.

From Problem 1.8 the integral
∫∞
1
xpdx converges whenever p < −1. On the other hand,

∫ 1

0
xpdx

converges for p > −1. Since p cannot satisfy both p < −1 and p > −1 the considered integral
cannot converge for any p ∈ R.
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